Skip to main content
Utah's Foremost Platform for Undergraduate Research Presentation

2015 Abstracts

Economical Rapid Production of Therapeutic Proteins using Cell -free Protein Synthesis

January 01, 2015 12:00 AM
Hayley Ford, Kristen Wilding and Matt Schinn, Brigham Young University Engineering Therapeutic proteins are specially engineered proteins used to treat many large profile diseases. Such diseases include cancer, diabetes, hepatitis B/C, hemophilia, multiple sclerosis, and anemia. The use of these proteins is specific and highly successful and the demand for these proteins in rapidly increasing. One of the largest problems with the use of therapeutic proteins is the cost of making them. The cost of producing these proteins amounts to hundreds of billions of US dollars every year. There is a growing need to find better, faster, and cheaper ways to create them. As specific therapeutic proteins are coming off patent, research labs are able to explore the processes of making these drugs that have become such a large part of the pharmaceutical industry. Here we report the use of cell-free synthesis as a more cost-effective way to produce these therapeutic proteins. Cell-free protein synthesis is faster and allows for direct manipulation and control of the protein creating environment. Cell-free synthesis can produce proteins in a matter of days as opposed to the weeks it takes to produce them in vivo. The increased manipulation and control of the environment that comes with cell-free synthesis allows improved accuracy in creating the desired proteins and is more adaptable to changes if they need to be made.

Cardiac Tissue Engineering

January 01, 2015 12:00 AM
Jordan Eatough, Jeremy Struk, Andrew Priest, Brady Vance, Brielle Woolsey, Steven Balls, Camille

Methods for Simulating SAED and Kikuchi Diffraction Patterns in Atomistic Structures

January 01, 2015 12:00 AM
Adam Herron, Jared Thomas, Shawn Coleman, Douglas Spearot, and Eric Homer, Brigham Young University Engineering For many years, x-ray diffraction and electron diffraction have served as effective means to understand and classify the molecular structure of many materials. Diffraction, as a physical phenomenon, is well known and theoretical diffraction simulation is relatively simple for perfect crystalline structures of known orientation. Prior methods of diffraction simulation, however, are insufficient to predict experimental diffraction patterns of unknown crystal structures or of crystal structures with high defect density. Recent advancements in computing capability and development of atomistic simulation software have greatly enhanced our ability to predict material properties and behaviors under various conditions. Atomistic simulation has become an extremely useful tool in the analysis of dynamic chemical and mechanical systems. It can only be truly effective, however, when it models a real-world application, can be interpreted coherently, and can accurately predict future conditions. Thus, we are developing new tools that bridge the gap between electron diffraction through real materials and simulated diffraction through atomistic simulations. We present a method of generating Kikuchi Diffraction Patterns from atomistic simulation data with no a priori knowledge of the crystal structure or crystallographic orientation. Our research was inspired by the recent work of Coleman et. al. 2013 and builds on their methods of calculating diffraction intensity at discrete locations in the reciprocal domain. We improve on their method by introducing an integration of the structure factor to ensure complete capture of diffraction intensity peaks while maintaining a relatively low density of sample points. This allows us to significantly reduce the required computation time on the analysis of atomistic simulation data. We use this diffraction data to generate simulated Kikuchi Diffraction Patterns.

In Vitro Cell-Free Synthetic Biology Techniques for Optimizing Protein Yields

January 01, 2015 12:00 AM
Conner Earl, Brigham Young University Engineering The emerging field of Cell-free protein synthesis enables the efficient production of complex proteins for a number of exciting applications such as medicines that better interact with the body, vaccines, antibodies, and renewable, sustainable biocatalysts. However, progress is hampered by high costs and low yields of necessary proteins. This project is designed to improve protein yields and drive down costs by studying techniques of optimization of protein yields in Cell-Free protein synthesis. Our main area of focus is the inhibition of naturally occurring ribonucleases (RNAses) which are enzymes that degrade essential elements for protein synthesis- specifically, the mRNA used to transcribe protien. One of the techniques we intend to use for inhibition of these RNAses is by complexing the RNAse with an appropriate RNAse inhibitor protein thus limiting or eliminating its function of degrading mRNA. The aims of this research project is to: (1) Identify appropriate RNAse inhibitors (2) Design and synthesize inhibitor genes (3) Express, purify and assay RNAse inhibitors (4) Improve Cell-free protein synthesis yields utilizing RNAse inhibitors for analysis of activity and effectiveness as well as the enhancement of cell-free protein synthesis yields. Accomplishing these goals will result in more efficient systems and more accurate analysis that may lead to cheaper, more readily available vaccines and pharmaceuticals produced through Cell-free protein synthesis.

Retinal Regeneration: Implications of Müller Cell Dedifferentiation

January 01, 2015 12:00 AM
Theo Stoddard-Bennett and Steven Christiansen, Brigham Young University Engineering Damage to the human retina is often irreversible and so currently there are no established treatments of diseases such as dry age related macular degeneration (AMD). Dry AMD results in a loss of sight because of cell death in the macula, a centralized part of the retina which contains a high concentration of photoreceptor cells. One possible treatment would be to limit the rate of cell death within the macula, however this is not a comprehensive solution. Rather, regeneration of the photoreceptors within the retina is necessary to restore sight. In current research, Müller glia cells, a major glial component of the retina, can potentially be used as sources for photoreceptor regeneration in order to combat dry AMD due to their homeostatic regulation of retinal injury. Directed reprogramming would occur through a five step process. The Müller glia would need to undergo de-differentiation to Müller glia-derived progenitor cells (MGPCs), proliferation of MGPCs, migration of MGPCs, neuronal differentiation, and integration in order to generate retinal neurons. Müller cells can be isolated and cultured by dissociating retinal tissue in optimal media. Here we present the dissection and dissociation of rat retinal tissue to obtain purified proliferating Müller cell cultures. Our lab has tracked and modelled the rates of proliferation and phenotypically characterized the stages of proliferation. Using immunofluorescence and PCR tests to confirm purity, we will then expect to run a series of assays to identify growth factors, Wnt signals and cytokines to test the effects of retinal extracellular matrix proteins on Müller cell de-differentiation to MGPCs. The focus of our current research is the identification of reprogramming mechanisms that may possess beneficial data leading to both unique strategies for promoting retinal regeneration in mammals and clinical applications for those living with dry AMD.

Modeling Shale Oil Pyrolysis: Semi-empirical Approach

January 01, 2015 12:00 AM
Dan Barfuss, Brigham Young University Engineering Shale oil has long been seen as a source of energy that can be incorporated into existing infrastructure. It consists of kerogen (or organic matrix) bound to inorganic rock. This kerogen can be released as an oil-like substance by heating it up to high temperatures without the presence of oxygen (i.e., pyrolysis). Due to advances in NMR (Nuclear Magnetic Resonance) we were able to make an accurate structural based model that can predict the relative tar and light gas yields[1]. We modified the Chemical Percolation Devolatilization Model (CPD) of coal to fit with the more aliphatic nature of oil shale. The CPD model describes the aromatic regions as clusters and aliphatic regions as bridges. As these bridges are broken the model releases groups of clusters that will form tar. In coal the bridge breaking gives off light gases, whereas in shale oil the bridges are much heavier and mostly form tar. We built two models that accounted for this. We also used the composition of the tar and the gas found by Fletcher et. al. [2] to predict what elements would be left and the aromaticity of the carbons. We found that throughout the reaction new aromatic regions were formed. With information from this model,- we are able to better predict the products of oil shale pyrolysis, and describe what happens chemically.

Purification of Air Using Molecular Modeling and Photocatalytic Nano-Materials

January 01, 2015 12:00 AM
Nandini Deo, University of Utah Engineering Air quality in the United States has come under scrutiny in recent years. Many pollutants are trapped in the air we breathe in the form of photochemical smog. The aim of this research is to aid the breakdown of these pollutants. Peroxyacetyl Nitrate (PAN) is a predominant smog species; the research conducted aims to decompose this molecule and capture the resulting particles using the photocatalytic properties of Titanium Dioxide Nano tubes. The research conducted thus far has focused on the following questions:What molecules does the thermal decomposition of PAN produce? Is there a metal substrate to attach to TiO2 Nano-materials that aids the breakdown of PAN and its decomposition products? Can a sustainable process/device be identified to functionalize these materials? Literature research shows that PAN thermally decomposes into CO_2, NO_2, methyl nitrate, and formaldehyde. Methyl Nitrate and CO_2 may be eliminated using specific experimental conditions. Hence, it can be determined that the substrate attached to TiO2 must decompose PAN, NO_2 and formaldehyde. Using the molecular modeling programs Avogadro and MOPAC, 50 metals were optimized in relation to Formaldehyde, NO_2, and PAN. To find each metal’s reactivity to each target compound, HOMO/LUMO (Highest Occupied Molecular Orbital/Lowest Occupied Molecular Orbital) energies were calculated and used to find the common reactive metals between the target compounds: Cobalt, Silver, Iridium, and Niobium. To test whether the most complex product of the PAN decomposition (Formaldehyde) will break down, a device was created using a 3-D printer and Cobalt functionalized nanotubes. Pure formaldehyde, a blank sample (no tubes), and a sample with functionalized tubes were run through the device in the form of vapor, in front of a solar simulator. The captured vapor’s GC/MS results show an almost complete breakdown of Formaldehyde with the use of the device containing the functionalized tubes.

Manufacture of Hemocompatible Coronary Stents

January 01, 2015 12:00 AM
Takami Kowalski, Warren Robison, Anton Bowden, and Brian Jensen, Brigham Young University Engineering Using a coronary stent to expand a blocked blood vessel as a way to treat coronary heart disease has proved effective in the past. However, there are risks, such as thrombosis, that are a natural side effect of inserting a foreign object into the body. Creating a stent out of a hemocompatible material such as carbon-infiltrated carbon nanotubes could potentially resolve these issues and also make unnecessary treatments such as dual antiplatelet therapy as a way of decreasing the risk of adverse side effects. Previous research done in this lab has shown that carbon-infiltrated carbon nanotubes can be grown in a pattern defined by photolithography on a planar surface. The present work demonstrates preliminary results from patterning a flat, flexible substrate and rolling it into a cylindrical shape before growing carbon-infiltrated carbon nanotubes as a way to fabricate cylindrical stents, fulfilling all necessary specifications for a stent with the added benefit of hemocompatibility. We also demonstrate growth on curved substrates and explore process parameters for achieving good-quality CNT forests.

Determining the Integrity of Decellularized Porcine Kidney Scaffolds

January 01, 2015 12:00 AM
Benjamin Buttars, Jeffrey Nielson, Spencer Baker, Jonathon Thibaudeau, Angela Nakalembe, Tim

Expanding the Genetic Code Through Simultaneous Insertion of Unnatural Amino Acids

January 01, 2015 12:00 AM
Steven Stanley, Brigham Young University Engineering The genetic code has long been restricted to a set of 20 fundamental building blocks called amino acids. Recent research has expanded the genetic code through unnatural amino acids (uAA), thus adding enormous possibilities to the potential chemistries of proteins. Because nature is highly selective in the protein translation process, it has proven extremely difficult to successfully insert multiple uAAs simultaneously. The incorporation of an uAA with in vitro methods typically relies on the use of the amber stop codon as a mutated insertion site. A stop codon placed at the middle of a gene can code for either the uAA or termination, thus, protein synthesis may often terminate prematurely instead of inserting the desired uAA. This inefficiency inhibits the possibility of inserting multiple uAAs simultaneously. We propose a novel method that will allow for multiple uAAs to be inserted simultaneously. Our method involves isolating a minimal set of tRNA for in vitro protein synthesis, allowing for uAA insertion to occur at codons other than the amber stop codon. My work has focused on the production of 4 versions of uAA-tRNA synthetase, a protein that charges tRNA with the uAA. We are currently growing these 4 different proteins in bulk and testing their activity. We will test them for compatibility, confirming that they do not interfere with one another and other synthetases native to our in vitro protein synthesis system. These uAA-tRNA synthetases, in conjunction with specialized tRNA, will provide the basis to efficiently incorporate multiple uAA simultaneously. The success of this project will have many practical applications ranging from new therapeutics to new methods of medical diagnosis.

Characterization of the Role of Oxytocin in Larval Zebrafish Behavior

January 01, 2015 12:00 AM
James Newton, Scott Anjewierden, and Sasha Luks-Morgan, University of Utah Engineering Oxytocin (OXT), a neuromodulatory peptide produced by the hypothalamus, is involved in a variety of physiological and behavioral phenomena. Exogenous OXT and drugs that mimic OXT signaling are potential treatments of a number of neurological disorders. The canonical mechanisms of OXT function are neuroendocrine in nature, as the peptide is released into circulation through the neurohypophysis. However, OXT has also been shown to exert some of its effects through direct synaptic release within the central nervous system. Using the larval zebrafish as a model, we seek to identify targets of these directly projecting OXT neurons and study what role they play in the modulation of behavior. Critical to this analysis are computer programs which enable precise quantification of anxiety, social behavior, and reward learning. Our custom-written software automatically identifies and tracks free- swimming fish, using measured positions over time to evaluate behavior in a variety of paradigms. In combination with molecular, cellular, and optogenetic manipulation of OXT networks, this project will allow a fuller understanding of the relationship between these neurons and behavior.

A Feasibility Study for Implementing a System of Electric Vehicles into Urban Environments

January 01, 2015 12:00 AM
Carlton Reininger and John Salmon, Brigham Young University Engineering Electric Vehicles (EV) are a rising alternative to standard combustion vehicles because of their energy cost savings and reduced carbon emissions. However, EVs come with limitations such as limited driving range and potentially long recharge times. The purpose of this study is to determine the feasibility of implementing an electric vehicle system into an urban environment. Using data provided by the New York City Taxi and Limousine Commission, models are developed and generated to simulate driver shifts and analyze system level impacts from EVs on driver behavior. The models evaluate the number of charge events over the course of a shift and calculate the potential revenue lost to missed fares during charge intervals. Across the system, the results indicate that for a majority of NYC taxi drivers, EVs can be implemented without significant changes in driver behavior, while providing an economic and environmental advantage over current combustion vehicles. These preliminary findings can be used to support implementing such a system in urban environments and these models could be used as a template toward analyzing EV taxi potential in other cities.

Automated Kinematic Analysis of Prepulse Inhibition Behavior in Larval Zebrafish

January 01, 2015 12:00 AM
Scott Anjewierden, James Newton and Joshua Barrios, University of Utah Engineering Organisms in their natural environment are constantly presented with sensory stimuli. These stimuli must be filtered by the brain to select an appropriate behavioral response. A significant example of this filtering process is audiomotor prepulse inhibition (PPI). In PPI, the startle response to a loud noise is suppressed by a preceding stimulus of lower intensity. This ability to optimize behavior in response to environmental context is an essential brain function. Defects in PPI are associated with neurological disorders such as obsessive- compulsive disorder, Tourette syndrome, and schizophrenia. This project demonstrates the development of new software to analyze swim kinematics in a restrained, larval zebrafish model of PPI. Our programs automatically extract several kinematic parameters from image sequences of behaving animals and use them to classify behavior into one of three, stereotyped categories. Correct classification is reported in 96.32% of trials (n = 162). This automated analysis will now permit a more robust study of PPI in these animals, where the brain’s experimental accessibility will allow us to discover the cellular bases of sensory filtering.

DesignbuildBLUFF: A Framework for Sustainable Dev elopment in the Nav ajo Nation

January 01, 2015 12:00 AM
Erika Longino, University of Utah Education DesignbuildBLUFF is a development program wherein graduate architecture students apply custom designing and construction skills to make homes for Navajo families and individuals in need. 39% of the Utah reservation is under the poverty line and the whole Colorado Plateau is in an ecologically vulnerable position. There is clear evidence that water tables are dropping and native biodiversity is suffering because of anthropogenic climate change. Therefore, the human communities in the region are especially needful of proper infrastructure for sustainable development. DesignbuildBLUFF provides diverse services to many groups. The aim of this investigation is to map a framework for sustainable expansion and overall systematic improvement. The investigation will eventually produce a document outlining the inputs and outputs of DesignbuildBLUFF, environmentally and socially. Ecological components like soil quality, solar potential, rainfall, and plant inventory are noted and analyzed quantitatively. Social impacts are gathered using interviews and census data. The data is pulled together in a cohesive, aesthetic map and used to plan DesignbuildBLUFF’s trajectory. The document will provide a clear framework for acknowledging and eliminating unnecessary features, reducing the ecological footprint of the organization, and improving important social relations. This document is not a definitive “master plan”, rather it provides the necessary data and suggestions for growth that take into account whole systems thinking.

Making Thinking Visible Through Models and Representations

January 01, 2015 12:00 AM
Shayla Miller, Dixie State University Education My research focuses on the positive side effects of using models and representations to facilitate student learning in the classroom. The science lesson was taught and recorded to a class of thirty students. The students made visual models/representations of their knowledge about ecosystems from the lesson taught. Test scores were improved, and the information was proven to stay in long term memory according to end of level testing.

Tom Stockham: The Father of Digital Audio Recording

January 01, 2015 12:00 AM
Sam Katz, University of Utah Fine Arts “Tom Stockham: The Father of Digital Audio Recording” is a 30-minute documentary film about former University of Utah professor Thomas Greenway Stockham, Jr., who developed the first commercially viable method of recording sound digitally with extremely high fidelity and made it possible to edit sound and music using a hard drive. Despite the limitations of 60s and 70s computing technology, as well as a number of audio professionals who opposed to the shift to digital audio, Stockham believed in his ideas, persevered, and changed the way we listen to music forever. To this day, these innovations have dramatically altered the shape of the audio recording industry in music, television, and film. Despite Dr. Stockham’s many achievements, his story remains relatively unknown outside of the audio engineering world, even here at the University of Utah and in Salt Lake City, where much of his pioneering work was done. This film brings well-deserved attention to Dr. Stockham’s story. Sadly, Dr. Stockham passed away from early-onset Alzheimer’s in 2004, therefore I portray him by interviewing those who knew him best: his wife, his four children, and his colleagues. I situate Stockham’s life and work in a larger historical context by interviewing historians, musicians, and audio industry professionals, and by mining archival footage, family photos, voice memos, and magazines for relevant material. I travel from Seattle, to Boston, to Lake Powell, to Moab, to Salt Lake City. In homage to Stockham, I use the sound and music of the film, rather than images, as the locus from which meaning and emotional power are derived. The finished film serves as an important educational and historical resource and helps to preserve an important piece of the history of the University of Utah, Salt Lake City, and the State of Utah in general.

Bifurcate: Intersections and Photography

January 01, 2015 12:00 AM
Kelly O’Neill, University of Utah Fine Arts After studying the formal qualities of photographic production and the canonic narratives of art history for over three years at the U, I am still left with a pressing question: how can this medium of artistic self-expression also be considered evidence admissible in the court of law powerful enough to elicit felony convictions? How can these mechanical images which I have been trained to see as subjective representations of artistic sentiment in their contrast, tonality, and composition simultaneously be objective records of fact in judicial and scientific discourses? If the medium of photography does exist how is this single operation able to function in such heterogeneous and contradictory discourses? Through my works and research I investigate these and other questions concerning the photographic medium’s ambiguous nature as a simultaneously aesthetic and empirical object. By combining a vast assortment of photographic forms from contemporary GIFs to historical processes such as the Cyanotype, my work reveals the multiplicity of the photographic form and its dubious ability to function within seemingly contradictory systems of knowledge production. Interrogating the processes by which photography has been used and abused, my project does not propose to reveal the truth of photography, but rather underlines the importance of seeing photography in a new and radicalized fashion. The images that I create contemplate the liminal spaces of photography in which its factual, emotional, institutional, and narrative truths commingle; fragmenting not only the solidity of the photograph but also the cultural and institutional systems it predominates. More than just a series of art works, my research seeks to bring a broader discourse on photographic meaning into a serious academic engagement which does not treat it as a simple device for conveying meaning but as a specific and complex subject in its own right.

Mainstreaming EDM

January 01, 2015 12:00 AM
Steven Saline, Dixie State University Fine Arts Electronic Dance Music or EDM has grown from its underground club origins in the late 70’s to early 80’s to become a widespread phenomenon in pop music. Through out those years, EDM has been categorized in previous terms such as Techno, and Electronica. Today EDM can be heard in music festivals through out the world and is now widely experienced in the US. Much of the genres within EDM such as Dubstep, Hardcore,Trance, etc… were created and have evolved outside the US, however; House and Techno originates here in the US. In this presentation I will discuss the history of some of the popular genres in EDM, present how each of the genres started whether they were created on their own or their evolution from previous electronic music, the history of its origins, how the music evolved in Europe, and its move to the US as we hear the music today. I will present how wide-spread EDM has become and how diverse the various forms are within the genre. I propose that if EDM continues in the direction that it is moving now, EDM will continue to grow among all other forms of music in the world for years to come.

The Triple Discrimination of Indigenous Mayan Women Today

January 01, 2015 12:00 AM
Amanda Salgado, Weber State University Humanities In 1983, Rigoberta Menchu, the first indigenous Mayan-Quiche Nobel Peace Prize recipient, shared the terror and the abuse that she and millions of other indigenous people in Guatemala were experiencing during the country’s 36-year Internal Armed Conflict. In her book Me llamo Rigoberta Menchu y así me nació la conciencia, she discusses how the indigenous population was frequently viewed and treated as inferior by the Ladinos (those of mixed indigenous and European heritage), and was therefore subjected to a great deal of discrimination, which was reflective of the legacy of the country’s colonial past. The purpose of this research was to examine within a Postcolonial framework, if postcolonial structures were still in force in Guatemala, and if and how they continued to affect the indigenous population, particularly Mayan women living in rural areas. Methodology included analysis of newspaper articles, journals and documents, as well as a two-week field experience, talking to Mayan women. The result shows that while the political situation of Guatemala has improved since the time of the publication of Menchu’s book, many of the conditions and practices that promote discrimination against the indigenous population have continued and are still visible today, reflective of a Postcolonial society that values European descendants more than their neighbors. For instance, the educational system now takes into account indigenous languages, and Mayan spirituality is not persecuted, a first since the Spanish Conquest. Nevertheless, indigenous women continue to experience a triple discrimination because based on their sex, social status, and ethnicity. The goal of this research is to promote greater awareness of these issues.

Religion in Young Adult Contemporary Realistic Fiction

January 01, 2015 12:00 AM
Natasha Mickelson, Brigham Young University Humanities Young adult contemporary realistic fiction is a genre which attempts to portray real life. Young adult readers of these novels should be able to find themselves in the characters and relate to their backgrounds, experiences, and perspectives on life. While many young adult novels deal with controversial topics such as sexuality, drug use, physical abuse, suicide, and other difficult subjects in an attempt to be realistic, one aspect of life still largely considered a literary “taboo” is religion.Through examining studies done and looking at a sample of novels in the young adult contemporary realistic fiction genre I found that most of these books mention nothing about the religious beliefs or backgrounds of their characters. In the few novels which do bring up religion, Christian beliefs and characters are more common than minority religions. However, those novels depicting Christian characters are more likely to show them in a negative light. These novels frequently portray religious characters (especially leaders) as bigoted, fanatical, or gullible. Often the main adolescent character is trying to break free from cultish groups, and their eventual loss of faith is celebrated. Since contemporary realistic fiction attempts to portray the real world and real teenagers, I researched recent studies surveying American teenagers’ views on and involvement with religion. The results of these studies show that most teenagers identify with and willingly participate in religious groups and practices. In my research I found that this disparity between real life and realistic YA fiction exists due to the aversion of writers and publishers to possible censorship issues and alienating potential readership. However, scholars agree that both the lack of religion and the negative religious stereotypes in these novels can leave teenage readers incorrectly feeling as though their beliefs in or questions about God and religion are uncommon or wrong.

A Tide Just West: An Artist Book of Ecriture Féminine, Photography, and New Narrative

January 01, 2015 12:00 AM
Thomas Aguila, University of Utah Humanities “A Tide Just West” is a book arts project that conceptually adopts the theories of Hélène Cixous– and to an extent Julia Kristeva and Luce Irigaray– and concerns itself with investigating narratological schemas, as the book experimentally utilizes photographic imagery (alongside the text) to constitute a story of écriture féminine. Ecriture féminine, translated from French as “woman’s writing,” is a type of writing characterized by its tendency to subvert the narrative conventions and the pragmatism within books, poetry, language, and the genres in between. Hélène Cixous used this conceptual term in her 1975 essay, “The Laugh of Medusa,” and considered the difficulty of definitively putting into words such a category: “It is impossible to define a feminine practice of writing, and that impossibility will remain, for this practice can never be theorized, enclosed, coded.” In this project, écriture féminine takes form– and subverts form– through the book’s incorporation of photographic images. The narrative’s images act as areas that are not reliant on words but visual experiences that contradict, unify, and break apart the text alongside it. Such visual components allow new narratives to form. Instead of illustrations, the visual images act as indefinite, experiential moments for the reader to expand upon (to pass through), as the reader’s literal relationship to the characters, scenarios, and overall thematics of the book turns more toward conflicting, potent, and vague contradictions. The images fracture and destabilize the logocentrism of the book, destabilizing that expectation and faith upon the written word; they act as an in-definitude to the text, the narrative, the body, and the metaphors between the three.

Genetic Relationships among Populations of the Primary Flea Vector of Plague to Humans in the United States

January 01, 2015 12:00 AM
Laine Anderson, Utah State University Life Sciences Plague is maintained in complex epizootic and enzootic transmission cycles involving rodents and their fleas. Ground squirrels, prairie dogs, woodrats and their associated fleas have been identified as essential for bacterial maintenance. Oropsylla montana is of major interest due to the fact that it is distributed throughout the western U.S. where most human plague cases occur. Evidence suggests this species is the primary vector of plague to humans. Data on the genetic variation within and among populations of potential vectors of Yersinia pestis, including O. montana, is very limited. O. montana fleas were previously collected from 35 geographically distinct field sites from Colorado and New Mexico on the east, to California and Oregon on the west. Genomic DNA was extracted and mitochondrial and nuclear genetic data was sequenced to estimate phylogenetic relationships. The data collected from these studies will expand our knowledge of natural O. montana populations. We anticipate the genetic data collected from these flea populations will provide information that will assist with understanding human plague risk. Such information will, in turn, provide potentially significant insights into the ecology and epidemiology of plague in this region and is likely to suggest new strategies for monitoring and preventing this disease.

C-Fos Protects Β-Cells from Apoptosis

January 01, 2015 12:00 AM
Kyle Kener, Brigham Young University Life Sciences Diabetes is characterized by the inability to maintain a normal blood glucose level caused by decreased insulin due to β-cell loss, or decreased insulin sensitivity in the liver, muscle, and adipose tissue. While β-cell death is a hallmark of T1D, β-cells are also destroyed as T2D progresses. Death of β-cells is eventually a hallmark of both forms of diabetes. This results in decreased functional β-cell mass, which is defined by the ability to secrete insulin while maintaining β-cell number through proliferation or decreased apoptosis. To resolve the decreased β-cell level, much research is being done regarding β-cell proliferation to increase pancreatic β-cell mass. However, another important step in this process is protecting β-cells from apoptotic mediated β-cell death. The β-cell transcription factor Nkx6.1 is sufficient to induce β-cell proliferation and increase protection against apoptotic insults. The Nkx6.1 target gene VGF is critical for protection against apoptosis. Our data demonstrates that Nkx6.1 upregulates expression of c-Fos. Furthermore, we show that c- Fos is sufficient to induce expression of VGF. In addition, our data demonstrates that expression of c-Fos is sufficient to protect β-cells from apoptotic insults. Our data demonstrates that c-Fos is the link between the Nkx6.1 and VGF, and that it’s expression is sufficient to protect rat pancreatic β-cells from apoptosis.

The Role of Cdk2, Cy lclin E1, and CIP/K IP Inhibitors in Aged Islets

January 01, 2015 12:00 AM
Brent Wright, Brigham Young University Life Sciences Diabetes is one of the leading causes of death among Americans and is a major health concern worldwide. Nearly one in four Americans aged 65 or older are diabetic. Type 1 and Type 2 diabetes both result in reduced functional β-cell mass, which regulates the storage and secretion of insulin. Increased functional β-cell mass could essentially cure diabetes. We have shown that Nkx6.1 overexpression induces proliferation of 2-month-old primary rat β-cells but fails to induce replication of 8-month-old primary β-cells, as measured by 3H- thymidine incorporation is age-dependent. Cell cycle activator and inhibitor mRNA levels were measured in young and aged untreated islets and islets transduced with AdCMV-BGal or AdCMV-Nkx6.1. This data demonstrated a significant increase in mRNA expression of cell cycle inhibitors p21 and p57 of the CIP/KIP family in young islets transduced with Nkx6.1. However, p21 and p57 mRNA showed no significant increase in aged islets. Cdk2 and cyclin E1 mRNA expression showed a similar trend for young and aged islets. The increased expression of Cdk2, a necessary factor for transition from G1 to S phase, could provide possible explanation for increased proliferation in young islets. Fluctuating mRNA levels of key cell cycle components in aged islets, provides a possible explanation for the decreased effectiveness of Nkx6.1 in inducing proliferation in aged islets.

Are Canyon Tree Frog (Hyla arenicolor ) Populations in Zion National P ark Affected by Chytrid Fungus (Batrachochytrium Dendrobatidis)? Four Y ear Study Says No!

January 01, 2015 12:00 AM
Madalynne Fedoruk and Darian Carey, Dixie State University Life Sciences For at least three decades, infection with chytrid fungus (Batrachochytrium dendrobatidis) has been a major cause of population decline in amphibians worldwide. This pathogen has been found in canyon tree frogs (Hyla arenicolor) in Zion National Park; previous studies suggested that population sizes decreased in frogs infected with the fungus; but our studies indicated that these frogs were resistant. We hypothesized that chytrid infection in the Zion Canyon tree frogs were not lethal, but other environmental factors caused populations to fluctuate. Canyon tree frogs were captured and swabbed in each of nine canyons in and around Zion National Park during the summer of 2014, and total frog populations were counted in each study canyon. The swabs were analyzed for the presence of chytrid DNA, and infection rates and population sizes were compared with data from 2011-2013. We found that the presence or absence of chytrid had no influence on population size in a particular canyon; population sizes were more dependent on precipitation. The Zion canyon tree frogs resist this normally lethal disease; how they evade it will be the goal of future studies.

Bacterial Biofilm Disruption with the Utilization of Ionic Liquids

January 01, 2015 12:00 AM
Aimee Newsham, Dixie State University Life Sciences Millions of people are infected yearly with resistant pathogens, including MRSA (methicillin- resistant Staphylococcus aureus), a biofilm-forming pathogen that is often transferred to patients from contaminated surfaces. Therefore, improved methods to destroy biofilm- encapsulated pathogens or to prevent their initial formation are required. This research is focused on the development of a safe treatment against biofilms by integrating organic salts, or ionic liquids (ILs), into different surfaces. Textiles were integrated with ILs to prevent formation of biofilms/bacterial growth, and were also treated post-exposure to determine if the biofilms could be destroyed post-contamination. Effectiveness of newly designed ILs were tested via inhibition zone studies on LB agar plates, and post-treatment samples were analyzed via scanning electron microscopy for presence of bacteria. The bacteria tested included Pseudomonas aeruginosa, Staphylococcus epidermidis, and Escherichia coli. These microbes are similar to MRSA in that they form biofilms comprised of extracellular proteins, DNA and polysaccharides. Bacterial colonies encapsulate themselves with biofilms to provide protection from threats, including antibacterial drugs. By integrating ionic liquids into textiles, formation can be prevented by IL solvation and sequestering of the extracellular biofilm components, including the proteins and DNA. This research could have tremendous implications regarding defeating bacteria that are resistant to existing treatments due to biofilm encapsulation. Additionally, the results could lead to new antimicrobial textiles and new approaches to prevent adherence and growth resistant biofilm-encapsulated pathogens.

Resveratrol as a Chemotherapeutic

January 01, 2015 12:00 AM
Jeff Mecham, Brigham Young University Life Sciences Breast cancer is diagnosed in one of every eight American women. But, a safe, effective treatment for cancer has yet to be developed. Resveratrol, a naturally occurring phenol found in the skin of grapes, shows promise to be a powerful but safe chemotherapeutic in a sea of otherwise damaging and toxic treatments. However, the mechanisms by which resveratrol operates are yet to be fully understood. Our project focuses on the mechanisms by which resveratrol induces cell death in breast cancer cells. We will focus on the mechanisms of the p53 pathway. The protein p53 operates as an internal housekeeper of the cell. When DNA is damaged, p53 assesses the damage and can cause cell death when needed to prevent the spread and replication of the damaged cells. Cancer cells often decrease the amount of p53, allowing them to replicate without hindrance. Cancer cells treated with resveratrol show an increase of the amount of intracellular p53 restoring the cells’ ability to induce cell death. Our project focuses on two apparent mechanisms by which this increase occurs: calcium signaling and the decrease of ubiquitination of P53. Ubiquitin is a protein used to mark other proteins for degradation. Other papers and studies have shown that resveratrol inhibits key players in the process of ubiquitinizing p53. We will focus on resveratrol’s effect on both the ubiquitinizing and deubiquitinizing machinery, including G3BP1, USP10, and MDM2. A better understanding of the mechanisms by which resveratrol leads to the targeted death of cancer cells is an important step towards better cancer treatments.

The Role of Palmitate in Upregulating Nr4a1 and Nr4a3

January 01, 2015 12:00 AM
Jordan Tingey, Brigham Young University Life Sciences Diabetes is a serious condition that is increasing worldwide. Diabetes is characterized by lost β-cell mass and uncontrolled blood glucose levels. Pancreatic islet transplantation could be used to cure people with diabetes, however the lack of islets is a major obstacle to its use. If we could understand how to increase β-cell proliferation and glucose stimulated insulin secretion (GSIS) then we could increase success in pancreatic islet transplants. Nkx6.1 induces β-cell proliferation. Nkx6.1 mediated proliferation is dependent on expression of Nr4a1 and Nr4a3. Nr4a1 and Nr4a3 are orphan nuclear receptors. It is currently unknown what ligand induces their activation. Previous reports have shown that free fatty acids induces expression of Nr4a1 and Nr4a3 in muscle, liver and adipose tissue. We show that culture of our INS-1 832/3 β -cell line in the presence of 0.2 mM palmitate induces expression of Nr4a nuclear receptors. Furthermore, culture with 0.2 mM palmitate results in increased β -cell proliferation. Finally, using INS-1 cells cultured with palmitate, and INS-1 cells deficient for either Nr4a1 or Nr4a3 we demonstrate the effect on mitochondrial respiration. Our data demonstrate that free fatty acids that are present during diabetes may induces expression and enhance activation of the Nr4a nuclear receptors, thus resulting in enhanced β -cell proliferation.

Three-Dimensional Rapid Prototyping of Vascular Substitutes for Medical Applications

January 01, 2015 12:00 AM
Alex Bischoff, Connor Dodge, Sarah Livingston, Sterling Rosqvist, Tomonori Baba, Kyle Larsen,

Understanding the Periprosthetic Microenvironment Surrounding Percutaneous Devices: Use Of Simple Immunohistochemical Techniques to Predict Healing Outcomes

January 01, 2015 12:00 AM
Alysa Edwards, University of Utah Life Sciences Percutaneous devices (PDs) constitute foreign materials that penetrate through the protective skin barrier to provide connection between internal and external environments. It has been previously shown that the periprosthetic tissue at the PD-skin interface is under a continuous state of wound healing, which often results in epidermal downgrowth. This continuous downgrowth is detrimental to the long-term survival of these devices. To date, there are no effective methodologies available to either prevent or quantify the degree of epidermal downgrowth indicating a need to find effective markers to document the healing response around these devices. In this study, periprosthetic tissues from a previous pig- back study were subjected to two different evaluations: (1) standard histology (HandE) and (2) immunohistochemical staining (IHC). Healing responses around PDs made with different material types were examined using cytokeratin 6 and collagen 4 to determine the degree of wound healing and granulation tissue maturity. Varying exposure time and concentration of stains, staining procedures were optimized. The interfacial tissues were then analyzed using either a photo or a confocal microscope. Preliminary data (Figure 1) indicated that there were noticeable differences in the periprosthetic regions between the material types used. The IHC data confirmed that the periprosthetic tissue is a hyper cellular region with a high density of blood vessels (collagen 4) and migrating keratinocytes. This data further confirmed the morphological differences observed between implant types using standard histology. Continued analysis will quantify the amount of collagen 4 within the periprosthetic tissue using imageJ software. Semi-quantitative data from each implant type will then be compared to predict biocompatibility. This research has demonstrated that IHC staining could be a potential tool for understanding the healing cascades around the percutaneous device.

Protein Phosphatase 2A Inhibition Preserves Arterial Function in Obese Mice

January 01, 2015 12:00 AM
Derek Munday, University of Utah Life Sciences Cardiovascular diseases (CVD) are more prevalent in individuals with diet-induced obesity (DIO) and type two diabetes (T2DM). Examples of CVD include blood vessel dysfunction and systemic hypertension. Both of these pathologies are associated with a reduced ability of the inner lining of the blood vessel (the endothelium) to release a substance (nitric oxide) that causes the blood vessel to dilate. At present the mechanism whereby T2DM and DIO decrease the function of the enzyme (nitric oxide synthase; NOS) responsible for nitric oxide synthesis and release is unknown. Determining this mechanism is the current focus of our laboratory. Earlier we reported that the sphingolipid ceramide is elevated in cell models of lipotoxicity and in mice with DIO. Most recently in endothelial cells we showed that ceramide causes protein phosphatase 2A (PP2A) to bind directly with NOS which disrupts the interactions among proteins that are necessary for optimal NOS function. My overall project was concerned with determining whether this mechanism is operational in mice with DIO. Specifically, we tested the hypothesis that PP2A inhibition would preserve vascular protein- protein interactions required for optimal NOS enzyme function to an extent that arterial dysfunction and hypertension would not occur. Mice consumed a control (CON) or high fat (HF) diet for 12 weeks. During the last 2 weeks, cohorts of mice from each group were injected (IP) with saline (vehicle control) or the PP2A inhibitor LB1 (1.0 mg/kg/day). We observed that interactions among proteins required for optimal NOS enzyme function were disrupted in arteries from mice with DIO treated with saline but not with LB1. Furthermore, arterial dysfunction and hypertension existed in mice with DIO that received saline but not LB1. These results strongly suggest that PP2A activation contributes importantly to arterial dysfunction that exists in a pre-clinical model of DIO.

A Genetic Analysis of the Multiple Sclerosis Disease Course as Influenced by Comorbid Diseases

January 01, 2015 12:00 AM
Scott Frodsham, Brigham Young University Life Sciences The goal of this study is to better understand if the genetic variants that strongly correlate with an increased risk of developing multiple sclerosis (MS) also increase the risk of developing diseases that commonly co-occur with MS. This relationship can be determined by comparing genetic data of patients diagnosed exclusively with MS to the genetic data of patients diagnosed with both MS and one of its comorbid diseases. Many electronic medical records (EMR) collected at medical institutions are made available for research purposes. The EMRs of individuals contained in the database that will be used for this study are linked to corresponding genetic information. Data extraction via computer algorithm will be executed to identify patients who, because of their respective diagnoses, will provide meaningful data for analysis. The case group for individuals diagnosed with just MS and have available genetic information consists of 1003 individuals. Applying a basic algorithm (ICD-9 billing codes) to this group has shown preliminary data on patients with MS and one other comorbidity as follows: Hypertension, 192 patients; anxiety, 17 patients; hypothyroidism, 84 patients; Type 1 diabetes, 24 patients; inflammatory bowel disease, 12 patients; migraine, 116 patients; restless leg syndrome, 14 patients; rheumatoid arthritis, 28 patients. The algorithms will be modified to find and include more patients for analysis. We will enhance patient identification by including medications and text keyword searches of clinical notes in the search. Genetic analysis will be performed on the final dataset.

Optimization of the pET9a Vector

January 01, 2015 12:00 AM
Brooke Linney, Brigham Young University Life Sciences Recombinant DNA technology has become one of the most critical fields of research relating to biotechnology. Recombinant DNA can be used to obtain certain proteins or examine the effects of genes that we engineer, with many applications in medical research. As part of our lab’s use for recombinant DNA, we create a gene sequence to code for a certain protein, and then use heat-shocking transformation to stimulate Escherichia coli bacterial cells to incorporate the mutated DNA from the surrounding solution. As the bacterial cells then grow, they replicate the mutated plasmid that we introduced. This DNA can later be extracted from the bacterial cells and used for further synthesis, usually protein synthesis in our lab. The process of transforming bacterial cells with mutated DNA is directly affected by plasmid size. Transformation efficiency is maximized with smaller plasmids. One of the DNA plasmids we use to introduce mutations is the pET9a vector. This plasmid is a sequence of 4,341 base pairs, but by reducing the length of the plasmid, we can increase transformation efficiency. By restricting the size of the pET9a vector, we will also be able to introduce larger foreign DNA sequences than we would with the original pET9a vector. This presentation will explore the different methods of reducing sequence length to optimize the pET9a vector, mainly focusing on site-directed mutagenesis coupled with the use of restriction enzymes.

Species List of Insects in Capitol Reef National P ark

January 01, 2015 12:00 AM
Robert Erickson, Utah Valley University Life Sciences Although the insect fauna of the Colorado Plateau region are somewhat well known, our specific understanding of the arthropod biodiversity in Capitol Reef National Park has been sparse. Objective: From the multiple insect surveys conducted in Capitol Reef National Park we intend to catalog the arthropod biodiversity into a species list. Methods: In addition to the previous collecting trips, we carried out collection efforts this past summer (2014). We used the Utah Valley University Capitol Reef Field Station as our home base. General insect collecting efforts were conducted around the field station and the nearby Pleasant Creek, near the public campgrounds, along trails, and in several other locations in the southern portion of the park. Additionally, we performed night collecting with a mercury vapor lamp trap on the nights we were in the park and utilized stationary malaise and aquatic larvae traps. The collected specimens were curated using methods of pinning, spreading, labeling, identifying, photographing, and organizing the insects. Results: The collections contributed to an increased understanding of the parks insect diversity and resulted in a curated natural history museum collection. A species list will be made available for the records of Capitol Reef National Park. More than 3000 specimens have been collected within the park. Furthermore, a booklet of the common insects for the park is in the process of being created in order to serve as an educational tool for visitors to the park and field station.

The Role of PAS Kinase and Cbf1 in Glucose Metabolism

January 01, 2015 12:00 AM
Jenny Pattison, Brigham Young University Life Sciences Sensory protein kinases are essential in the phosphorylation of many protein substrates, allowing them to control several metabolic functions and maintain cellular homeostasis. PAS kinase is a sensory protein kinase that is highly conserved and plays a crucial role in glucose homeostasis, however little is known about the molecular mechanisms behind its function. UGP1 is the only well-characterized substrate of PAS kinase, and its phosphorylation diverts glucose away from storage and towards cell wall biosynthesis. We have recently discovered another key substrate of PAS kinase that affects glucose metabolism in the cell, Centromere binding factor 1 (Cbf1). Cbf1 regulates genes involved in respiration, and we have shown that the phosphorylation of Cbf1 by PAS kinase inhibits Cbf1, decreasing respiration in yeast cells. We hypothesize that this is due to a decrease in mitochondrial mass in cbf1 deficient yeast. Further characterizing the effects of PAS kinase on Cbf1 will give further insight into how cells regulate their central metabolic functions, including respiration.

Evolution and Molecular Phylogenetics of Baetidae (Ephemeroptera)

January 01, 2015 12:00 AM
Chase Barker, Utah Valley University Life Sciences Central Research Question:

The Effects of Umbellularia Californica Essential Oil on the Cutaneous Vasculature of Frogs

January 01, 2015 12:00 AM
Stephan Maman and Holden Wagstaff, Southern Utah University Life Sciences Most plant species produce chemical compounds called secondary metabolites that enhance fitness in a variety of ways. Many of these compounds are also physiologically active in vertebrates and have widespread medicinal uses. The most ubiquitous secondary metabolites are the terpenoids, many of which cause vasodilation of the aorta and mesenteric arteries. In this study, we examined the vasoactive effects of the essential oil of Umbellularia californica, which contains the terpenoid umbellulone. Oil obtained via steam distillation using aerial portions of U. californica was applied directly to cutaneous arterioles of frogs. Arteriole diameter was monitored both before and after oil application by video microscopy. Within seconds of application, the oil caused significant vasoconstriction that persisted until the oil was washed off. Our control, medical grade sesame oil, caused no observable effects when applied using the same protocols. These results are opposite to the vasodilatory effects of terpenoids on aortic rings and mesenteric arteries. This suggests that the vasoactive effects of umbellulone are different from other terpenoids, that the vasoactive effects of terpenoids differ depending on blood vessel type, or that application of the complete essential oil affects vasculature differently than application of the isolated terpenoid.

Trends in Birds Communities in Red Butte Canyon ov er the Past 22 Years

January 01, 2015 12:00 AM
Kylynn Parker, University of Utah Life Sciences Red Butte Canyon (RBC) is a Research Natural Area administered by the US Forest Service in Salt Lake City, Utah. RBC is an undisturbed area and a haven for all types of birds. Most of the avian species found in this area are migratory, and either pass through or breed in the area. The overall aim of this project is to determine if there have been any notable changes in populations of species in the area over the past 22 years. The research question that is covered in this summary are the following: has the density and relative abundance of the top five most commonly detected avian species in Red Butte Canyon notably changed through time in Transect 1? Data was collected by Mark Leppert, PhD and Sherwood Casjens, PhD of the University of Utah. They recorded the number and species of birds that were both seen and heard in 10 different transects within RBC over the past 22 years (1991-2013) and 457 survey days. In 2013 and 2014, I compiled and entered all of the data into a database with the guidance of the researchers. For analysis, I focused on the five most commonly detected species in Transect 1. These species are Black-Capped Chickadee (Poecile atricapilla), Warbling Vireo (Vireo gilvus), Yellow Warbler (Dendroica petechia), American Robin (Turdus migratorius), and Lazuli Bunting (Passerina amoena). Detection trends were found by graphing the number of individual birds seen or heard in Transect 1 over the days since surveys began in 1991 and statistical evidence was found showing significant changes in species population size of these five most commonly detected species, especially in the case of the American Robin which exhibits a decline in detections in recent years.

Phylogeography of Desert Iguanas

January 01, 2015 12:00 AM
Michael Packer, Utah Valley University Life Sciences Dipsosaurus dorsalis is a desert dwelling iguana species geographically distributed throughout the south-western United States, northern Mexico, and the Baja Peninsula. Throughout the Baja Peninsula, multiple species of herpetofauna exhibit a distinct north-south division, both morphologically and genetically, with no presence of any physical barriers. The goal of this study was to examine how the genetic structure of D. dorsalis has been influenced by past geological events, and whether this species exhibits a similar north-south division on the Baja peninsula. Additionally, this study aimed to see if the current taxonomy of Dipsosaurus is reflective of the evolutionary relationships across its entire geographic range. 100 tissue samples of D. dorsalis were collected across the species geographic range. DNA extraction from collected tissue samples and sequencing of nuclear loci MLH3 (~900bp), NT3 (489bp), as well as mitochondrial loci ND4 (~900bp) were performed to examine the distribution of genetic variation in D. dorsalis. The collected data was then used to construct phylogenetic trees for each locus, comparing individuals of Dipsosaurus to the geologic history of its geographic distribution. Although shallow, a maximum likelihood tree of the ND4 mitochondrial gene shows the phylogeographic separation of three distinct clades. The results do not support the designation of Dipsosaurus catalinensis as currently defined.

The Role of Pas Kinase in NAD Homeostasis

January 01, 2015 12:00 AM
Daniel Barnett, Brigham Young University Life Sciences Approximately one-third of US adults have metabolic disease, increasing their risk for diabetes, cancers and neurodegenerative disease (www.ADA.org). At the heart of these diseases are imbalances in the cellular redox state. The cofactor NAD(P), commonly known as niacin, is required for over 300 essential reactions in the cell and is largely responsible for the cellular redox state. NAD kinase regulates the NAD to NADP ratio, an important ratio for controlling cellular redox state and central metabolism. Herein we provide evidence that PAS kinase, a nutrient sensing kinase required for glucose homeostasis, phosphorylates NAD kinase. We are currently investigating the effect of this phosphorylation on the function of NAD kinase both in vitro and in vivo by measuring NAD kinase activity and associated phenotypes. This research will increase our understanding of how cells regulate central metabolism. In addition, because PAS kinase is a nonessential protein, it may prove to be an invaluable treatment target for regulating NAD(P) levels and controlling cellular redox state. This may lead to therapeutic targets for cancer and metabolic diseases such as diabetes.

Aurora Kinase A is Critical for the Nkx6.1 Mediated Β-Cell Proliferation Pathway

January 01, 2015 12:00 AM
Amanda Hobson, Carrie Draney, Andrew Stratford, Thomas Becker, Danhong Lu, Michelle Arlotto,

Is There a Correlation between Skin Temperature and Chytrid Survival on Hyla Arenicolor?

January 01, 2015 12:00 AM
Brent Knoblauch and Marty Larsen, Dixie State University Life Sciences Chytrid fungus (Batrachochytrium dendrobatidis) is one of the major hypothesized theories behind global amphibian decline. Canyon Tree frogs (Hyla arenicolor) found in Zion National Park have been found to contain infected individuals, however population sizes have grown despite infection with the usually deadly fungus. The present study sought to demonstrate a correlation between skin temperatures and fungal proliferation, and investigated what enabled Hyla arenicolor to survive and reproduce with chytrid present. Ten frogs were sampled with sterile swabs from each of seven different study areas found in Zion National Park. Along with each swab a temperature was taken via infrared thermometer and recorded. DNA was also extracted from the swabs, and Batrachochytrium dendrobatidis- specific primers were used in a touchdown PCR protocol to determine infection rates. Swabs from specimens with higher temperatures were expected to display lower instances of infection. This would establish for the first time a clear demonstration that high skin temperatures were destroying the fungus in infected individuals in the wild.

Gone Again: A story of Evolution, Mandibular Tusks, and Burrowing Mayflie

January 01, 2015 12:00 AM
Stephanie Bartlett, Utah Valley University Life Sciences Our project investigates the phylogenetic relationships of the superfamily Ephemeroidea + Behningiidae. Found in waters worldwide, burrowing families are unique in that they have mandibular tusks that allow them to tunnel in the silt or gravel of riverbeds. Surprisingly, even without the mandibular tusks necessary for tunnel construction, the Behningiidae family is still found within these burrows as nymphs. Because the Behningiidae don’t have tusks, morphological research has lead to a phylogenetic classification of this family that our genomic investigation ultimately disputes. To begin this investigation, mayfly specimens were collected worldwide and prepared for DNA extraction. For each specimen genes were amplified via polymerase chain reaction and visualized on an agarose gel, before being sequenced and analyzed. The specific genes targeted for this analysis include; 12s mitochondrial rDNA, 16s mitochondrial rDNA, 18s nuclear rDNA, 28s nuclear rDNA, H3 nuclear protein coding, and CO1 mitochondrial protein coding. Datasets were supplemented with sequences acquired from Genbank. The ingroup consisted of approximately 30 samples. Phylogenetic relationships were estimated using Maximum Parsimony, Maximum Likelihood, and Baysian methods. We constructed phylogenetic relationships of burrowing mayflies using molecular DNA data analysis, when compared to morphological analysis we identified some important classification differences. As a result of our findings, we propose an alternative explanation for the evolution of mandibular tusks in burrowing mayflies (Ephemeroptera). The data support that burrowing mayflies first evolved tusks. Within the family Behningiidae, tusks were lost, while the burrowing lifestyle (i.e., living in a burrow to filter feed) was retained. This study represents the largest analysis to date for these insects and strongly supports the evolutionary trend of a gain and a loss of mandibular tusks during their evolution.

The Putative Cannabinoid Receptor GPR55: Expression, Modulation of Hippocampal Plasticity and Behavior

January 01, 2015 12:00 AM
Jacob Welch, Brigham Young University Life Sciences Learning and memory occur due to adaptive brain changes in response to our environment. These changes are mediated by synaptic plasticity, particularly within the hippocampus. Plasticity can either strengthen or weaken synapses, known as long-term potentiation (LTP) or long-term depression (LTD) respectively. While many forms of plasticity are NMDA-dependent, recently endocannabinoids were identified to mediate several new forms of hippocampal synaptic plasticity through the CB1 and TRPV1 receptors. However, research has demonstrated a non-CB1/TRPV1-dependent endocannabinoid synaptic plasticity in the hippocampus. Several potential candidate receptors that bind the endocannabinoid anandamide have been identified. These are among the orphan G-protein coupled receptors (GPRs) whose distribution in the brain and/or function is less well known. GPR55 is of particular interest as it activates second messenger systems. Using quantitative RT-PCR, electrophysiological and memory behavioral tasks we examined hippocampal GPR55 expression and function. GPR55 is expressed in hippocampus of both rats and mice. Cellular expression is currently being examined and appears to be rare in interneurons and more likely expressed by pyramidal cells. Interestingly, application of the GPR55 agonist LPI (2 μM) to wild-type mice demonstrates a significant enhancement of LTP in brain slices. This LPI effect was not noted in GPR55 knock-out (KO) mice, which exhibit significantly (p < 0.05) smaller LTP (146%) than wildtype (WT) (181%). GPR55 also appears to increase release probability (Sylantyev et al., PNAS, 2013), denoting a presynaptic role. Paired-pulse ratios are now being analyzed between GPR55 KO and WT mice to confirm this finding; however we did not note a change in EPSCs in CA1 in response to 2μM LPI. These data suggest GPR55 is expressed and physiologically relevant in the hippocampus. Because enhanced LTP is usually associated with better memory performance in rodents, this provides a potential target to enhance the cellular mechanism associated with memory formation.

Construction of a Weighing Lysimeter on the SUU Green Roof

January 01, 2015 12:00 AM
Bryce Taylor and Ian Kesler, Southern Utah University Life Sciences Green infrastructure is the use of natural processes to manage stormwater runoff and has many positive effects on evaporative cooling, building energy demand, and wildlife habitat. Very little green infrastructure research has been conducted in arid environments such as Southern Utah. The scope of this research project is to establish a complete water budget of the green roof using a lysimeter (an acrylic box resting on a high-resolution weighing scale). The water budget will help in determining whether the cost of irrigating the green roof is off- set by the potential benefits to biodiversity and decreased energy demands.We have constructed a working lysimeter and will collect the required data by using: a high resolution scale, a tipping bucket to measure drainage, two soil moisture and temperature sensors and weather data from the campus weather station. A collection of mixed Sedum species vegetation will be planted in the lysimeter using a special green roof media to accurately simulate a greenroof environment. Both pitfall (used to capture grounded insects) and combination traps (used to capture airborne insects) will be used to measure the biodiversity. Data collection will begin during the winter of 2014 and continue indefinitely.

To Accept or Not Accept: A study of Evolution and Worldview Reconciliation in an Introductory Biology Course

January 01, 2015 12:00 AM
Danny Ferguson, Utah Valley University Life Sciences This research examined the acceptance of evolution for introductory Biology students and the reasons why they don’t accept evolution, accept evolution, and why they change their minds over the semester. Previous studies examined student’s observations and knowledge of the evolutionary theory and found that the degree of conflict students perceived between religion and science was negatively correlated with their knowledge of evolution. Objective: The objective of this research was to better understand the student’s views of evolution and its integration into their worldly and religious views. Methods: We will conduct interviews with general Biology students in order to better understand the reasons why they don’t accept evolution, accept evolution, and why they change their minds over the semester. The interview questions are designed to investigate, in more detail than the previous surveys, the opinions of evolution and how they change over the course of the semester. The recordings will be transcribed and quantified by binning answers into categories. Given high % of students are LDS, we will ask a few additional questions to this portion of the population. Results: We found that as students knowledge of evolution increased, their conflict with religion decreased. The data demonstrate that there are three main reasons for this trend: 1) Evidence convinces the students to accept evolution; 2) Particularly for LDS students, knowledge of the official position of the Church, enables them to allow evolution to be a correct process in nature; and 3) the instructor as a role model (believer yet accepts evolution) can have a large influence.

Comparison of Macroinvertebrate Assemblages of Two Perennial Streams in Capitol Reef National Park

January 01, 2015 12:00 AM
Jake Loveless, Utah Valley University Life Sciences Macroinvertebrate assemblage composition was assessed in two perennial streams, Pleasant Creek, and Sulphur Creek in Capitol Reef National Park, Utah, during the summer of 2014. Individuals collected were identified to genus. This information was used to compare assemblage composition, nutrient availability, and water quality between the two streams. Five collection trips were made (May 27, June 10,17, July 1,15). Sampling was conducted randomly using mesh kick nets with four samples being collected per site, per trip. Heavy rains caused flash flooding on July 15 prohibiting sampling, so a total of sixteen samples per site were taken. Samples were stored in 90% isopropyl alcohol until they could besorted and identified using a dissecting microscope. Water quality estimates were determined by taking the weighted average of the tolerance values, and the final classification was made using the family-level biotic index. Pleasant Creek showed the highest number of taxa present, fourteen, compared to six in Sulphur Creek. Both streams followed the predictions of the River Continuum Concept consisting of collector-dominated functional feeding groups, with Pleasant Creek showing a higher percentage of predators 35.7% to 16.6%. Tolerance values of collected taxa were used to estimate organic pollution indicating good water quality in Pleasant Creek, and fairly poor water quality in Sulphur Creek. The differences in the macroinvertebrate assemblage composition in this study were likely multi-causal. Stream size is a major factor influencing the structure of macroinvertebrate assemblages; in general, as stream size increases, more taxa are added. Pleasant Creek is a much larger stream with a well-established channel, while Sulphur Creek is shallow with depths never exceeding fifteen centimeters. The shallow channel of Sulphur Creek also made it prone to frequent flooding. Isolated floods have little impact on macroinvertebrate communities due to availability of aerial adults nearby to recolonize rapidly, however, frequent flooding may have long-term effects through extirpation of taxa with high mortality. The difference in water quality was the most surprising finding in this study. The fairly poor water quality of Sulphur Creek may also be a factor in the lack of genera found there. Organic pollution effects primary productivity in streams, and while primary productivity was not measured in this study, visual observations found very little algae or aquatic vegetation at Sulphur Creek.

Patterns of Urban Forest Composition in Utah’s Growing Mountain Communities

January 01, 2015 12:00 AM
Anne Thomas and Richard Gill, Brigham Young University Life Sciences Providing water for expanding urban communities in the western United States is a growing concern for city planners and governmental agencies. Landscaping can claim up to 50% of the urban water budget but also has the most potential for water conservation. Landscape water use is highly variable, however, because of species-specific differences in tree water use and because of decision-making by city planners and residents in maintaining trees. The objective of this study is to improve our ability to predict urban forest water use by identifying differences in tree basal area and diversity between neighborhoods that have arisen at different periods of development in Heber Valley, Utah. We classified neighborhoods as established, exurban (rural housing), commercial, or new tract based on age, location, and lot size. We performed a stratified random survey with twenty lots in each category and collected diameter and species data for each tree in the lot. Some of the patterns we observed were easily anticipated, such as higher basal area per hectare in the older, established neighborhoods relative to newer tract housing. Surprisingly, the number of individual trees per hectare in tract and established neighborhoods is very similar. Perhaps of more interest is the low species richness of tract housing compared to exurban communities. Because exurban communities are being replaced by tract housing there is evidence that tree diversity will be lost. Another important aspect of community structure in urban forests is the ratio of conifers to broadleaf trees because of fundamental differences in water use patterns. Conifers comprised twenty-five percent of the basal area in exurban and thirty-five percent in established neighborhoods, as opposed to five percent in tract. Our data suggest that tree diversity is likely to decrease while water demand is likely to increase with changes in urban forests in the coming decade.

Entomophilic Nematode Distribution and Diversity in Beaver Dam Wash

January 01, 2015 12:00 AM
Westen Archibald, Trevor Smart, and Emily Forsyth, Brigham Young University Life Sciences The Beaver Dam Wash National Conservation Area is considered an important biodiversity hotspot for the Western United States. The wash is an ecotone on the Northeastern edge of the Mojave Desert and is directly adjacent to both the Colorado Plateau and the Great Basin. Thus, this area contains various species of flora and fauna from each of the surrounding biomes. Prior research of the Beaver Dam Wash has documented high aboveground biodiversity for a desert ecosystem however no research has been conducted on belowground diversity. For this reason we chose to characterize the diversity and distribution of entomophilic nematodes, as they are commonly used as a biological indicator to the surrounding ecosystems. We hypothesized that because plant and insect biodiversity is high here, we would also find a diversity of entomophilic nematodes that is higher than the surrounding areas. To test this hypothesis we collected soil samples from 15 sample sites representative of the diversity of the different ecological communities. We tested for patterns of codistribution between entomophilic nematodes and environmental variables, such as plant cover, proximity to water, presence of organic matter, elevation, ecosystem classification, and soil chemistry. We extracted nematodes from the soil samples and sequenced the 28s rDNA region of representative individuals from each sample. Nematode diversity was low; one species was broadly distributed, X others were more patchily distributed. No correlation was found between above ground factors or soil chemical properties (ppm phosphorous, percent organic matter, and percent soil moisture). We conclude that the distribution of entomophilic nematodes in this ecological confluence is to some degree stochastic and uncoupled from aboveground diversity or belowground soil conditions.

Yeast PAS Kinase as a Model for Cellular Metabolic Control

January 01, 2015 12:00 AM
Katherine Harris, Brady Evans and Thomas Andros, Brigham Young University Life Sciences Metabolic diseases, such as obesity and diabetes, have become endemic and the need for better treatments is rising. Mutations in PAS kinase, a recently discovered sensory kinase, have been shown to cause Maturity Onset Diabetes of the Young (MODY) in humans (Semplici et al., 2011). In addition, PAS kinase deficient mice display many phenotypes related to diabetes including resistance to weight gain, insulin insensitivity and triglyceride accumulation in response to a high-fat diet (Hao et al., 2007). Despite its importance in metabolism, little is known about the regulation of PAS kinase. PAS kinase consists of a sensory PAS domain that binds to and inhibits a protein kinase domain (Amezcua et al, 2002). We are currently engaged in several yeast genetic screens which will allow identification of regions in the full length PAS kinase that are essential for activation or for binding its substrates. The first screen is based on the finding that PAS kinase overexpression rescues a temperature-sensitive mutation in Tor2, the tor2(ts). We have isolated both point mutations and truncations in PAS kinase which alleviate the tor2(ts), suggesting they are hyperactive alleles. These mutations identify novel regions involved in PAS kinase regulation. Our second screen uses the yeast 2-hybrid to select for both point mutations and truncations that increase the ability of PAS kinase to bind its substrates. These mutations will help identify key regions of PAS kinase utilized in substrate recognition. Finally, we have identified regions of PAS kinase that are well-conserved throughout evolution and will compare these regions with the regions affected by our mutations. This study will be the first reported mutagenic analysis of PAS kinase. Analysis of these specific genetic regions will help elucidate the molecular mechanisms involved in the regulation and function of PAS kinase, a key player in the development of metabolic disease.