2014 Abstracts
Bio-Inspired Molecular Manganese-Calcium Catalysts for Water Oxidation
Nicholas Labrum, Utah State University Physical Sciences Increasing concerns on the anthropogenic climate change, rising global energy demands, and diminishing fossil fuels have urged the search of alternative carbon-neutral and sustainable energy resources, among which solar energy stands out as the most promising target since it is the largest exploitable resource. However, its nature of diurnal variation, intermittence, and unequal distribution requires efficient and cost-effective capture, conversion, and storage. Generation of chemical fuels, such as hydrogen, from solar energy input represents an appealing approach to meet this goal. An ideal scheme would tap hydrogen from the splitting of water with concomitant evolution of oxygen. Due to the nature of the four-proton and four-electron process, water oxidation is the bottle neck of the overall water splitting process. Nature catalyzes water oxidation using an oxygen evolving complex (OEC) in photosystem II. This project aims at mimicking the OEC to prepare and investigate bimetallic Mn-Ca catalysts for water oxidation catalysis. Calcium has been reported to be critical in water oxidation by OEC, however its functional role has not been well studied. By positioning a calcium atom in the second coordination sphere of manganese in molecular scaffolds, we are able to systematically study the functional role of calcium at the molecular level. Our project will prompt the development of water oxidation catalysis and benefit artificial photosynthesis at large.
Melting Glaciers: A source of mercury and other trace elements to high elevation ecosystems at Grand Teton National Park?
Greg Carling, Brigham Young University Physical Sciences Wyoming the second most glaciated state in the lower 48 United States has seen drastic changes in the size of its glaciers. Glaciers in high elevation ecosystems of Grand Teton National Park are not anywhere near to the size that they were 100 years ago. The glaciers continue to decrease in size every day. As the environment changes the glaciers change in size and can be affected by many factors in the environment. Deposition of particulate matter from the atmosphere into the glaciers occurs as pollution is becoming worse and more common. Studies done throughout the world have shown that glaciers can act as a source for mercury and other trace metal elements in high elevation ecosystems. Through the assistance of the UW-NPS Research Station Dr. Greg Carling of BYU and his team of graduate and undergraduate assistants retrieved 100 glacial melt water samples from the Middle Teton, and Teepee Glaciers and stream sites in Garnet Canyon, and from the Teton Glacier in the Glacier Gulch area. In the data analysis completed up until this point, concentrations of various trace elements have found in sample sites in close proximity to the Middle and Teton glaciers on the glacial moraine. We hypothesize that these glaciers act as a source for mercury and trace elements that can then be transported to lower elevation ecosystems within the Greater Yellowstone Ecosystem.
Trace element concentrations showing signs of urbanization along the Provo River, Utah
Tucker Chapman, Brigham Young University Physical Sciences The Provo River provides the opportunity to study three systems from low to high anthropogenic activity. Its headwaters are in an undeveloped area of the Uinta Mountains. The river then moves into a valley that is developing from an agricultural to an urban system. The lower portion of the river moves into the urbanized Utah Valley. These systems give the ability to study the changes in trace element chemistry from a variety of sources. Trace element data were collected during the 2013 water year including the spring snow melt. Correlation was analyzed among the different trace elements using multivariate statistics in order to discover trace element sources. The element loads were calculated using USGS Load Estimator (LOADEST) software. The study has implications involving the drinking water of >2 million people in the Utah and Salt Lake valleys and the changes that the shift from agriculture to urban is causing.
How many class ii wells present a risk for induced seismicity?
Isaac Allred, Utah State University Physical Sciences We examine the number and location of Class II wells in the central U.S. to constrain future work on the potential for induced seismicity. The EPA, state oil & gas commissions, scientific papers, and media stories frequently state that there are ~140-160 k Class II wells. Excluding California, we expected to find approximately 120 k wells; but instead found ~ 82 k active injectors in the available databases. State datasets vary in accessibility, availability, and content of well data. Lack of digitized well data also limited our online search, and several states require FOIA requests to be filed. State databases with poor searching and sorting functions further complicated data mining, requiring a well-by-well search, and for several states, well locations and injections were difficult to determine. Common discrepancies between EPA well totals and state database totals appear to be due to counting of plugged and abandoned wells, and wells that are permitted but not in use. No data has been retrieved for about 1,600 wells on tribal lands and Indian Country, and several states would not provide “confidential” well data. Of the active injectors, at least 55 k wells inject into producing, pressure-depleting oil and gas formations and are less likely to generate damaging earthquakes. Of the ~ 16 k non-EOR wells, we found 3,400 wells that inject at depths > 1.8 km, where most M > 3.0 midcontinent earthquakes occur. We will present examples of data from several states, that show the locations and depths of injectors, earthquakes, depth to basement, and we will provide an overview of the public file sharing system of the data. We will search for correlations between the depth of injection, the number of injection wells, recent seismic activity, the nature of the subsurface geology, and regional stresses.
Histone modifications are altered in the renal cortex of ventilated preterm lambs
Adam Blair, University of Utah Physical Sciences Objectives: Histone covalent modifications influence regulation of gene expression. Changes in histone covalent modifications are triggered by abrupt changes in environment, such as preterm birth followed by mechanical ventilation (MV). Whether histone modifications also occur in the kidney of chronically ventilated preterm lambs is not known. We hypothesized that ventilation of preterm lambs affects histone modification in kidneys.
Source of Elevated Free Carbon Dioxide Levels at the Springville State Fish Hatchery, Springville, Utah
Christopher Clements, Utah Valley University Physical Sciences DWR operates the Springville Fish Hatchery raises rainbow trout for stocking lakes and ponds. Since February 2011 the hatchery has observed excessive physical activity among the trout, including jumping out of raceways onto the concrete walkways. Excessive physical activity can result from free carbon dioxide levels above 10 ppm and free carbon dioxide levels in the hatchery water have been measured as high as 17 ppm. They have added some treatment processes before it enters the hatchery and greatly reduced the food intake of the trout, which increase costs and reduce production. This has reduced free carbon dioxide levels to only 15 ppm. The objective of this study is to determine the source of elevated free carbon dioxide and recommend solutions for the problem. The water source for the hatchery is a shallow pond, which is fed by 16 springs, both warm and cold. The objective is being addressed by measuring discharge from each spring and collecting water samples for measurement of free carbon dioxide in addition to other common stressors of rainbow trout. Free carbon dioxide, temperature, pH, electrical conductivity and dissolved oxygen are being measured on-site, while hardness, nitrite, ammonia, copper, iron and zinc are being measured. Free carbon dioxide levels at some warm springs have been measured as high as 25 ppm. Mixing calculations will be carried out to determine whether the discharge and water quality of each spring is consistent with the water quality currently entering the hatchery and whether the removal of one or more springs would result in sufficient water within the acceptable ranges for rainbow trout. If calculations estimate free carbon dioxide significantly lower than the measured free carbon dioxide in the water entering the hatchery, it is possible that additional elevated free carbon dioxide results from the decay of organic matter.
Lyman-alpha Emission as a Probe of Galaxy Environments
Joshua Wallace, University of Utah Physical Sciences We study the effect of the circum-galactic gas environment on the observed Lyman-alpha emission from Lyman-alpha emitting galaxies. These galaxies are primarily high-redshift star-forming galaxies that are important in understanding both galaxy and universe evolution. The Lyman-alpha photons emitted from these galaxies should hold valuable clues about the general environmental properties (such as gas velocity, density, and distribution) around galaxies, since the photons can be strongly affected and scattered by the neutral hydrogen atoms that make up the majority of the gas. However, explaining exactly how a galaxy’s environment affects its Lyman-alpha emission is very complex and currently cannot be predicted with complete certainty — every time a Lyman-alpha photon interacts with a hydrogen atom, its direction and frequency are changed, which in turn affects how far it will travel before the next interaction. We study the environmental effects on Lyman-alpha emission properties by applying Monte Carlo Lyman-alpha radiative transfer modeling to simple analytic models and find an important role of the anisotropic distribution of gas in determining the observed photometric and spectral properties of Lyman-alpha emission. We further perform a detailed investigation by applying the radiative transfer modeling to realistic star-forming galaxies in high-resolution cosmological galaxy formation simulation. From our analysis so far, we find the Lyman-alpha emission from the models shows a strong dependence on viewing angle, as well as correlations between observed spectral features and environmental conditions. We plan to model and analyze a large sample of simulated galaxies to better describe and statistically quantify the above dependence and correlations. Our study will lead to a better understanding of the effects galaxy environment on the observed Lyman-alpha emission and in turn provide a theoretical guide on how to use observed Lyman-alpha emission to learn about the environments of star-forming galaxies and hence galaxy formation and evolution.
Structural health monitoring of natural arches in the Moab area
Ben White, University of Utah Physical Sciences We evaluated the ambient noise wavefield of select arches in the Moab area as a means to assess changes in their structural health over time. Our measurements revealed that the fundamental frequency of vibration at Mesa Arch and Corona Arch are both in the range of 3 Hz, while other spectral peaks are likely related to higher-order vibrational modes. We use numerical modeling for modal analysis in an attempt to predict and visualize the various modes of vibration and their frequency Resonant frequencies are projected to change with snow or rain loading or after a strong earthquake. By monitoring resonant frequencies over time and under various environmental conditions, our goal is to detect reversible and/or irreversible changes that may accompany damage of these arches.
Preventing Mode-hops in Extended-cavity Diode Lasers
Enoch Lambert, Brigham Young University Physical Sciences Extended-cavity diode lasers are important tools in scientific research. Current extended-cavity diode laser systems will change frequency unpredictably while operating, requiring extensive effort to tune them back to the right frequency. We seek to implement a novel method of extended-cavity diode laser control that adds an extra control system to prevent these unpredictable changes.
Use of the Manning Equation to Estimate Stream Discharge through Natural Slot Canyons and Artificial Slots
Jeff Selck, Utah Valley University Physical Sciences Stream discharge through narrow, deep slot canyons can be a major source of groundwater recharge in the arid Southwest. Various state and federal agencies use the empirical Manning Equation to predict the discharge through artificial slots created for diversion of rivers around coal mines. However, it is not obvious that the Manning Equation could be applied to slot canyons or artificial slots as the data base used for development of the Manning Equation did not include either natural streams or artificial structures for which most of the friction occurs along the sides of the channel. The objective of this research is to develop an empirical formula for estimating the Manning roughness coefficient for flow through narrow, deep slots. The objective is being addressed by measuring stream discharge through natural slot canyons in southern Utah that are fed by perennial streams, springs or dam outlets. Based on measurements at ten sites along eight streams, the best estimate for the Manning roughness coefficient is n = 0.873nJ exp(5.108A/w2) where A is stream cross-sectional area, w is stream width, and nJ = 0.39S0.38R-0.16 is the roughness coefficient estimated by Jarrett (1984) for high-gradient streams, in which S is slope of the stream bed and R is hydraulic radius (ft). The new formula estimates stream discharge with a mean accuracy of 44%. On the other hand, Jarrett’s (1984) formula underestimates stream discharge by 1-2 orders of magnitude for aspect ratios A/w2 in the range 0.6-0.7. The new formula will be refined by additional measurements on slot canyons, artificial diversions, and a laboratory hydraulics bench. It is hoped that the new formula will lead to a more realistic design for artificial slot diversions.
Synthesis, Analysis, and Biological Activity of Novel Organoarsenic Products
Jared Weaver, Southern Utah University Physical Sciences Organoarsenic are compounds containing carbon and arsenic. These compounds have been shown to have biological activity and pharmaceutical properties, and some organoarsenic compounds have even displayed potential for aiding in current medical problems up to and including possibilities as anticancer agents. Currently relatively little research is being done on organoarsenic compounds by the pharmaceutical community due to current views from the media based largely upon the toxicity of their inorganic arsenic counterparts (inorganic compounds are compounds not containing carbon), organoarsenic compounds however have significantly toxicity. Also, like with any medicine, toxicity depends predominately upon concentration, and given a high enough concentration organoarsenic compounds would logically follow the same trend. Synthesis of a large variety of novel organoarsenic compounds has been found via a reaction involving a variety of aldehydes or ketones and 2-(Dichloroarsino)benzaminium chloride. Research will focus on synthesis, isolation, and characterization of a library of organoarsenic compounds and then determine their respective biological activities. Synthesis will determine mechanistic requirements of said reaction and will be done to produce a diverse selection of organoarsenic compounds. Compounds will be isolated through precipitation of product and vacuum filtration of formed product. Structure will be determined through IR, NMR, and Gas Chromatography/ Mass Spectrometry, and through X-ray crystallography. Biological activity is suspected with potential for testing via a Kirby-Bauer Disc treatment. It is hypothesized that novel organoarsenic products will be formed by reaction of 2-(Dichloroarsino)benzaminium chloride with all carbonyl compounds containing an alpha carbon with at least one proton used, and that compounds synthesized will inhibit bacterial growth.
Use of Phage and Vancomycin Treatments Against Staphylococcus aureus Biofilms
Kelly Hoerger, University of Utah Physical Science Implant devices such as orthopedic, dental, and cochlear implants are commonly utilized as part of many medical treatments. However, these foreign objects are susceptible to bacterial contamination, thereby putting the host at risk of an infection that is challenging to eliminate due to biofilm formation. Biofilms are formed when a bacterial cell adheres to and colonizes such metal or plastic surfaces. The cells aggregate to form and embed themselves in a thick and protective polysaccharide matrix, making biofilms resistant to many antibiotic treatments.
Precise External Timer
Adam Kingsley, Brigham Young University Physical Sciences In the construction of various sensors in the lab, highly accurate integration times are required. It is advantageous to have a precise external timer to run the circuitry contained in the sensor. By taking a signal in the range of megahertz down to hertz or milihertz range, it is possible to control the start and stop times for circuits. Overall this means that every time a measurement is taken it represents the same length of time.
Gallai Colorings of Complete Graphs with Applications to the Theory of S-rings
Bruce Chiarelli, Brigham Young University Mathematical Sciences A Gallai coloring of the complete graph on n vertices is an edge coloring such that no triangle has edges of three different colors.
Models for Dementia Diagnoses with Distributed Learning
Samantha Smiley, Brigham Young University Mathematical Sciences Dementia is a clinical syndrome characterized by an overall loss of cognitive ability. There are multiple forms of dementia with various causes and various impacts on the suffering individuals. Accurate diagnosis is essential to effective intervention and treatment. Currently, clinicians lack a biological marker that definitively distinguishes the different forms of dementia. Hence, they rely on physical exams, neuropsychological tests, and patient report to provide a diagnosis. Recent advances in brain imaging make it possible to obtain detailed maps of brain activity, which in turn may offer insight into many conditions such as dementia. Developing a predictive model from patient data, including brain scans, would greatly enhance the ability of clinicians to provide accurate diagnosis, and hence appropriate treatment, to their patients. Doing so, however, is not trivial as patient data is heterogeneously and non-uniformly distributed across sites, where some sites have far more data than others and calibration varies among scanners used. We report on the development of novel predictive models based on distributed learning for the effective diagnosis of dementia.
Space Filling Curves and Their Applications With Metamaterials
Steffan Larsen, Brigham Young University Mathematical Sciences The popularity of metamaterials has exploded with in the last decade. Metamaterials are materials that exhibit interesting properties not found in nature; one of the most widely known features being a negative refractive index. Metamaterials are composites different types of materials that give them their interesting properties. In addition to being composed of several element types, metamaterials also contain certain inclusions that influence their electromagnetic properties. Among these are space filling curves. Space filling curves are curves that are entirely contained within a specific area and yet can become infinitely long. In my research I investigated the properties of space filling curves and their application/benefit to the research surrounding metamaterials, specifically metamaterial antennas.
The stability of a semi implicit numerical scheme for a competition model arising in Math Biology
Brennon Bauer, Southern Utah University Mathematical Sciences We study the Lotka-Volterra competition model. This model can be applied to Math Biology. We propose a Semi-Implicit numerical scheme, which guarantees that the populations are always positive. Also we prove that the numerical scheme is uniquely solvable, and is unconditionally stable.
Higher Dimensional Smooth Data Interpolation Techniques from Computational Geometry
Ariel Herbert-Voss, University of Utah Mathematical Sciences A typical problem in numerical analysis is finding a smooth interpolation of a given data set such that information at extended positions can be evaluated. When extended to higher dimensions, there are few such algorithms available for practical use. Drawing from techniques used in geometric modeling we developed a practical algorithm with improved complexity by implementing the techniques in a query model as part of a MATLAB software package. From initial input data the algorithm builds a d-dimensional cell complex using Delaunay triangulation. Each cell has an associated interpolation function that satisfies Lipschitz continuity for each new point. During query time the user specifies a query point and the algorithm returns the interpolated function value. To reduce complexity related to point location within the cell complex, we implemented a binary tree search based on hyperplane decision criteria. Efficiency analysis completed using benchmark data sets indicated that the decision tree algorithm improved the efficiency from O(N) to O(N log N). This algorithm is the first of its kind that can be used on actual data sets and is the first implemented as a MATLAB package.
Examining the rainbow effect of metamaterial droplets
Nirdosh Chapagain, Brigham Young University Mathematical Sciences Rainbow is an optical phenomenon created by reflection and refraction of light at the boundaries of water droplets. Descartes was the first to provide a geometric explanation for the optics of the rainbow. We use Descartes’ method to examine if rainbow effect is possible with metamaterial droplets. Metamaterials are artificial materials whose permittivity and permeability can be simultaneously negative hence, giving them negative index of refraction for certain frequencies. The recent extraordinary level of output in the field of metamaterials has resulted in examinations of applications of these substances to a variety of fields, including the arrow of time and cloaking. Many applications of metamaterials can create physical effects that were previously assumed impossible. In this study we have considered that our hypothetical droplet has negative refractive index for visible band of the electromagnetic spectrum. We also examine the effect of using composite metamaterial droplets.
Numerical solutions for problems in seepage flow
Ammon Washburn, Brigham Young University Mathematical Sciences In many problems with seepage flow, there are non-linear problems that don’t have an easy analytical solution. There is already good research on what can be done in certain situations with these problems. I will present on numerical methods that have been proven to solve certain conditions and then present other solutions for similar problems where the numerical method isn’t so readily available in past research. I will implement the algorithms and compare results.
Classifying Neurons in the Brainstem
Lee Leavitt, University of Utah Life Sciences The ventral respiratory column (VRC) is a region in the brainstem shown to control breathing patterns in mammals. Using activation and inhibition of neurons in this region, classes have been assigned based on response-combinations. Using a mouse model, cells from this region are dissociated, plated and incubated with a dye that indicates changes in cytoplasmic calcium levels. Hundreds of cells are measured while varieties of pharmacological agents are applied. Response-combinations provide a profile of the receptors found on these neurons. Previously, varieties of cell classes were shown to contain NMDA receptors (receptors linked to learning and memory). However, specific compositions of subunits within these receptors are not known. These receptors are ligand gated ion channels composed of four non-covalently bound proteins. Each subunit has a different activation profile determined by interactions of agonist and antagonists. Conantokins (peptides isolated from snail venom) and other compounds further afford understanding of the architecture the assigned cell-classes. This project has continued to classify the subunit compositions of NMDA receptors with the ultimate goal of understanding which NMDA receptor subunits are present in each class. This will provide valuable information on the VRC’s function, and will allow for pharmacological innervations to change behavior in this region.
Insect Phylogeography Study on Patagonia
Dasom Kim, Brigham Young University Life Sciences The main purpose of the project is to compare the phylogeography of a species of stonefly (Klapopteryx kuschelli) and a species of dragonfly (Rhionaeshna variegata) in Patagonia. Specifically, the project will study how geography and behavior (i.e., their dispersal abilities) have affected their evolutionary histories. Of all the varied climates and geography in South America, comparatively few phylogeographic studies have been conducted with insects, especially in Patagonia. This study will provide an important foundation for a comparative phlyogeographic study of two insect groups inhabiting the same regions of Patagonia. Also, if funded, this project will give me an exclusive opportunity to interact with international research institutions in South America as well as their scientists.
Comparison of Antibiotic Resistant Enterococci Isolated from Various Weber River Locations, from the Great Salt Lake and from Hospitalized Patients
Madison Landreth, Weber State University Life Sciences Enterococcus, a bacterial genus that normally inhabits the gastrointestinal tract of animals, can be pathogenic to humans, causing urinary tract infections, sepsis and other serious diseases. It is also one of the major causes of hospital acquired infections. One important complication of those infected with Enterococcus is the fact that these bacteria often have a high level of antibiotic resistance, making effective treatment of patients more difficult. While Enterococcus is a normal inhabitant of the gastrointestinal tract, it can survive outside its host in the environment, even in adverse conditions, such as the Great Salt Lake (GSL). In this experiment, hundreds of isolates of Enterococcus were collected from the Great Salt Lake, from various sites along the Weber River which flows into the GSL and from clinical sources. Isolates were tested for different phenotypic characteristics and for their resistant patterns against certain antibiotics. Preliminary results of the Kirby Bauer disk-diffusion assay demonstrated that 47% of enterococcal isolates from the Great Salt Lake were resistant to one or more of the five antibiotics compared to 98% of the clinical isolates. In contrast, in a previous study, as few as 15% of Enterococcus isolated from the fresh water sources were resistant to one or more of the five antibiotics. These data may have implications concerning the importance of anthropological impact on rates of antibiotic resistance in this genus.
The Location and Dimensions of FGF Source are Critical for Proper Limb Pattern
Derrick Crawford, Brigham Young University Life Sciences Members of the FGF family of signaling factors are key components in distal outgrowth and patterning of the vertebrate limb. These factors are expressed and secreted by the apical ectodermal ridge (AER) on the distal margin of the limb. Blocking their function is known to truncate the limb skeleton. Conversely, replacing the AER with beads soaked in Fgf protein can rescue limb outgrowth and patterning. Our lab has demonstrated that one of the mechanisms whereby the Fgf/AER functions is to mediate directed outgrowth of the adjacent mesenchyme. As the AER regulates growth of mesenchyme toward itself, it would be predicted that the AER’s dimensions would be important for shaping the mesenchyme that it recruits. We have found that the shape of the AER changes over time in a manner that corresponds to the shape of limb elements as they form along the proximal distal axis. Further, mutants that exhibit defects in the dimensions of the AER show corresponding anomalies in the limb skeleton. Given these observations it would be predicted that an Fgf soaked bead being of fixed spherical dimensions would only be capable of forming a cylindrical, rod-shaped limb. A bead placed posteriorly fulfills this expectation whereas a bead placed apically does not. We provide a molecular explanation for this discrepancy. We have also manipulated the shape of the AER surgically and find that similar to beads the shape and the AP position of the AER dictates the shape of the forming limb skeleton.
Using Microsatellite Markers to Characterize Genetic Diversity of Utah Agave and its Subspecies
Charlee Byers, Brigham Young University Life Sciences Agave utahensis (Utah agave) plays a critical role as a keystone species in its native habitat. A rise in frequent, intense fires across the range of these habitats threatens to eliminate Utah agave populations, and consequently limit its genetic diversity. Characterizing the genetic diversity of Utah agave and its subspecies will help in restoration efforts to protect the species. We constructed primers to amplify microsatellite markers of two subspecies of Utah agave, ssp. kaibabensis and ssp. utahensis. Using these markers, we determined the level of polymorphism within four populations of each of the two subspecies.
Three-Dimensional Mapping and Virtual Reconstruction of a Pharyngeal Space Nerve Plexus
Jake Gamboa, Brigham Young University Life Sciences It is estimated that approximately 350,000 people in the United Stated die annually from post-myocardial infarction arrhythmias. A majority of these people will undergo a surgery that results in partial or complete removal of the stellate ganglion and other nerve fibers of the pharyngeal space in an attempt to prevent over stimulation from the neurons to the area of dead heart tissue and, therefore, future arrhythmias. However, without a somatomototopy, it is unclear what physiological effects partial or full sympathectomies may have. We will create a three-dimensional map of the pharyngeal space nerve plexus which will, in turn, allow for a more accurate and precise surgery.
Human Breast Cancer Response to Telomere Loss
Teressa Paulsen, University of Utah Life Sciences Breast cancer is still the most common cancer among women regardless of race or ethnicity. The focus of our research is to uncover the mechanism breast cancer cells use to escape the inherent limitations of the telomere and obtain immortality. The protective end of a chromosome, the telomere, degrades with each cellular division. The cellular response to telomere dysfunction is to activate programmed cell death. Therefore, this type of damage normally limits the proliferative potential of the cell and subsequently carcinogenesis.
American avocet (recurvirostra americana) incubation constancy throughout the nesting cycle on the great salt lake
Josh Hall, Weber State University Life Sciences Reproduction in birds is extremely conservative with the vast majority of the birds adopting bird-egg contact incubation to maintain an appropriate microclimate for embryonic development (Deeming, 2004). The Great Salt Lake is a vital nesting site for American Avocets (Recurvirostra Americana) that shows extreme temperatures and hostile environments where nest success can be as low as 1 -14% (Cavitt, 2008). Constancy of incubation, i.e. the time that the eggs are in contact with an adult, is a major indicator of nest success and environmental conditions. Our goals were to examine some of the costs natural selection places on embryos and parents to maintain a constant embryo temperature. We hypothesized that incubation attentiveness would increase across the nesting cycle. Over 200 AMAV nests were surveyed. Thermal probes were used to record various nest microclimates at every minute. A pseudonest with painted chicken eggs was also created and a thermal probe was placed to measure the ambient temperature without any adult incubation. A motion sensitive camera was placed over nests to examine differences in parental care. Nests will be divided into three phases: early, mid, and late incubation. Thermal data will be analyzed using descriptive statistics and mean variance values to calculate how incubation constancy varied throughout these phases. We expect this data to tell us more on how natural selection is working on these populations and some possible theories of how this developed.
Gene Expression of P2X7 and P2Y1 in CFS and FMS Patients on Lyrica versus Placebo
Goyeun Tun, University of Utah Life Sciences Chronic Fatigue Syndrome (CFS) and Fibromyalgia Syndrome (FMS) are disorders which their symptoms and treatments are not clearly known. CFS and FMS are not life threatening diseases; however, they can affect patients’ quality of life because they experience symptoms including exercise intolerance, need for bedrest, and debilitating chronic pain and fatigue with these disorders. The research from Dr. Light’s lab has shown that moderate exercise for 25 minutes causes changes in mRNA levels in CFS and FMS patients but not healthy controls. The objective of our study was to examine changes in white blood cell gene expression of CFS and FMS patients both on Lyrica and on placebo in a double-blinded, cross-over design (where each study subject was his or her own control) by using quantitative PCR gene expression analysis. The lab routinely analyzes blood samples for 48 different genes from study subjects and healthy controls collected before (baseline) and then 8, 24, 48 hours after exercise moderate exercise. My focus was on changes in expression of two ATP-responsive purinergic receptors, P2X7 and P2Y1, which have not been studied after exercise in CFS and FMS but have been associated with chronic inflammation and pain in animal models. White blood cell layers (buffy coat) were collected from samples, RNA was extracted and converted to cDNA. 384 well PCR plates were robotically loaded from 96 well source plates, then the PCR reaction was run in an ABI 7900 thermal cycler that tracks fluorescence in “real time” (real time qPCR). Analysis of results is in progress and will be reported on the poster.
Protein phosphatase 2A activation contributes to endothelial dysfunction that occurs in mice with diet-induced obesity
Xin Wan, University of Utah Life Sciences Endothelial dysfunction exists in individuals with diet-induced obesity (DIO) and type 2 diabetes (T2DM). Markers of endothelial dysfunction include reduced phosphorylation (p) of endothelial nitric oxide (NO) synthase (eNOS) to total eNOS (p-eNOS:eNOS), and attenuated endothelium-dependent vasorelaxation. Free fatty acids (FFAs) are elevated in individuals with DIO and T2DM. Our laboratory has shown that when: (i) endothelial cells are incubated with saturated FFA palmitate; (ii) mice are infused with lard-oil; and/or (iii) when mice are fed with high-fat diet, protein phosphatase 2A (PP2A) binds directly with eNOS. When this occurs, the association among Akt-Hsp90-eNOS is disrupted, p-eNOS:eNOS is impaired, and endothelium-dependent dysfunction occurs. This is prevented using pharmacological and genetic approaches that limit production of FFA metabolite ceramide. It is unknown whether PP2A inhibition per se is protective. We hypothesized that arterial dysfunction in obese vs. lean mice is prevented by PP2A inhibition. Seven-week-old, male, C57B16 mice consumed standard (CON, n=20) or high-fat (HF, n=20) chow for 12-weeks. Subgroups (n=10) of CON and HF mice received IP injections of saline (vehicle; V) or Lixte Biotechnology 100 (LB1, 1 mg/kg/day) for the last 14-days. Preliminary experiments verified that LB1-treatment for 3 and 21 days decreases (p<0.05) arterial PP2A activity. HF mice gained weight and developed peripheral glucose intolerance vs. CON mice regardless of LB1 treatment. Endothelium-dependent vasorelaxation was impaired (p<0.05) in HF-V vs. CON-V mice, but dysfunction was less severe (p<0.05) in HF-LB1 mice. p-eNOS:eNOS was reduced (p<0.05) in arteries from HF-V vs. CON-V mice, but p-eNOS:eNOS was similar in arteries from HF-LB1 and CON-LB1 mice. Akt and Hsp90 co-immunoprecipitation with eNOS was impaired (p<0.05) in HF-V vs. HF-CON mice, but this was not observed in arteries from HF-LB1 and CON-LB1 mice. These findings suggest that PP2A activity suppression in vivo is sufficient to preserve endothelial function in obese mice.
Physiological and pathophysiological stimuli alter endothelial cell autophagy
J David Symons, University of Utah Life Sciences Autophagy plays a central role in cellular quality control by destroying damaged or excess proteins, lipids, membranes, and organelles that accumulate in response to deviations from homeostasis. The existence and role of autophagy in endothelial cells (ECs) and blood vessels has not been established. Autophagy can be quantified by assessing the ratio of the membrane bound conjugate of microtubule-associated protein light chain 3 (LC3-II) to the cytosolic non-lipidated conjugate LC3-1 (LC3-II:LC3-I) or GAPDH (LC3-II:GAPDH) via immunoblotting. We sought to determine the extent to which a variety of cellular stressors induces autophagy in ECs and intact blood vessels. LC3-II:LC3-I or LC3-II:GAPDH was elevated (p<0.05) (i) 450±6% (n=4) in ECs incubated for 2 h in amino acid (AA)-deplete vs. AA-replete media; (ii) 47±3% (n=3) in arteries from fasted (14 h) vs. fasted / refed (1 h) mice; (iii) 40±2% (n=3) in arteries from mice that completed acute exercise vs. sedentary controls; (iv) 38±1% in arteries from exercise-trained vs. sedentary mice under basal conditions (n=2 per group); and was decreased (p<0.05) (v) 57±8% (n=4) in arteries from ~30 month-old (i.e., old) vs. ~6 month-old (i.e., young) mice. Further, indices of autophagy were elevated (p<0.05) 101±6% in ECs exposed to 3 h x 500 uM palmitate vs. vehicle (n=4), and 50±6% in arteries from obese vs. lean mice (n=4 per group). Thus, autophagy is altered in ECs and blood vessels in response to physiological (e.g., fasting, acute exercise, exercise training, aging) and pathophysiological (acute lipotoxicity, diet-induced obesity) stimuli. Ongoing research will determine the functional role of vascular autophagy in health and disease.
Concentrations of Trace Pharmaceuticals Found in Hobble Creek
Janweb Lagazo, Brigham Young University Life Sciences The scientific community and the general public have long been interested in the effects of water pollution. Most studies on water pollution have focused solely on industrial pollution, but have failed to consider the potential impact of pharmaceuticals that unintentionally accumulate in aquatic ecosystems via wastewater treatment effluents. The purpose of this study is to advance our understanding on how these wastewater effluents affect aquatic ecosystems in Utah. We quantified the concentration of select pharmaceuticals in Hobble Creek using mass spectrometry. Then we sampled above the treatment plant, at the effluent outlet, and downstream of the effluent to determine pre-effluent and post-effluent drug concentrations. We are currently using this preliminary data to investigate how common endocrine disrupting, anti-inflammatory, analgesic, and anti-anxiety drugs may potentially affect the aquatic ecosystem of the endangered Chasmistes liorus, commonly known as June sucker.
Characterizing breast cancer cell lines using principal component analysis of high- frequency ultrasonic spectra
Laurel Thompson, Utah Valley University Life Sciences Breast cancer is divided into subtypes which are defined by their proteomics, histology, and genetic expression profile. Current methods, therefore, are aimed at testing these, and include DNA microarrays, immunohistochemical staining, and proteomic analysis. These methods are effective classifiers, but are not easily transferable to real-time clinical applications, such as the determination of cancerous status during operation or when taking a biopsy. The determination of molecular subtype by other means would be a significant advancement in cancer detection and treatment. We have made some preliminary studies that suggest high-frequency ultrasound may be sensitive to variations among the cancer subtypes as manifest in cell cultures through their cytoskeletal protein structure, which has a distinct spectral signature. The object of this study was to explore the basis for this variation through a combination of experimental and theoretical analysis. We used first-principal modeling methods and compared the model spectra generated from these to spectra obtained in the cell culture lab. Variations in bulk modulus, cell position and size were modeled and combined with experimental spectra in principal component analysis (PCA), and the Euclidean distances between each principal component of the experimental were found as they relate to the theoretical principal components. A graphical method similar to heat maps used for gene expression profiling was then developed to display the relative distances (similarities) between spectra. The program was tested by comparing experimental spectra of three breast cancer cell lines to model spectra. The results indicate the properties and thus molecular subtypes of breast cancer cells could potentially be determined by comparing their measured spectra to model spectra using a feature classification program such as PCA and that these classifying features can be displayed in a convenient graphical representation according to their spectral similarities.
Three-Dimensional Modeling of Facial Nerve VII
Dani Peterson, Brigham Young University Life Sciences Due to its long and complicated trajectory through the cranium, facial nerve VII (CN VII) can be damaged in surgeries, sometimes resulting in facial muscle paralysis. Surgical removal of acoustic neuromas and parotid tumors, in addition to surgical repair of the temporomandibular joint disorder are associated with a risk of damage to CN VII. In addition, insertion of auditory implants can damage the nerve, as can improper stimulation to the nerve after the implantation has occurred. We will create a three-dimensional (3D) model based off of data from dissection of the nerve in a human cadaver in order to give physicians a greater in vivo knowledge of the pathway of CN VII. We have dissected the lateral side of the right half of the head to the level of the parotid gland, identified the parotid plexus of CN VII, and followed its five branches. In addition, we are currently following the nerve through the internal auditory meatus on its pathway through the temporal bone. In preparation for the modeling MicroScribe technique described below, we have imaged the head using Magnetic Resonance Imaging (MRI) at BYU. These images will be used as a template for the nerve reconstruction model. After completing the dissection, we will track the nerve trajectory using a MicroScribe 3D Digitizer. The MicroScribe technique is used to create 3D computer models of any physical object. The user sets reference points and uses the stylus to trace data points of the object’s contours. Our final product will be a 3D spatial computer mapping of CNVII, as well as a mapping of the skull, parotid gland, and other landmarks to put the nerve model into context. We hypothesize that with our approach and MicroScribe technique, we will be successful in creating an accurate model of CN VII in the head.
High Intake of Soy and Selenium Reduces Prostate Cancer Risk: Does Timing of Intervention Matter?
Lauren Archibald, Brigham Young University Life Sciences Increased intake of selenium (Se) and soy have both been shown to reduce risk for prostate cancer, especially if these dietary treatments are combined. The purpose of this project is to determine how the timing of Se supplementation of either a low- or high-soy diet affects prostate cancer risk. [C57BL/6 X FVB] F1 TRAMP (TRansgenic Adenocarcinoma of Mouse Prostate) male mice were fed stock diets low or high in soy. Half of the mice received Se supplementation (4.0 mg Se/kg BW as Se-methylselenocysteine) by gavage 5 d/wk in a 2 X 2 factorial design. Se supplementation began at conception, 6 weeks, 12 weeks, or 18 weeks of age. The mice were then sacrificed at different stages of maturation (4, 12, 18, and 24 weeks). Our results showed that, at 12 weeks of age, urogenital tract weights, a measure of prostate proliferation and tumor volume, were significantly reduced by Se supplementation (p<0.001) and by soy (p=0.044), independent of time of dietary intervention. Histological scores of prostate cancer progression also showed a protective effect of Se supplementation (p=0.030). At this writing, statistical analysis of data from mice sacrificed at 18 weeks is in process. Data derived from 18-week mice, combined with our previous findings from 12-week animals, will allow us to chart the progress of prostate cancer in this model. In addition, results will show how dietary Se and soy may alter disease progression and how the timing of dietary intervention may determine its effects.
Cultural, Economic, and Educational Factors Related to Diabetes Mellitus Type 2 in Tongans
April McMurray, Brigham Young University Life Sciences Diabetes Mellitus Type 2 (DMT2) is a lifestyle-related disease where the body does not produce enough insulin or the cells are unreceptive to it, and it is now the most common form of diabetes. Individuals who do not control the disease can suffer serious complications such as limb amputation, damage to the eyes, kidneys, nerves, heart, and it can be very costly. This problem is particularly serious in Tonga; the prevalence is almost twice as high as that in the United States. The purpose of this research project was to determine to what extent the cultural, economic, and educational factors contribute to such high prevalence. In May I traveled to Tonga with the nursing students from Brigham Young University to conduct my research. I distributed surveys to patients and medical staff in the diabetes clinic in the Vaiola hospital in Nuku’alofa, Tonga. The surveys had questions related to their socioeconomic status, understanding and attitudes of diabetes, as well as patient management practices. While I was there, I also kept extensive field notes on observations related to my research, which provided supplemental information regarding the Tongan lifestyle that was difficult to gather from the surveys. Preliminary analysis indicates that there has been a very small, positive shift in understanding and attitudes towards DMT2, but economic- and culture-based habits still impede Tongans from managing the disease effectively. There were several limitations to this study: small sample numbers, lack of resources, some resistance from Tongan medical personnel, and particularly cultural barriers made it difficult to gather enough information to come to significant conclusions. However, the research does give insight concerning potential future studies and interventions to help the people of Tonga treat this disease.
Copper Resistant Phenotype in MDM35-deletion Saccharomyces cerevisiae
Jacob Bassett, Utah Valley University Life Sciences Many discoveries regarding the complex interplay between biological pathways within a cell begin with attempts to link new observations to scrupulously studied cellular mechanisms. Our lab is studying the soluble inter-mitochondrial space protein mdm35, which has been observed to facilitate the function of ups1 & 2 proteins, as they in turn regulate the mitochondria’s phosphatidic acid metabolism. In addition to this phenotype, our lab has observed a copper resistance at 0.17% on YPD plate and 0.14% in liquid cultures of S. cerevisiae lacking the mdm35 protein, when compared to the Wild Type strain. Our investigation measures the levels of expression in the cup1 and ctr1 promoters in an attempt to link this observation to a potential mechanism contributing to this resistance.
The Genetic Architecture of Pelvic Reduction in Ninespine Sticklebacks
Sara Fauver, University of Utah Life Sciences We know that novel genetic variants have driven evolution for millions of years and that natural selection favors phenotypes most suited for survival, leading to the enormous diversity of life we see today. However, what remains unclear, are the patterns of mutations that lead to large phenotypic changes. For example, do mutations in a single gene of large effect lead to morphological changes more often than numerous mutations in genes of smaller effect? Also, do these mutations occur more often in protein coding regions or regulatory regions of DNA? Finally, are the same genes or gene pathways used repeatedly across lineages when parallel phenotypes evolve?
A predictive analytic approach to improve patient handoffs: a retrospective study of biliary complications and acute cellular rejection episodes following liver transplantation
Daniel Hall, Brigham Young University Life Sciences OBJECTIVE(S): Predictive analytics (PA) is increasingly being used in the delivery of healthcare. Whether PA can improve patient handoffs on a busy surgical service is unknown. This study aims to determine if predictive models for acute cellular rejection (ACR) episodes and biliary complications after orthotropic liver transplantation (OLT) can be built in order to improve patient care.
The adverse effects of ionic liquids on pathogenic biofilms
Spencer Alexander, Dixie State University Life Sciences Antibiotic resistance has increased with each new developed medication, creating new problems as bacteria become more difficult to defeat. Some of these bacteria are resistant because they can excrete an extracellular polymeric substance known as a biofilm. The polysaccharide-based biofilm matrix allows the colony to communicate, absorb nutrients, and exchange genetic material giving it an advantage in possible resistance through plasmid exchange. At present, there are no effective antimicrobial agents that can safely treat and prevent resistant bacteria like ORSA. Biofilms have a negative impact ranging from human pathogenesis down to economic expenses. In order to break down established biofilms, we utilized newly developed organic salts known as ionic liquids. These novel liquids have been observed to prevent bacterial colonies and biofilm formation, possibly by introducing intermolecular interactions that disrupt the chemical bonding in biofilms. The morphology of the microbes was characterized and observed to determine the effect of the ionic liquids on biofilms. Inhibition studies were also performed to determine antimicrobial efficiency of the ionic liquids as a function of organic structures. These novel ionic liquids provide an unprecedented, effective and efficient method to combat resistant bacteria, which could have tremendous impacts in achieving sterile environments in medical and remote settings.
Development of a Resin-Free Protein Purification Technique Utilizing Unique Biochemical Properties of the E. coli SSB Protein
Mark Soffe, Utah State University Life Sciences SSBs are DNA binding proteins that are essential components of cells and play key roles in DNA replication, repair, and recombination. Here we utilize two biochemical properties associated with the E. coli SSB protein to develop a novel procedure to purify proteins using a resin-free strategy. 1. E. coli SSB binds to single stranded DNA (ssDNA) with extremely high affinity (K = 1013 M-1), indicating very tight binding. 2. It is also a unique protein with respect to its purification – it is possible to obtain greater than 95% pure SSB from the total cell lysate without using any sort of column or resin, utilizing polyethyleneimine (PEI) and ammonium sulfate precipitation. Our design uses SSB as an affinity/solubility tag to enhance the solubility and expression of difficult-to-purify proteins, and allows for the simple, resin-free purification using PEI and ammonium sulfate precipitation. There also may be a possibility to co-express protein dimers and possibly tetramers using this method. Constructs have been made that include the SSB gene, along with the ability to fuse any gene of interest, as well as a TEV Protease cleavage sequence allowing for proteolytic cleavage after gene expression. Two genes of interest have been cloned in thus far—TEV protease and Rad51. In this proposal I outline experiments to develop this strategy further and test our proof of principle concept and its application to a broader set of target proteins.
Urban Noise as a Stressor in Side-Blotched Lizards
Marilize Van der Walt, Utah State University Life Sciences Urbanization is accompanied by a lot of changes to the landscape that have the potential to affect the native species inhabiting the area. If animals are chronically exposed to these anthropogenic disturbances and are unable to acclimatize, changes in circulating glucocorticoid hormones may cause adverse effects to the animal’s health, such as an impairment in innate immune activity. One such disturbance is human-induced noise. Using the side-blotched lizard, Uta stansburiana, because of their localized habitat and inability to escape such disturbances within the urban environment, we looked at the field and lab components of noise as a stressor. We first measured decibel levels in urban and rural field sites in their natural habitats in St. George, Utah, and conducted a lab study exposing U. stansburiana to either a synthesized urban sound recording or no sound recording (control) for nine days. We collected blood samples and measured circulating corticosterone and testosterone concentrations and bactericidal ability to determine if there are endocrine and immune alterations in response to increased noise decibels. Our results show that lizards exposed to urban noise experienced increased corticosterone levels indicative of stress. Furthermore, bactericidal ability was indirectly affected by noise through significant correlations between body condition and corticosterone and testosterone concentrations. These results indicate that an increase in ambient decibel levels acts as a stressor to animals in urban areas. By dissecting out an individual component of a complex stressor we can better understand the effects of urbanization as a whole.
Plant-Soil Feedback of Native and Exotic Species in the Inter-Mountain West
Molly Van Engelenhoven, Utah State University Life Sciences For thousands of years farmers have known that soil organisms can destroy crops but only in the past ten years have researchers begun to understand that complex interactions among soil organisms and plants can determine plant diversity and productivity. Much of the research in this young field of study has come from qualitative greenhouse experiments and separately from simple mathematical models. Here, we report findings from a six-year plant-soil feedback (PSF) field experiment that assessed the effects of soil organisms on the growth of twelve plant species common to the intermountain west. Initially, twelve native and exotic species were randomly assigned to 1550 experimental plots in a field. After four years of growth, the plants were killed. Next, the same plant species were randomly assigned to the 1550 plots again to test how each plant species responded to the soil microbial communities ‘cultivated’ by each other plant species. Two years later plant growth responses to different soil types were measured. Most plants showed large growth differences on different soil types. For example, Bromus tectorum grew twice as much on Pseudoroegneria spicata-cultivated soils than on self-cultivated soils. When the plant growth responses observed in this experiment were used in a mathematical model, PSFs were found to play a critical role in determining which plants were likely to be dominant in a community and how productive these different plant communities would be. In summary, this large-scale experiment provides strong evidence for the role of PSFs in plant productivity and diversity. Results have implications for natural methods of effective native plant restoration, biofuel production and weed control.
Long-term evaluation of Leafy Spurge biological control in Richmond, Utah
Jacob Anderson, Utah Sate University Life Sciences Leafy spurge (LS) is an aggressive Eurasian forb that has been successfully reduced in many areas in western North America through the biological control releases of flea beetles. Long term studies of this phenomenon are sparse. Three flea beetle species were released in the mid-1990s at a site dominated by LS in Richmond, Utah. This study assessed the long term effects of LS biocontrol on an ecological community at this site by addressing five questions: (1) Is LS abundance significantly lower now than in the 1990s? (2) What plant species are replacing LS and are they native or non-native? (3) Have the flea beetle populations persisted since their initial release? (4) What part does soil type play in which flea beetle species now dominate at the site? (5) In response to their unexpected presence, what role may long-horned beetles contribute to the long-term reduction of LS? It was found that LS abundance has significantly decreased from the 1990s; the dominant plant species are those of non-native grasses; flea beetles have persisted in significantly smaller numbers, with Aphthona lacertosa being the most abundant; and long-horned beetles appear to play a significant role in the reduction of sexual success of LS. The results of this project have implications for land managers when considering the vegetative response to LS biological control and the importance of long-horned beetles for long-term in managed, LS-reduced habitats.
Advancement of Petroleum Diesel Alternatives Utilizing a Multifaceted and Interdepartmental Approach
Michael Morgan, Utah State University Life Sciences The advancement of biologically derived alternatives to petroleum diesel fuel requires a multifaceted approach. At Utah State University we use an interdisciplinary team including the Colleges of Engineering, Agriculture & Applied Sciences, and Science in conjunction with industry partners to drive innovation in improving the science behind petroleum diesel alternatives. With increasing petroleum use, depleting reserves, increasing emissions standards, and other factors, there is need for petroleum diesel alternatives that are cost effective, offer improvement, and perform similarly to petroleum diesel. Our team has focused on the use of oleaginous microbes utilizing low value effluent and waste sources including sugars and CO2 to create biofuels. We have focused on a yeast, Cryptococcus curvatus, and a microalgae, Nannochloropsis salina which have shown high yields of fuel per cell mass. Using these microbes we have utilized USU’s own direct trans-esterification reaction to create sufficient quantities of biodiesel for engine performance and emissions testing, including a subset of ASTM tests characterizing the fuels from each organism. Our initial engine testing used petroleum diesel as a baseline in conjunction with commercial soybean biodiesel to establish the quality of our microbially derived biodiesel. Testing in stationary diesel engines and on the Bonneville Salt Flats has proven our microbial fuels perform similarly to soybean biodiesel and comparably to petroleum diesel. To further improve biological diesel replacements we have begun working to create green diesel, hydrocarbons from a biological source, using a novel method of hydrothermal liquefaction. Preliminary results of those tests are presented here. Through a multifaceted and interdisciplinary approach USU is successfully improving petroleum diesel alternatives from microbial sources including characterization of the properties of these fuels and is working to create the fuels at the scale necessary for exhaustive engine performance and emissions testing including ASTM testing of all important fuel properties.
Physiological effects of habitat disturbance in the wandering gartersnake (Thamnophis elegans)
Austin Spence, Utah State University Life Sciences This study investigated the physiological effects of localized habitat disturbances around two well-studied hibernacula of the wandering gartersnake Thamnophis elegans. After three years of monitoring snake morphology and physiology at several hibernacula, several disturbance events occurred, including log clearing, stream bank disturbance, and vegetation removal. Individuals from three populations, two with disturbed hibernacula and one control population with no disturbance, were collected during the spring emergence immediately following the disturbance. Blood samples were collected upon capture and following a uniform stressor to measure baseline and post-stress physiological conditions. The samples were analyzed using a radioimmunoassay to measure corticosterone levels and a bacterial killing assay to measure innate immunocompetence. Baseline and post-stress corticosterone levels were higher in both populations with disturbance events compared to the control population. The bacterial killing ability of the site with the most anthropogenic activity was lower than the control site, indicating immunocompromise. Data are currently being analyzed to assess differences within the same populations between years with and without disturbance events. Pre-disturbance data are a rare and useful commodity and allow us to facilitate a better understanding of the various effects of anthropogenic change on natural populations. This study was funded through the Undergraduate Research and Creative Opportunity Grant from Utah State University.
Assessment of Environmental Awareness among Utah Valley University Students
Michaelle Cadet, Utah Valley University Life Sciences Utah County, Utah has an estimated population of 540,000 residents and is considered to be a non-attainment area for criteria pollutants such as PM-10 and CO. High levels of these contaminants may increase the risk of respiratory diseases. Additional environmental issues exist including water contamination and eutrophication of Utah Lake. These environmental issues are frequently on the news and warnings are issued by the Department of Environmental Quality notifying citizens of the potential health concerns associated with environmental pollution. With these announcements, it is expected that Utahans are acutely aware of environmental issues, particularly, in the academic settings. The purpose of this study was to investigate the status of environmental awareness among students at Utah Valley University and to correlate the results to socio-demographic categories. Utah Valley University, located in Utah County, is a public institution of higher education with approximately 30,000 registered students. Data for this study was collected through a survey using a multistage sampling technique with population stratified based on colleges and schools within the university. Sample size included approximately 1,000 students. The survey contained 12 environmental questions relating to recent local, national and international media exposure. Standards and protocol of the International Research Board were employed. We hypothesize that married, educated, religious males will positively correlate with higher levels of environmental awareness, but will be less than atheists. Additionally, those identifying with the Republican Party will have lower levels of awareness. No significant difference will be found between majors. Furthermore the young, poor and ethnic populations will be less aware than their more affluent counterparts. Results of this study will be used to inform residents of environmental issues and the associated health concerns. Additionally, this study will be used to inform legislators about the importance of environmental education in the community.
Size, Personality, and Evolution: Examining Predictions in Two Live-bearing Fishes
Jeremy Rehm, Brigham Young University Life Science The recent surge of interest in personality differences between individuals of a single population or members of differing populations has generated numerous new hypotheses that may aid in elucidating patterns of ecology and evolution that were previously considered improbable. Two hypotheses relevant to fish biology relate the size of an organism from a certain predation environment to the level of boldness it exhibits. The first of these (predation hypothesis) predicts small individuals living with predators should not express boldness comparable to their larger counterparts, whereas the other (metabolic hypothesis) predicts the exact opposite. Our study investigated these hypotheses using two sister-taxa fish species in Panama (Brachyrhaphis roseni and B. terrabensis) that exhibit two size classes (large and small) and live in differing predation environments. Additionally, because males are smaller than females in both species, we could look at size-boldness relations within each species. The study, as in others, defined boldness as the amount of time for an individual to emerge from a shelter and into an unfamiliar territory. When the species are analyzed collectively, our results support previous findings that fish from high-predation environments tend to be bolder than those without predators; males tend to be bolder than females; and both mass and standard length positively correlate with boldness. However, within species analyses find that mass and standard length have no significant relation to boldness, and gender was only significant in the predation-exposed B.roseni, where males were bolder. These interesting findings contrast with previous studies, and lead us to question the value of these size-related hypotheses in the process of speciation and, ultimately, evolution.
Dna Based Identification and Prevalence of Cestode Parasites in the Brine Shrimp (Artemia franciscana) from Great Salt Lake, Utah
Ethel Tackie-Yarboi, Westminster College Life Sciences The brine shrimp, Artemia franciscana are an important source of nutrients for many of the over 15 million migratory birds that visit Great Salt Lake (GSL) in Utah each year. As well as being a source of food, the brine shrimp are an intermediate host to cestode parasites that infect many of the bird species. Although the effects of cestode infection in brine shrimp and the contribution of brine shrimp to cestode circulation in birds have been studied, little research has yet addressed the rate of cestode infection or molecular phylogeny of these cestodes. We collected brine shrimp from three sites in GSL and tested individuals for cestode infection using previously identified and newly designed cestode specific PCR primers that amplify the 18S ribosomal RNA gene. Our preliminary results showed that the Spiral Jetty site from the North arm of GSL had a 2% infection rate, the Antelope Island site from the South arm had a 45% infection rate, and the shrimp collected at the Black Rock site, also in the South arm, had a 32% infection rate using our cestode specific PCR assays. We also have preliminary DNA sequencing results that demonstrate that we are amplifying cestode DNA, which is most closely related to members of the genus Hymenolepis. Our data suggest that there may be a higher prevalence of cestode infection in the shrimp in the South arm than those from the North arm of the Great Salt Lake. Our goal is to extend our study in order to better identify the species of cestodes that infect brine shrimp using further DNA sequencing and to expand our infection rate samples to better estimate the percentage of the brine shrimp population that is infected by the cestode parasites, as well as test samples from several years.
PP2A inhibition using LB1 negates palmitate-induced reductions in nitric oxide production in endothelial cells
J David Symons, University of Utah Life Sciences Cardiovascular complications (e.g., arterial dysfunction) are more prevalent in patients with type 2 diabetes (T2DM). Patients with T2DM have elevated levels of circulating free fatty acids (FFAs). We have shown that when bovine aortic endothelial cells (BAECs) are treated with the physiologically relevant FFA palmitate, protein phosphatase 2A (PP2A) activity increases, phosphorylated endothelial nitric oxide (NO) synthase (eNOS) to total eNOS (p-eNOS:eNOS) decreases, and metabolites of NO production decrease. NO is an important endothelial-derived relaxing factor that is vasculoprotective. As such, FFA-induced, PP2A-mediated reductions in p-eNOS:eNOS and NO production might explain why vascular complications are more common in pathologies associated with lipotoxicity e.g., T2DM and diet-induced obesity. Recently we showed in BAECs that if PP2A is inhibited using okadaic acid (OA), palmitate-induced increases in PP2A activity, and reductions in p-eNOS:eNOS and indices of NO production are negated. We sought to translate these finding from BAECs to the intact organism. However, OA cannot be used in vivo. Lixte Biotechnology 1 (LB1) is a PP2A inhibitor that has been used in vivo in the context of cancer research. The purpose of this study was to determine the efficacy of LB1 under our experimental conditions, with the long-range goal of using LB1 in mice. Further, we used this opportunity to optimize the measurement of NO directly using electron paramagnetic resonance spectroscopy (EPR). BAECs were treated for 3 h with vehicle (V), 500 µM palmitate (P), 4 µM LB1, or P + LB1 (n=10 per treatment). P increased (p<0.05) PP2A activity (50±12%), and decreased (p<0.05) p-tyr307:PP2A (29±9%; redundant indicator of increased PP2A activity), p-eNOS:eNOS (30±3%), and NO production (27±9%). All P-induced effects were prevented by concurrent treatment with LB1. Future experiments will determine whether chronic treatment of mice with LB1 is capable of suppressing PP2A activity in intact arteries.