Skip to main content
Utah's Foremost Platform for Undergraduate Research Presentation

2014 Abstracts

Nucleosome positioning preferences of octamer containing H2A variants Htas1 and Htz1 in C. elegans

January 01, 2014 12:00 AM
Sharisa Nay, Brigham Young University Life Sciences Gene therapy is a growing field of science with the potential to improve thousands of lives. With an eye toward improving the effectiveness and longevity of gene therapies, my project examines the preferential binding tendencies of the histone protein variants Htz1 and Htas1. Htz1 is the Ceanorhabditis elegans homolog of H2AZ, an important variant of the H2A histone. This protein has been shown as necessary for survival and as playing a role in the prevention of ectopic heterochromatin spread. Htas1 is another variant of H2A that plays a role in the increased transcription of sperm-producing genes. The preferred positioning of these variants on naked DNA is not yet known. Through a DNA extraction, nucleosome reconstitution, and DNA digest and sequencing, we will take these variants and examine where they are prone to localize within the N2 Bristol strain of c. elegans. This will allow us to include DNA sequences on our gene insertions possessing a high binding-affinity for these transcription-promoting histones. Thus, if we can identify the locations at which these variants will localize within DNA, we will be able to insert these preferred constructs into the genes used for gene therapy and thereby increase the effectiveness of gene therapies.

Improved Understanding of Non-Pathogenic Biophysical States in a Class of Neurodegenerative-Related Proteins in Hopes of Establishing a Baseline for Protein-Misfolding Disease Characterization

January 01, 2014 12:00 AM
Joe Passman, University of Utah Life Sciences Neurodegenerative disorders and amyloidosis are thought to be a consequence of the misfolding of intrinsically disordered proteins (IDPs). In non-pathogenic states, IDPs are thought to manipulate their configurational ensembles (CEs) – through partially folding and/or forming secondary structure – to create binding sites for the multiple interaction partners necessary for cell-signaling, recognition, and regulation. An obstacle to accurate in vivo understanding of non-pathogenic mechanisms is that little is known about the impact of the crowded cellular environment on the global (i.e. partial folding) and local structural characteristics (i.e. secondary structure) of IDPs. It is difficult to understand why an IDP may misfold if little atomistic structural understanding exists regarding IDP functional mechanisms in non-adherent physiological states.

Long-Circulating Backbone-Degradable HPMA Copolymer-Gemcitabine Conjugates for the Treatment of Ovarian Carcinoma

January 01, 2014 12:00 AM
Shwan Javdan, University of Utah Life Sciences Each year in the United States, over 22,000 new cases of ovarian carcinoma are diagnosed and 14,000 women die from its progressive cancer stages. Anthracyclines, a class of common chemotherapy drugs, have long been the primary treatment for this and many other cancers, but they often leave patients with cardiotoxicity, hepatotoxicity, and other adverse effects. Polymer-drug conjugates using poly[N-(2-hydroxypropyl)methacrylamide] (poly-HPMA) are nanosized, water-soluble constructs that accumulate passively in solid tumors by the enhanced permeability and retention effect as well as actively by cell surface targeting methods. As such, they have exhibited reduced toxicity in the body. The goal of this study was to develop a novel, targeted HPMA copolymer-drug conjugate for the treatment of ovarian carcinoma. To accomplish this, an antibody fragment called Fab’, targeted to ovarian carcinoma cell surface antigen OA3, was bound to an HPMA copolymer-gemcitabine conjugate. Gemcitabine is a nucleoside analog used in chemotherapy that has demonstrated considerable effectiveness in recent years. The copolymer-gemcitabine conjugate was successfully developed following the synthesis of all the requisite components, including Fab’, diblock chain-transfer agent (di-CTA), N-(2-(2-pyridyldithio)ethyl)methacrylamide (PDTEMA), and polymerizable backbone-degradable gemcitabine derivative. Syntheses of di-CTA and PDTEMA were optimized and then characterized by high-performance liquid chromatography, H-NMR, and mass spectrometry. Monomers were combined by reversible addition-fragmentation chain-transfer polymerization, and then the Fab’ fragment was bound to the polymer backbone via a disulfide exchange reaction with PDTEMA. The targeted copolymer-drug conjugate was then verified by fast-protein liquid chromatography as well as ultraviolet-visible spectroscopy. A number of in vitro tests have demonstrated the properties of an efficient drug delivery system. Flow cytometry displayed active accumulation of the copolymer-gemcitabine conjugate to OVCAR3 cell surfaces. Furthermore, IC50 measurement found promising drug efficacy comparable to modern anthracyclines. Future work will involve in vivo evaluation of the conjugate’s therapeutic efficacy in nude mice bearing OVCAR3-xenografts.

Insights into the evolution of wings in Insects: Molecular Phylogenetics of Baetidae (Ephemeroptera)

January 01, 2014 12:00 AM
Chase Barker, Utah Valley University Life Sciences Central Research Question: Phylogenetic relationships of mayflies are still not very well known, however molecular and morphological data have begun to shed light on the relationships of these insects (Ogden et al. 2009). Our central question is to elucidate the phylogenetic relationships within the mayfly family Baetidae.

Interaction of fungal endophytes and gall-forming aphids on cottonwood trees

January 01, 2014 12:00 AM
Julia Hull, Weber State University Life Sciences Endophytes are fungi that live within aerial portions of plants for most or all of their life cycle without causing visible signs of disease. Gall forming aphids, Pemphigus betae, are highly competitive over gall site selection (Moran 1993), forming galls on the leaves of narrowleaf cottonwood and their hybrids. The favored gall location overlaps with areas of highest endophyte probability. I hypothesized that a negative correlation would exist between endophyte infection and aphid galling on leaves of backcross hybrid cottonwood trees.

Nitrogen content in lichens as an indicator of inversion-based deposition

January 01, 2014 12:00 AM
Brianne Palmer, Utah State University Life Sciences Inversions have plagued the valleys in Utah resulting in built up pollution carpeting the cities and spreading into surrounding ecosystems. The ecological impact of these inversions is unknown. Inversion-based pollution events deposit nutrients and pollutants in the ecosystems. The purpose of this study is to determine if lichens, due to their unique physiology, preserve a record of inversion-based nitrogen deposition in order to assess the ecological impact of the inversions. In June and July of 2013 we collected 111 samples of lichens from sites exposed to the inversions, along Red Butte Creek and on an elevation gradient on Grandeur Peak in Salt Lake City. The collection focused on two species of lichens (Xanthomendoza montana and Xanthomendoza fallax) because they are easily identifiable and live in all the sampling sites. The samples were ground, run through a stable-isotope mass spectrometer and analyzed for the %N and δ15N. If lichens hold a record of inversion-based depositions there should be more nitrogen in lichens from the sampling sites closer to the pollution source (Salt Lake City). Once the data was complied, the resulting graphs showed no correlation between %N and distance from Salt Lake City between δ15N and the pollutant source. However, the isotopic variability within the samples was greater than expected and requires further research.

Cloning and Expression of β-caryophyllene synthase from Ericameria linearifolia

January 01, 2014 12:00 AM
Preston Manwill, Southern Utah University Life Sciences Plants produce compounds, secondary metabolites, which can be harnessed for medicinal uses. Caryophyllene, a secondary metabolite produced by a variety of higher plants, has shown promise as an analgesic and anti-inflammatory. Caryophyllene synthase is the final enzyme in the biosynthetic pathway that produces caryophyllene. The gene and enzyme responsible for caryophyllene production have been observed in crop plants and model organisms, but few studies have investigated caryophyllene production in indigenous plants. We investigated the production of caryophyllene in Ericameria linearifolia (Narrowleaf goldenbush) because it is a shrub native to southwest North America. The first portion of this research examined sequence similarities between caryophyllene synthase gene orthologs in E. linearifolia and other plant genera. Genomic DNA was isolated from E. linearifolia leaves collected from plants growing in southern Utah. Literature reviews and database inquiries have provided DNA sequences for similar synthases, from which primers will be designed to copy and sequence the E. linearifolia caryophyllene synthase gene, confirming the orthologs presence. Following confirmation of the gene, mRNA will be extracted from leaf material and oligo(dT) primers used to synthesize cDNA. Subsequent cDNA amplification and cloning of products into a vector will allow for transformation into a protein-producing bacterium. These final steps make the downstream procedures of protein production, structure determination, and functional characterization of the protein possible. Comparison with enzymes that produce similar organic compounds may result as well, and would provide insight that could improve the biosynthesis of medicinal compounds.

Antimicrobial Properties and Composition of Essential Oil Isolated from Ericameria linearifolia (Asteraceae)

January 01, 2014 12:00 AM
Preston Manwill, Sourthern Utah University Life Sciences Plants produce myriad secondary metabolites (essential oil) that play a role in ecological interactions. Species evolve unique mixtures of organic compounds due to strong selective pressures that act on metabolic pathways. Few studies have investigated the antimicrobial properties of secondary metabolites that evolved against soil microbes associated with native plants. The essential oil of Mojave goldenbush (Ericameria linearifolia), a shrub native to the Intermountain West, was characterized and its bacteriostatic abilities against root associated and non-root associated bacteria morphs were examined in this study. We hypothesized E. linearifolia oil would act as a greater growth inhibitor against native soil bacteria with which it has evolved than against bacteria from non-associated soils. Secondary metabolites were extracted using steam distillation and analyzed with gas chromatography mass spectroscopy. A Kirby-Bauer assay tested presence, size and retention of inhibition zones (IZ) produced against soil bacteria. The essential oil of E. linearifolia contained twenty secondary metabolites, two of which, limonene and sabinene, constituted greater than fifty percent of the oil. Presence and retention of IZ produced by E. linearifolia metabolites varied significantly by community association and bacteria morph. The hypothesis was supported by IZ that were largest against bacteria cultures isolated from soil that surrounded Mojave goldenbush roots and least effective against cultures isolated from non-root associated soil. Our findings suggest that secondary metabolites of E. linearifolia have evolved to specifically prevent negative interactions with bacteria most associated with the plant.

Identification of the Critical Functional Region of the Recombination Directionality Factor Protein of B4 Mycobacteriophage Via Genome Annotation and Comparative Genomics

January 01, 2014 12:00 AM
Cameron Sargent, Brigham Young University Life Sciences Although viruses present a potential solution for treating and studying many harmful diseases, they have yet to be utilized successfully, largely due to an overall lack of understanding of the interactions between viruses and their hosts. This study, however, demonstrates the efficacious usage of comparative genomics in further elucidating viral reproduction mechanisms, a step in overcoming this hurdle. Following the sequencing and annotation of genomes of the B4 subcluster of mycobacteriophage, a previously unstudied selection of viruses, comparative genomics analysis identified regions of proteins from these viruses that are highly conserved, or highly similar. One of these B4 phage proteins was then compared on the basis of its predicted folded structure and its amino acid composition to a protein with the same function from another phage, whose structure and DNA binding mechanism was determined via NMR spectrometry. Gene sequence alignments identified the region of highest conservation in the B4 phage. Protein folding then revealed that this region created a structure that was analogous to the functional region of the protein studied elsewhere, indicating that it too recognizes, binds to, and modifies DNA in the same manner. Furthermore, another DNA-binding motif with high conservation among B4 phage was observed in both the folded B4 proteins and the protein analyzed via NMR spectrometry. This comparison procedure not only further elucidated the function of an important gene in B4 phage but also displayed that comparative genomics, a resource-effective and computer-based approach, can successfully identify the critical functional regions of a protein. This study therefore provides a novel procedure for further understanding the mechanisms of virus-host interactions, which in turn facilitates the successful application of viruses in treating and studying diseases.

Ethanol Inhibits Dopamine Release at Terminals in the Nucleus Accumbens Via GABA Receptors

January 01, 2014 12:00 AM
Eliza Warren, Brigham Young University Life Sciences We have previously demonstrated that ethanol inhibition of medium spiny neurons (MSNs) in the nucleus accumbens (NAc), and γ-aminobutyric acid (GABA) neurons in other ethanol-sensitive brain areas, is mediated by GABA(B) receptors. The aim of this study was to evaluate the involvement of GABA and glutamate (GLU), and in particular GABA(A), GABA(B) and NMDA receptors, in mediating ethanol inhibition of dopamine (DA) release in the NAc. Using fast scan cyclic voltammetry (FSCV), we evaluated the effects of ethanol on DA release in the NAc core of C57/BL6 and CD-1 mice. In the slice preparation, local stimulation evoked robust, frequency-dependent DA release in the NAc, with maximal release at 20 Hz. Ethanol decreased DA release with an IC50 of 60 mM in C57Bl6 mice. In anesthetized C57BL6 mice, ethanol decreased DA release with an IC50 of 2.0 g/kg. Superfusion of the GABA(B) receptor antagonist CGP55845 enhanced DA release 85%, while neither the GABA(A) receptor antagonist bicuculline, the GABA(A) receptor agonist muscimol, the GABA(B) receptor agonist baclofen, nor the NMDA GLU antagonist APV significantly affected DA release. CGP55845 blocked ethanol inhibition of DA release, while neither bicuculline nor APV altered ethanol’s effects. GABA inhibited DA release at 0.5-10 uM but not at 0.1-1 mM. Compared to ethanol effects on DA release in C57BL6 mice, CD-1 GAD GFP knock-in mice, which only express GAD at 50% levels, were significantly less sensitive to ethanol. As DA release was sensitive to low concentrations of GABA, CGP55845 may act as a GABA(A) rho receptor antagonist, and neither bicuculline nor baclofen had any effect on DA release, ethanol may be acting on extrasynaptic GABA(A) rho receptors on DA terminals to inhibit DA release in the NAc.

Suppresion of lymphangiogenesis using vegf-c trap

January 01, 2014 12:00 AM
Ryan Watkins, Univeristy of Utah Life Sciences The lymphatic system is responsible for controlling systemic fluid buildup. Lymphangiogenesis is a dynamic process involving sprouting and maintaining new lymphatic vasculature. Vascular endothelial growth factor C (VEGF-C) is known as a key growth factor through VEGF receptor 2 and 3 (VEGFR2 and VEGFR3). Interestingly, the cornea expresses VEGF-C but is alymphatic. We found that the soluble isoform of VEGFR3, which lacks tyrosine kinase domains, is responsible for the alymphatic nature of the cornea by sequestering endogenous VEGF-C. Although soluble VEGFR3 or soluble VEGFR2 can be useful for inhibition of VEGF-C derived lymphangiogenesis, they also bind VEGF-A. Inhibition of VEGF-A suppresses blood vessel formation, damaging tissue and creating additional side effects. The development of a new anti-lymphangiogenic drug, that only blocks VEGF-C, has many implications: preventing tumor metastasis and reducing rejection rates of tissue and organ transplants. VEGF-C mainly binds to VEGFR3 domain 2 and VEGFR2 domain 3. To develop an anti-lymphangiogenic drug that specifically binds VEGF-C the binding domains were inserted into a vector that produces a recombinant protein (VEGF-C trap) that sequesters VEGF-C, suppressing lymphangiogenesis. Mice in a cornea transplantation model were treated with VEGF-C trap. After 8 weeks, 60% of the treated cornea survived (no rejection) compared to 10% in the empty vector control group. A 60% transplant survival rate is one of the highest rates compared to other single treatment methods. Blood and lymph vessel area was calculated and showed a decrease in lymph vasculature but not blood vessel. Suggesting only VEGF-C activity was affected. In a tumor metastasis model, nude mice will be injected subcutaneously with cultured MCF-7 cells which have been transfected with VEGF-C trap or an empty vector. We expect to see a decrease of lymphatic vasculature in the mice injected with MCF-7 cells containing the VEGF-C trap and ultimately less metastasis.

Leech Population Genetics in Southern Utah

January 01, 2014 12:00 AM
Kevin Nay, Southern Utah University Life Sciences Leech taxonomy has traditionally been based on morphological characters, but with new developments in DNA technology many taxonomists are starting to use genetic information in descriptions of new species. Leeches in southern Utah are poorly inventoried with respect to many other aquatic animals. There have been few morphological inventories of leeches and even fewer descriptions of the genetic diversity within leeches. Landscape genetics is a powerful tool used to understand geographic patterns of genetic diversity. Southern Utah has many naturally isolated bodies of water due to the climate and the dramatic changes in elevation in this part of the country. The landscape genetic study of leeches in southern Utah will provide us with a better understanding of genetic differentiation within southern Utah leeches. The mitochondrial DNA (CO I region) will be used to estimate genetic diversity and examine the relationships among individuals in two populations of leeches. I hypothesize that leeches in southern Utah will have greater genetic diversity then historically recognized from morphological studies suggesting a new species of leech. The study will lead to better understanding of the taxonomy and identification of southern Utah leeches.

Antimicrobial Properties of Hydrosols Isolated from Anthoxanthum (Poaceae) Against Soil Bacteria

January 01, 2014 12:00 AM
Preston Manwill, Southern Utah University Life Sciences Members of Anthoxanthum (sweetgrass) have a history of ceremonial and medicinal use. Coumarin, a secondary metabolite produced by the grass, is an anticoagulant and antimicrobial agent. Antimicrobial properties of commercially available European A. odoratum metabolites have been nominally investigated, but no North American species have been studied. Additionally, European sweetgrass is purported to be available in both diploid and polyploid strains. Our research objectives were to: 1) determine if ploidy level strains do exist, and 2) investigate secondary metabolite production and evolution in commercial strains and A. hirtum, a Great Basin native. Using epidermal casts and fuschin staining, differences in guard cells and nuclei were surveyed. Secondary metabolites from the A. odoratum strains and A. hirtum were obtained through steam distillation and a vacufugation protocol that concentrated hydrosols. GC/MS analyses characterized and quantified secondary metabolites. The secondary metabolites coumarin, dihydrobenzofuron, and dihydroactinidiolide were identified, with the first and latter greatest in A. hirtum. Significant guard cell differences between strains, as well as species, were observed. Two ploidy strains of A. odoratum were suggested. A Kirby-Bauer assay tested presence, size and retention of inhibition zones (IZ) produced against soil bacteria. Gram-staining initially characterized bacterial morphs. Secondary metabolites from the diploid strain were most effective against all bacterial morphs, but polyploid metabolites also generated and retained IZ against diploid root associated and non-root associated morphs. The native sweetgrass produced IZ only against root associated bacteria with which it had evolved. Future work will include similar studies of other North American Anthoxanthum species.

Killing of intracellular Mycobacterium ulcerans by mycobacterial phage cocktail using avirulent Mycobacterium smegmaits as a vector

January 01, 2014 12:00 AM
Justen Despain, Brigham Young University Life Sciences Mycobacterium ulcerans is an acid fast intracellular bacteria that is the causative agent of Buruli Ulcer, a disease endemic in tropical regions of Africa. The disease starts as a nodule that progresses into a necrotizing skin lesion. Treatment ranges from antibiotic therapy to surgical removal of surrounding skin to stop necrotization of the skin. Owing to the intracellular nature of M. ulcerans, antibiotic therapy can be an ineffective treatment option. It has been previously shown that mycobacteriophage can reduce extracellular bacterial load in mice infected with M. ulcerans. In this study, we propose a method of killing intracellular M. ulcerans by mycobacteriophage using avirulent Mycobacterium smegmaits as a vector.

Classifying Neurons in the Brainstem

January 01, 2014 12:00 AM
Lee Leavitt, University of Utah Life Sciences The ventral respiratory column (VRC) is a region in the brainstem shown to control breathing patterns in mammals. Using activation and inhibition of neurons in this region, classes have been assigned based on response-combinations. Using a mouse model, cells from this region are dissociated, plated and incubated with a dye that indicates changes in cytoplasmic calcium levels. Hundreds of cells are measured while varieties of pharmacological agents are applied. Response-combinations provide a profile of the receptors found on these neurons. Previously, varieties of cell classes were shown to contain NMDA receptors (receptors linked to learning and memory). However, specific compositions of subunits within these receptors are not known. These receptors are ligand gated ion channels composed of four non-covalently bound proteins. Each subunit has a different activation profile determined by interactions of agonist and antagonists. Conantokins (peptides isolated from snail venom) and other compounds further afford understanding of the architecture the assigned cell-classes. This project has continued to classify the subunit compositions of NMDA receptors with the ultimate goal of understanding which NMDA receptor subunits are present in each class. This will provide valuable information on the VRC’s function, and will allow for pharmacological innervations to change behavior in this region.

Insect Phylogeography Study on Patagonia

January 01, 2014 12:00 AM
Dasom Kim, Brigham Young University Life Sciences The main purpose of the project is to compare the phylogeography of a species of stonefly (Klapopteryx kuschelli) and a species of dragonfly (Rhionaeshna variegata) in Patagonia. Specifically, the project will study how geography and behavior (i.e., their dispersal abilities) have affected their evolutionary histories. Of all the varied climates and geography in South America, comparatively few phylogeographic studies have been conducted with insects, especially in Patagonia. This study will provide an important foundation for a comparative phlyogeographic study of two insect groups inhabiting the same regions of Patagonia. Also, if funded, this project will give me an exclusive opportunity to interact with international research institutions in South America as well as their scientists.

Comparison of Antibiotic Resistant Enterococci Isolated from Various Weber River Locations, from the Great Salt Lake and from Hospitalized Patients

January 01, 2014 12:00 AM
Madison Landreth, Weber State University Life Sciences Enterococcus, a bacterial genus that normally inhabits the gastrointestinal tract of animals, can be pathogenic to humans, causing urinary tract infections, sepsis and other serious diseases. It is also one of the major causes of hospital acquired infections. One important complication of those infected with Enterococcus is the fact that these bacteria often have a high level of antibiotic resistance, making effective treatment of patients more difficult. While Enterococcus is a normal inhabitant of the gastrointestinal tract, it can survive outside its host in the environment, even in adverse conditions, such as the Great Salt Lake (GSL). In this experiment, hundreds of isolates of Enterococcus were collected from the Great Salt Lake, from various sites along the Weber River which flows into the GSL and from clinical sources. Isolates were tested for different phenotypic characteristics and for their resistant patterns against certain antibiotics. Preliminary results of the Kirby Bauer disk-diffusion assay demonstrated that 47% of enterococcal isolates from the Great Salt Lake were resistant to one or more of the five antibiotics compared to 98% of the clinical isolates. In contrast, in a previous study, as few as 15% of Enterococcus isolated from the fresh water sources were resistant to one or more of the five antibiotics. These data may have implications concerning the importance of anthropological impact on rates of antibiotic resistance in this genus.

The Location and Dimensions of FGF Source are Critical for Proper Limb Pattern

January 01, 2014 12:00 AM
Derrick Crawford, Brigham Young University Life Sciences Members of the FGF family of signaling factors are key components in distal outgrowth and patterning of the vertebrate limb. These factors are expressed and secreted by the apical ectodermal ridge (AER) on the distal margin of the limb. Blocking their function is known to truncate the limb skeleton. Conversely, replacing the AER with beads soaked in Fgf protein can rescue limb outgrowth and patterning. Our lab has demonstrated that one of the mechanisms whereby the Fgf/AER functions is to mediate directed outgrowth of the adjacent mesenchyme. As the AER regulates growth of mesenchyme toward itself, it would be predicted that the AER’s dimensions would be important for shaping the mesenchyme that it recruits. We have found that the shape of the AER changes over time in a manner that corresponds to the shape of limb elements as they form along the proximal distal axis. Further, mutants that exhibit defects in the dimensions of the AER show corresponding anomalies in the limb skeleton. Given these observations it would be predicted that an Fgf soaked bead being of fixed spherical dimensions would only be capable of forming a cylindrical, rod-shaped limb. A bead placed posteriorly fulfills this expectation whereas a bead placed apically does not. We provide a molecular explanation for this discrepancy. We have also manipulated the shape of the AER surgically and find that similar to beads the shape and the AP position of the AER dictates the shape of the forming limb skeleton.

Three-Dimensional Mapping and Virtual Reconstruction of a Pharyngeal Space Nerve Plexus

January 01, 2014 12:00 AM
Jake Gamboa, Brigham Young University Life Sciences It is estimated that approximately 350,000 people in the United Stated die annually from post-myocardial infarction arrhythmias. A majority of these people will undergo a surgery that results in partial or complete removal of the stellate ganglion and other nerve fibers of the pharyngeal space in an attempt to prevent over stimulation from the neurons to the area of dead heart tissue and, therefore, future arrhythmias. However, without a somatomototopy, it is unclear what physiological effects partial or full sympathectomies may have. We will create a three-dimensional map of the pharyngeal space nerve plexus which will, in turn, allow for a more accurate and precise surgery.

Human Breast Cancer Response to Telomere Loss

January 01, 2014 12:00 AM
Teressa Paulsen, University of Utah Life Sciences Breast cancer is still the most common cancer among women regardless of race or ethnicity. The focus of our research is to uncover the mechanism breast cancer cells use to escape the inherent limitations of the telomere and obtain immortality. The protective end of a chromosome, the telomere, degrades with each cellular division. The cellular response to telomere dysfunction is to activate programmed cell death. Therefore, this type of damage normally limits the proliferative potential of the cell and subsequently carcinogenesis.

American avocet (recurvirostra americana) incubation constancy throughout the nesting cycle on the great salt lake

January 01, 2014 12:00 AM
Josh Hall, Weber State University Life Sciences Reproduction in birds is extremely conservative with the vast majority of the birds adopting bird-egg contact incubation to maintain an appropriate microclimate for embryonic development (Deeming, 2004). The Great Salt Lake is a vital nesting site for American Avocets (Recurvirostra Americana) that shows extreme temperatures and hostile environments where nest success can be as low as 1 -14% (Cavitt, 2008). Constancy of incubation, i.e. the time that the eggs are in contact with an adult, is a major indicator of nest success and environmental conditions. Our goals were to examine some of the costs natural selection places on embryos and parents to maintain a constant embryo temperature. We hypothesized that incubation attentiveness would increase across the nesting cycle. Over 200 AMAV nests were surveyed. Thermal probes were used to record various nest microclimates at every minute. A pseudonest with painted chicken eggs was also created and a thermal probe was placed to measure the ambient temperature without any adult incubation. A motion sensitive camera was placed over nests to examine differences in parental care. Nests will be divided into three phases: early, mid, and late incubation. Thermal data will be analyzed using descriptive statistics and mean variance values to calculate how incubation constancy varied throughout these phases. We expect this data to tell us more on how natural selection is working on these populations and some possible theories of how this developed.

Gene Expression of P2X7 and P2Y1 in CFS and FMS Patients on Lyrica versus Placebo

January 01, 2014 12:00 AM
Goyeun Tun, University of Utah Life Sciences Chronic Fatigue Syndrome (CFS) and Fibromyalgia Syndrome (FMS) are disorders which their symptoms and treatments are not clearly known. CFS and FMS are not life threatening diseases; however, they can affect patients’ quality of life because they experience symptoms including exercise intolerance, need for bedrest, and debilitating chronic pain and fatigue with these disorders. The research from Dr. Light’s lab has shown that moderate exercise for 25 minutes causes changes in mRNA levels in CFS and FMS patients but not healthy controls. The objective of our study was to examine changes in white blood cell gene expression of CFS and FMS patients both on Lyrica and on placebo in a double-blinded, cross-over design (where each study subject was his or her own control) by using quantitative PCR gene expression analysis. The lab routinely analyzes blood samples for 48 different genes from study subjects and healthy controls collected before (baseline) and then 8, 24, 48 hours after exercise moderate exercise. My focus was on changes in expression of two ATP-responsive purinergic receptors, P2X7 and P2Y1, which have not been studied after exercise in CFS and FMS but have been associated with chronic inflammation and pain in animal models. White blood cell layers (buffy coat) were collected from samples, RNA was extracted and converted to cDNA. 384 well PCR plates were robotically loaded from 96 well source plates, then the PCR reaction was run in an ABI 7900 thermal cycler that tracks fluorescence in “real time” (real time qPCR). Analysis of results is in progress and will be reported on the poster.

Protein phosphatase 2A activation contributes to endothelial dysfunction that occurs in mice with diet-induced obesity

January 01, 2014 12:00 AM
Xin Wan, University of Utah Life Sciences Endothelial dysfunction exists in individuals with diet-induced obesity (DIO) and type 2 diabetes (T2DM). Markers of endothelial dysfunction include reduced phosphorylation (p) of endothelial nitric oxide (NO) synthase (eNOS) to total eNOS (p-eNOS:eNOS), and attenuated endothelium-dependent vasorelaxation. Free fatty acids (FFAs) are elevated in individuals with DIO and T2DM. Our laboratory has shown that when: (i) endothelial cells are incubated with saturated FFA palmitate; (ii) mice are infused with lard-oil; and/or (iii) when mice are fed with high-fat diet, protein phosphatase 2A (PP2A) binds directly with eNOS. When this occurs, the association among Akt-Hsp90-eNOS is disrupted, p-eNOS:eNOS is impaired, and endothelium-dependent dysfunction occurs. This is prevented using pharmacological and genetic approaches that limit production of FFA metabolite ceramide. It is unknown whether PP2A inhibition per se is protective. We hypothesized that arterial dysfunction in obese vs. lean mice is prevented by PP2A inhibition. Seven-week-old, male, C57B16 mice consumed standard (CON, n=20) or high-fat (HF, n=20) chow for 12-weeks. Subgroups (n=10) of CON and HF mice received IP injections of saline (vehicle; V) or Lixte Biotechnology 100 (LB1, 1 mg/kg/day) for the last 14-days. Preliminary experiments verified that LB1-treatment for 3 and 21 days decreases (p<0.05) arterial PP2A activity. HF mice gained weight and developed peripheral glucose intolerance vs. CON mice regardless of LB1 treatment. Endothelium-dependent vasorelaxation was impaired (p<0.05) in HF-V vs. CON-V mice, but dysfunction was less severe (p<0.05) in HF-LB1 mice. p-eNOS:eNOS was reduced (p<0.05) in arteries from HF-V vs. CON-V mice, but p-eNOS:eNOS was similar in arteries from HF-LB1 and CON-LB1 mice. Akt and Hsp90 co-immunoprecipitation with eNOS was impaired (p<0.05) in HF-V vs. HF-CON mice, but this was not observed in arteries from HF-LB1 and CON-LB1 mice. These findings suggest that PP2A activity suppression in vivo is sufficient to preserve endothelial function in obese mice.

Physiological and pathophysiological stimuli alter endothelial cell autophagy

January 01, 2014 12:00 AM
J David Symons, University of Utah Life Sciences Autophagy plays a central role in cellular quality control by destroying damaged or excess proteins, lipids, membranes, and organelles that accumulate in response to deviations from homeostasis. The existence and role of autophagy in endothelial cells (ECs) and blood vessels has not been established. Autophagy can be quantified by assessing the ratio of the membrane bound conjugate of microtubule-associated protein light chain 3 (LC3-II) to the cytosolic non-lipidated conjugate LC3-1 (LC3-II:LC3-I) or GAPDH (LC3-II:GAPDH) via immunoblotting. We sought to determine the extent to which a variety of cellular stressors induces autophagy in ECs and intact blood vessels. LC3-II:LC3-I or LC3-II:GAPDH was elevated (p<0.05) (i) 450±6% (n=4) in ECs incubated for 2 h in amino acid (AA)-deplete vs. AA-replete media; (ii) 47±3% (n=3) in arteries from fasted (14 h) vs. fasted / refed (1 h) mice; (iii) 40±2% (n=3) in arteries from mice that completed acute exercise vs. sedentary controls; (iv) 38±1% in arteries from exercise-trained vs. sedentary mice under basal conditions (n=2 per group); and was decreased (p<0.05) (v) 57±8% (n=4) in arteries from ~30 month-old (i.e., old) vs. ~6 month-old (i.e., young) mice. Further, indices of autophagy were elevated (p<0.05) 101±6% in ECs exposed to 3 h x 500 uM palmitate vs. vehicle (n=4), and 50±6% in arteries from obese vs. lean mice (n=4 per group). Thus, autophagy is altered in ECs and blood vessels in response to physiological (e.g., fasting, acute exercise, exercise training, aging) and pathophysiological (acute lipotoxicity, diet-induced obesity) stimuli. Ongoing research will determine the functional role of vascular autophagy in health and disease.

Concentrations of Trace Pharmaceuticals Found in Hobble Creek

January 01, 2014 12:00 AM
Janweb Lagazo, Brigham Young University Life Sciences The scientific community and the general public have long been interested in the effects of water pollution. Most studies on water pollution have focused solely on industrial pollution, but have failed to consider the potential impact of pharmaceuticals that unintentionally accumulate in aquatic ecosystems via wastewater treatment effluents. The purpose of this study is to advance our understanding on how these wastewater effluents affect aquatic ecosystems in Utah. We quantified the concentration of select pharmaceuticals in Hobble Creek using mass spectrometry. Then we sampled above the treatment plant, at the effluent outlet, and downstream of the effluent to determine pre-effluent and post-effluent drug concentrations. We are currently using this preliminary data to investigate how common endocrine disrupting, anti-inflammatory, analgesic, and anti-anxiety drugs may potentially affect the aquatic ecosystem of the endangered Chasmistes liorus, commonly known as June sucker.

Characterizing breast cancer cell lines using principal component analysis of high- frequency ultrasonic spectra

January 01, 2014 12:00 AM
Laurel Thompson, Utah Valley University Life Sciences Breast cancer is divided into subtypes which are defined by their proteomics, histology, and genetic expression profile. Current methods, therefore, are aimed at testing these, and include DNA microarrays, immunohistochemical staining, and proteomic analysis. These methods are effective classifiers, but are not easily transferable to real-time clinical applications, such as the determination of cancerous status during operation or when taking a biopsy. The determination of molecular subtype by other means would be a significant advancement in cancer detection and treatment. We have made some preliminary studies that suggest high-frequency ultrasound may be sensitive to variations among the cancer subtypes as manifest in cell cultures through their cytoskeletal protein structure, which has a distinct spectral signature. The object of this study was to explore the basis for this variation through a combination of experimental and theoretical analysis. We used first-principal modeling methods and compared the model spectra generated from these to spectra obtained in the cell culture lab. Variations in bulk modulus, cell position and size were modeled and combined with experimental spectra in principal component analysis (PCA), and the Euclidean distances between each principal component of the experimental were found as they relate to the theoretical principal components. A graphical method similar to heat maps used for gene expression profiling was then developed to display the relative distances (similarities) between spectra. The program was tested by comparing experimental spectra of three breast cancer cell lines to model spectra. The results indicate the properties and thus molecular subtypes of breast cancer cells could potentially be determined by comparing their measured spectra to model spectra using a feature classification program such as PCA and that these classifying features can be displayed in a convenient graphical representation according to their spectral similarities.

Physiological effects of habitat disturbance in the wandering gartersnake (Thamnophis elegans)

January 01, 2014 12:00 AM
Austin Spence, Utah State University Life Sciences This study investigated the physiological effects of localized habitat disturbances around two well-studied hibernacula of the wandering gartersnake Thamnophis elegans. After three years of monitoring snake morphology and physiology at several hibernacula, several disturbance events occurred, including log clearing, stream bank disturbance, and vegetation removal. Individuals from three populations, two with disturbed hibernacula and one control population with no disturbance, were collected during the spring emergence immediately following the disturbance. Blood samples were collected upon capture and following a uniform stressor to measure baseline and post-stress physiological conditions. The samples were analyzed using a radioimmunoassay to measure corticosterone levels and a bacterial killing assay to measure innate immunocompetence. Baseline and post-stress corticosterone levels were higher in both populations with disturbance events compared to the control population. The bacterial killing ability of the site with the most anthropogenic activity was lower than the control site, indicating immunocompromise. Data are currently being analyzed to assess differences within the same populations between years with and without disturbance events. Pre-disturbance data are a rare and useful commodity and allow us to facilitate a better understanding of the various effects of anthropogenic change on natural populations. This study was funded through the Undergraduate Research and Creative Opportunity Grant from Utah State University.

Three-Dimensional Modeling of Facial Nerve VII

January 01, 2014 12:00 AM
Dani Peterson, Brigham Young University Life Sciences Due to its long and complicated trajectory through the cranium, facial nerve VII (CN VII) can be damaged in surgeries, sometimes resulting in facial muscle paralysis. Surgical removal of acoustic neuromas and parotid tumors, in addition to surgical repair of the temporomandibular joint disorder are associated with a risk of damage to CN VII. In addition, insertion of auditory implants can damage the nerve, as can improper stimulation to the nerve after the implantation has occurred. We will create a three-dimensional (3D) model based off of data from dissection of the nerve in a human cadaver in order to give physicians a greater in vivo knowledge of the pathway of CN VII. We have dissected the lateral side of the right half of the head to the level of the parotid gland, identified the parotid plexus of CN VII, and followed its five branches. In addition, we are currently following the nerve through the internal auditory meatus on its pathway through the temporal bone. In preparation for the modeling MicroScribe technique described below, we have imaged the head using Magnetic Resonance Imaging (MRI) at BYU. These images will be used as a template for the nerve reconstruction model. After completing the dissection, we will track the nerve trajectory using a MicroScribe 3D Digitizer. The MicroScribe technique is used to create 3D computer models of any physical object. The user sets reference points and uses the stylus to trace data points of the object’s contours. Our final product will be a 3D spatial computer mapping of CNVII, as well as a mapping of the skull, parotid gland, and other landmarks to put the nerve model into context. We hypothesize that with our approach and MicroScribe technique, we will be successful in creating an accurate model of CN VII in the head.

High Intake of Soy and Selenium Reduces Prostate Cancer Risk: Does Timing of Intervention Matter?

January 01, 2014 12:00 AM
Lauren Archibald, Brigham Young University Life Sciences Increased intake of selenium (Se) and soy have both been shown to reduce risk for prostate cancer, especially if these dietary treatments are combined. The purpose of this project is to determine how the timing of Se supplementation of either a low- or high-soy diet affects prostate cancer risk. [C57BL/6 X FVB] F1 TRAMP (TRansgenic Adenocarcinoma of Mouse Prostate) male mice were fed stock diets low or high in soy. Half of the mice received Se supplementation (4.0 mg Se/kg BW as Se-methylselenocysteine) by gavage 5 d/wk in a 2 X 2 factorial design. Se supplementation began at conception, 6 weeks, 12 weeks, or 18 weeks of age. The mice were then sacrificed at different stages of maturation (4, 12, 18, and 24 weeks). Our results showed that, at 12 weeks of age, urogenital tract weights, a measure of prostate proliferation and tumor volume, were significantly reduced by Se supplementation (p<0.001) and by soy (p=0.044), independent of time of dietary intervention. Histological scores of prostate cancer progression also showed a protective effect of Se supplementation (p=0.030). At this writing, statistical analysis of data from mice sacrificed at 18 weeks is in process. Data derived from 18-week mice, combined with our previous findings from 12-week animals, will allow us to chart the progress of prostate cancer in this model. In addition, results will show how dietary Se and soy may alter disease progression and how the timing of dietary intervention may determine its effects.

Cultural, Economic, and Educational Factors Related to Diabetes Mellitus Type 2 in Tongans

January 01, 2014 12:00 AM
April McMurray, Brigham Young University Life Sciences Diabetes Mellitus Type 2 (DMT2) is a lifestyle-related disease where the body does not produce enough insulin or the cells are unreceptive to it, and it is now the most common form of diabetes. Individuals who do not control the disease can suffer serious complications such as limb amputation, damage to the eyes, kidneys, nerves, heart, and it can be very costly. This problem is particularly serious in Tonga; the prevalence is almost twice as high as that in the United States. The purpose of this research project was to determine to what extent the cultural, economic, and educational factors contribute to such high prevalence. In May I traveled to Tonga with the nursing students from Brigham Young University to conduct my research. I distributed surveys to patients and medical staff in the diabetes clinic in the Vaiola hospital in Nuku’alofa, Tonga. The surveys had questions related to their socioeconomic status, understanding and attitudes of diabetes, as well as patient management practices. While I was there, I also kept extensive field notes on observations related to my research, which provided supplemental information regarding the Tongan lifestyle that was difficult to gather from the surveys. Preliminary analysis indicates that there has been a very small, positive shift in understanding and attitudes towards DMT2, but economic- and culture-based habits still impede Tongans from managing the disease effectively. There were several limitations to this study: small sample numbers, lack of resources, some resistance from Tongan medical personnel, and particularly cultural barriers made it difficult to gather enough information to come to significant conclusions. However, the research does give insight concerning potential future studies and interventions to help the people of Tonga treat this disease.

Copper Resistant Phenotype in MDM35-deletion Saccharomyces cerevisiae

January 01, 2014 12:00 AM
Jacob Bassett, Utah Valley University Life Sciences Many discoveries regarding the complex interplay between biological pathways within a cell begin with attempts to link new observations to scrupulously studied cellular mechanisms. Our lab is studying the soluble inter-mitochondrial space protein mdm35, which has been observed to facilitate the function of ups1 & 2 proteins, as they in turn regulate the mitochondria’s phosphatidic acid metabolism. In addition to this phenotype, our lab has observed a copper resistance at 0.17% on YPD plate and 0.14% in liquid cultures of S. cerevisiae lacking the mdm35 protein, when compared to the Wild Type strain. Our investigation measures the levels of expression in the cup1 and ctr1 promoters in an attempt to link this observation to a potential mechanism contributing to this resistance.

The Genetic Architecture of Pelvic Reduction in Ninespine Sticklebacks

January 01, 2014 12:00 AM
Sara Fauver, University of Utah Life Sciences We know that novel genetic variants have driven evolution for millions of years and that natural selection favors phenotypes most suited for survival, leading to the enormous diversity of life we see today. However, what remains unclear, are the patterns of mutations that lead to large phenotypic changes. For example, do mutations in a single gene of large effect lead to morphological changes more often than numerous mutations in genes of smaller effect? Also, do these mutations occur more often in protein coding regions or regulatory regions of DNA? Finally, are the same genes or gene pathways used repeatedly across lineages when parallel phenotypes evolve?

A predictive analytic approach to improve patient handoffs: a retrospective study of biliary complications and acute cellular rejection episodes following liver transplantation

January 01, 2014 12:00 AM
Daniel Hall, Brigham Young University Life Sciences OBJECTIVE(S): Predictive analytics (PA) is increasingly being used in the delivery of healthcare. Whether PA can improve patient handoffs on a busy surgical service is unknown. This study aims to determine if predictive models for acute cellular rejection (ACR) episodes and biliary complications after orthotropic liver transplantation (OLT) can be built in order to improve patient care.

The adverse effects of ionic liquids on pathogenic biofilms

January 01, 2014 12:00 AM
Spencer Alexander, Dixie State University Life Sciences Antibiotic resistance has increased with each new developed medication, creating new problems as bacteria become more difficult to defeat. Some of these bacteria are resistant because they can excrete an extracellular polymeric substance known as a biofilm. The polysaccharide-based biofilm matrix allows the colony to communicate, absorb nutrients, and exchange genetic material giving it an advantage in possible resistance through plasmid exchange. At present, there are no effective antimicrobial agents that can safely treat and prevent resistant bacteria like ORSA. Biofilms have a negative impact ranging from human pathogenesis down to economic expenses. In order to break down established biofilms, we utilized newly developed organic salts known as ionic liquids. These novel liquids have been observed to prevent bacterial colonies and biofilm formation, possibly by introducing intermolecular interactions that disrupt the chemical bonding in biofilms. The morphology of the microbes was characterized and observed to determine the effect of the ionic liquids on biofilms. Inhibition studies were also performed to determine antimicrobial efficiency of the ionic liquids as a function of organic structures. These novel ionic liquids provide an unprecedented, effective and efficient method to combat resistant bacteria, which could have tremendous impacts in achieving sterile environments in medical and remote settings.

3D Mapping of Cardiac Nerves for Improved Cardiac Ablation Procedures in the Treatment of Cardiac Arrhythmia

January 01, 2014 12:00 AM
Adam Jorgensen, Brigham Young University Life Sciences Arrhythmia is a serious heart defect that effects 14 million people in the United States. It is characterized by irregular rhythm in the electrical impulses of the heart. Arrhythmia can cause sudden cardiac arrest and stroke. Recent developments in cardiac ablation have helped in the treatment of arrhythmia. Cardiac ablation works by scarring tissue in the heart, thus preventing abnormal electrical signals to travel through the myocardium. The three-dimensional map created in this project will improve the accuracy of cardiac ablation by offering a more dynamic view of the human heart and associated nerve branches. By properly articulating the intricate nerve branching of the heart, surgeons will be able to better target the nerves themselves when scarring heart tissue, thus allowing a less invasive procedure.

Genomic analysis of six Paenibacillus larvae bacteriophages

January 01, 2014 12:00 AM
Bryan D Merrill, Brigham Young University Life Sciences The spore-forming bacteria Paenibacillus larvae causes American Foulbrood (AFB), a highly contagious disease that is lethal in honey bee larvae. P. larvae is the most serious pathogen affecting honey bees. Its increasing antibiotic resistance has led to more research in characterizing bacteriophages which infect and destroy P. larvae. Of the 13 P. larvae phages that have been described in publications, six have been fully sequenced and are currently available for genomic analysis. To understand how P. larvae phages are related to each other and to other phages, the computer program Phamerator was used to analyze more than 100 phage genomes and group phage genes into “phams” based on similarity. Through analysis of grouped phage genes (structural proteins, terminases, recombinases, etc.) we can better understand in vivo replication strategies and evolutionary history of these P. larvae phages.

Ethanol inhibits gaba neurons in the ventral tegmental area and dopamine release in the nucleus accumbens via presynaptic alpha-6 nicotinic receptors on gaba terminals

January 01, 2014 12:00 AM
Taylor Woodward, Brigham Young University Life Sciences The prevailing view is that enhancement of dopamine (DA) transmission in the mesocorticolimbic system, consisting of DA neurons in the ventral tegmental area (VTA) that innervate the nucleus accumbens (NAc), underlies the rewarding properties of alcohol and nicotine (NIC). Dopamine neurotransmission is regulated by inhibitory VTA GABA neurons. We have shown previously that VTA GABA neurons are excited by low-dose ethanol, but inhibited by moderate to high-dose ethanol. The aim of this study was to evaluate the role of []6 nicotinic cholinergic receptors (nAChRs) in ethanol effects on VTA GABA neurons as well as DA release in the NAc. In electrophysiology studies, superfusion of ethanol enhanced the frequency, but not amplitude, of mIPSCs recorded in acutely dissociated VTA GABA neurons from GAD GFP mice. The []6 nAChR antagonist []-conotoxin P1A did not affect mIPSCs, but prevented the ethanol (30 mM)-induced increase in mIPSC frequency. While microdialysis studies show that ethanol enhances DA release in the NAc, we and others have found that ethanol decreases DA release at terminals using fast scan cyclic voltammetry (FSCV). We have reported that ethanol inhibition of DA release at terminals in the NAc of ethanol-naïve animals is mediated by GABA. Using FSCV in the slice preparation, ethanol inhibited DA release in the NAc. Superfusion of the []6 nAChR antagonist []-conotoxin MII did not affect DA release, but prevented ethanol inhibition of DA release. Taken together, these findings suggest that ethanol enhancement of GABA inhibition of VTA GABA neurons is mediated by []6 nAChRs located on GABA terminals to other VTA neurons, affecting DA release in the NAc. Results from this study could provide a pharmacologic rationale for considering drugs that act selectively on nAChRs as therapeutic agents for the treatment of alcohol dependence and alcohol and NIC co-dependence.

Biodegradation of Hydrocarbons by Great Salt Lake Microorganisms

January 01, 2014 12:00 AM
Camrin Rivera, Westminster College Life Sciences The Great Salt Lake (GSL) of Utah is home to organisms that are able to survive and reproduce in waters that can have a salt concentration of over 30%. Oil Jetty is located on the saltier north arm of the GSL and is the location of a natural hydrocarbon seep that flows into the lake. Previous work showed that organisms capable of degrading hydrocarbons can be cultured from this area (Ward & Brcok, 1978). It has also been shown that the salt concentration has an inverse relationship with these organisms’ ability to degrade hydrocarbons (Ward & Brock, 1978). This previous study gives insight of the hydrocarbon degrading capabilities of microorganisms in the GSL; however, the identification and characterization of individual hydrocarbon-degrading microorganisms has yet to be completed. The purpose of this study is to identify GSL microorganisms capable of degrading hydrocarbons under high salinities by sequencing of the 16s rRNA gene. Future studies will include the characterization of these microorganisms in order to find isolates whose hydrocarbon degrading abilities could be utilized for bioremediation and biotechnologies.

The effect of anxiolytic mediation administration on interval timing distracters

January 01, 2014 12:00 AM
Chance Christensen, Utah State University Life Sciences Affective disorders such as depression, phobias, schizophrenia, and post-traumatic stress disorder impair the ability to time in the seconds-to-minutes range, i.e., interval timing. According to the Relative Time-Sharing (RTS) model, presentation of task-irrelevant distracters during a timing task results in a delay in responding suggesting a failure to maintain subjective time in working memory, possibly due to attentional and working memory resources being diverted away from timing. Given that some anxiolytic medications have beneficial effects on attention and working memory, e.g., decreasing emotional response to negative events, we hypothesized that they would result in a decreased effect of distracters on the timekeeping abilities. We investigated the effect of acute administration of anxiolytic medication when anxiety-inducing task-irrelevant distracters were presented during an interval timing task, using methods similar to Matthews et. al. (2012) Frontiers in Integrative Neuroscience 6(111): 1-12. Results are discussed in relation to the brain circuits involved in RTS of resources, and the pharmacological management of affective disorders.

Frog Behavior May Protect Against Potentially Lethal Chytriodiomycosis

January 01, 2014 12:00 AM
Hailey Shepherd, Dixie State University Life Sciences Previous studies of canyon tree frogs (Hyla arenicolor) in Zion National Park have shown that some populations test positive for a dangerous fungus in the Chytridiomycosis family. This fungus has been linked to large population losses worldwide in many keystone amphibian species, but appears to have no effect on populations of H. arenicolor. Since Chytrid fungal growth is inhibited at high temperatures, we hypothesized the frogs are able to rid themselves of the fungus because they bask in the sun. During the summer of 2013 we swabbed frogs in multiple slot canyons to test for the presence of the fungus. We also recorded skin temperatures of the frogs we swabbed. Skin temperatures were as high as 38 C°, which is above the previously established lethal threshold of 28 C° for Chytridiomycosis. Our data support the idea that these frogs may be able to rid themselves of infection by allowing skin temperatures to raise enough to become intolerable for this fungus. This is the first known evidence of wild amphibian populations showing a behavior that may clear the infection. If further research supports these findings, it could lead to more effective allocation of limited conservation resources.

Do Canyon Tree Frogs in Zion National Park Possess a Mechanism to Defend Against Chytrid?

January 01, 2014 12:00 AM
Chelsea Moody, Dixie State University Life Sciences A relatively new pathogen, chytrid fungus, has been a major cause of decline in amphibians worldwide. This pathogen has been found on Canyon Tree Frogs in Zion National Park. Earlier data suggested that chytrid did not affect populations of Canyon Tree Frogs in Zion National Park. We predicted that since the populations weren’t impacted by the presence of the fungus, there must exist a mechanism by which the frogs rid themselves of the infective agent. To test this prediction, we captured and swabbed ten frogs in each of nine canyons in Zion National Park during the summer of 2013. Swabs were sent to the San Diego Zoo to be analyzed for the presence of chytrid DNA. Chytrid infection rates and population sizes were compared with data from previous years. As expected, the data showed that two of the three infected canyons experienced declines in the percentage of frogs testing positive for the fungus. Thus, these frogs must possess a mechanism to survive this pathogen, whereas most amphibians do not. Our results may prove helpful to other biologists seeking to understand how amphibians can survive this pathogen.

Utah Valley University/Huntsman Cancer Institute Collaborative Breast Cancer Study: High-Frequency Ultrasound for Margin Assessments

January 01, 2014 12:00 AM
J Andrew Chappell, Utah Valley University Life Sciences In a joint effort with Huntsman Cancer Institute at the University of Utah, students from Utah Valley University are using high-frequency (HF) ultrasound to test the pathology of surgical margins from breast cancer conservation surgery. The method, developed by Dr. Timothy E. Doyle, provided significant results in a NIH-funded 2010 feasibility study. The results of the study indicated that peak density, the number of peaks and valleys in the HF ultrasonic spectrum, correlates to breast tissue pathology. This technology would allow surgeons to test – in the operating room – whether a surgical margin was clean or if cancer still remained in the margin. This advancement would decrease the amount of return surgical visits a patient must undergo, reduce costs for patients and hospitals, reduce breast cancer recurrence rates, and ultimately increase the survival rate of patients with breast cancer. During the ultrasonic testing, the students work in a team of four in a room outside of the surgical suite. Specimens are brought in by the surgeons’ team and tested immediately following resection. The margins are approximately 3x20x20 mm in size, and are oriented using a small staple inserted by the surgeon in one corner and a stitch on one side. The margin is tested at specific locations depending on the size of the margin and then sent to pathology for analyses. Pathological results and HF ultrasound results will be compared for correlation at the end of the study, which is expected to last about one year. The study will include approximately 80 patients, 360 tissue samples, 1400 tested locations, and 4,300 data points. The goal of the study is to evaluate the accuracy of the method in determining margin pathology. If successful, the method will be moved into clinical trial.

Standing on the shoulders of Woodrats: Adaptive Evolution in Desert Iguanas

January 01, 2014 12:00 AM
Albert Pope, Utah Valley University Life Sciences Few animals are capable of using the creosote plant, Larrea tridentate, as food because of a high level of toxic secondary compounds. Some exceptions to this rule are Neotoma lepida and Dipsosaurus dorsalis which are both capable of sustaining themselves on this desert bush. In 2013, Magnanou et al helped identify heightened transcription of genes correlated with digestion of creosote in N. lepida. Building upon their findings, we explore whether the genes for digesting creosote are under an elevated evolutionary rate for D. dorsalis. We have obtained transcriptomes from whole blood of four Iguaninae species: Ctenosaura pectinata, D. dorsalis, Sauromalus ater, Cyclura lewisi yielding an average of 4 GB of DNA sequence data (~51,000,000 fragments) each. Using Velvet in Sequencher we assembled these data, recovering greater than 6000 unique RNA transcripts per transcriptome. We search through the contigs to identify genes in Iguaninae transcriptomes that are homologous to those showing differential expression in Lepida. Using BLAST, we retrieve homologous genes from the public NCBI database of Anolis carolinensis and other reptiles. Lastly we construct phylogenetic trees of each gene and investigate the rate of change along each reptile lineage.

The effect of residue 21 on drug resistance of the A/M2 proton channel of the influenza virus

January 01, 2014 12:00 AM
Cameron Haas, Brigham Young University Life Sciences The influenza A virus contains a proton-selective ion channel, A/M2, through which acidification of the cell is induced. A/M2 is a homotetramer (consists of four identical helices) consisting of 97 residues and activated by low pH levels. Mutations in the amino acid sequences may induce resistance to channel inhibiting drugs. It is believed that residues 26, 27, 30, 31, and 34 are the major contributors of drug resistance, but other nearby residues may prove important as well. The A/California/04/2009 version of the influenza virus is sensitive to the drug AK-11, while its M2 channel is not. The A/Udorn/307/1972 with the S31N mutation M2 channel has been shown to have reduced sensitivity to amantadine compared to its wild type. While both contain a D (aspartic acid) at residue 21, A/Puerto Rico/8/1934 has a mutation from D to G (glycine). The A/Puerto Rico/8/1934 virus A/M2 contains mutations S31N and V27T and has shown sensitivity to the AK-11 drug, but the mechanism of inhibition of the A/M2 channel has not been verified. In these experiments we will be identifying sensitivity to AK11 of A/Udorn/307/1972 with the S31N mutation as well as inducing double mutations with S31N at residues 27 and 21 in the A/M2 from the virus and measure sensitivity by electrophysiological recordings in oocytes of Xenopus laevis. By doing so we may identify the role of these residues in drug resistance and the effects of these amino acid mutations, while verifying the A/M2 channel as the mechanism of acidification inhibition and drug sensitivity. We hypothesize that either D21G, V27T or both mutations causes drug sensitivity in M2 S31N, explaining the sensitivity of A/Puerto Rico/8/1934 to AK-11.

Physiologically Relevant Oxy-Radical Formation of Neuromelanin by Photostimulation: Effects of Iron and Calcium

January 01, 2014 12:00 AM
Whitney Badal, Brigham Young University Life Sciences Light therapy has been utilized to treat alcoholism and opiate-dependent rats as well as ameliorating symptoms of Parkinson’s disease. As both addiction and Parkinson’s Disease (PD) are often associated with decreased dopamine transmission in the striatum, it is likely that light therapy is able to increase dopamine release. A similar technique called near-infrared light treatment has also been shown to be effective in mice in restoring the function of dopamine cells in the substantia nigra pars compacta (an area associated with PD). A possible explanation for this is that light catalyzes the formation of neuromelanin. It is likely that neuromelanin is a neuroprotective cellular agent that is able to reduce damage caused by reactive oxygen species. Using UV-IR spectrophotometry, we show that in the presence of photostimulation, dopamine (0.3-30 uM) oxidizes and polymerizes into neuromelanin. Since hydrogen peroxide catalyzes this formation of neuromelanin, it is likely that this is a radical-polymerization reaction, suggesting that neuromelanin may be a radical scavenger. Additionally, the presence of the selective iron chelator desferrioxamine, the calcium chelator EGTA, or lack of calcium in the artificial cerebral spinal fluid markedly reduces the formation of neuromelanin. Using fast scan cyclic voltammetry in mouse horizontal and/or coronal brain slices, dopamine release in the nucleus accumbens core was enhanced by light exposure, in particular UV and short-wavelength visible light. These findings indicate that both iron and calcium are necessary for melanization in neural tissues and that light-induced melanization enhances dopamine release, suggesting a physiological role for melanization in synaptic transmission.

Intrauterine Growth Restriction Alters Estrogen Serum Levels and Signaling in Rat Adipose Tissue in a Sex Dependent Manner

January 01, 2014 12:00 AM
Danielle Holliday, University of Utah Life Sciences Intrauterine growth restriction (IUGR) induces visceral obesity in adulthood, specifically among males. In male rat offspring, IUGR increases visceral adipose tissue (VAT) over subcutaneous adipose tissue (SAT). VAT and SAT functions are regulated by estrogen signaling, and suppressed estrogen signaling contributes to obesity development. Estrogen signaling is composed of estradiol and estrogen receptor alpha (ERα) and beta (ERβ). Estrogen receptors regulate the expression of several obesity related genes, such as lipoprotein lipase (LPL). However, the effects of IUGR on estrogen serum levels and signaling in the adipose tissue are unknown.

Using breast cancer subtypes as a model for detecting cytoskeletal dysfunction in Alzheimer’s disease

January 01, 2014 12:00 AM
Ashley Calder, Utah Valley University Life Sciences An estimated 50-80% of dementia patients suffer from Alzheimer’s disease (AD). Currently there is no test to diagnose AD except post mortem. Recent papers indicate that AD affects the cytoskeleton and cellular structure through mutations that alter structural proteins, and that dysfunction of the cytoskeleton may play a pivotal role in AD and other neurodegenerative diseases. In particular, specific genetic components of AD affect microtubule and actin filaments that control endocytosis, exocytosis, the shape and size of the neuron, vesicular transport along neurites (dendrites and axons), and fibril formation. The goal of our research is to determine if breast cancer molecular subtypes can be used as a model for AD. Breast cancer is comprised of five molecular subtypes that contain different molecular structures depending on mutations specific to each subtype and the proteins being synthesized. These mutations and their expressed proteins change the characteristics of the cytoskeleton and resulting properties of the cell such as size, shape and stiffness. Both computer simulation and experiment have demonstrated that high-frequency ultrasound in the 10-100 MHz range is sensitive to these properties. For this study, ultrasonic tests were conducted on monolayer cell cultures of breast cancer cell lines of different subtypes. Ultrasonic waveforms were analyzed by transforming them into their corresponding spectra. The positions, widths, and shapes of the spectral peaks were compared and correlated to model results using a pattern recognition algorithm. Preliminary results indicate that cell stiffness and size can be determined from the measurements. Further analyses of these and additional data will determine if ultrasound is sufficiently sensitive to differentiate between the molecular subtypes of breast cancer. Results from these analyses, future studies with neuron cell cultures, and application of the results to the development of a minimally invasive, in vivo method for accurately diagnosing AD will be discussed.

3D printing from MRI data of stroke and Alzheimer’s disease subjects: An educational model of neurologic disease

January 01, 2014 12:00 AM
Brett Gardiner, Brigham Young University Life Sciences Normal human anatomy used in the classroom is not reflective of variations confronted in pathology subjects. Current commercialized models are not products of real data, rather representations of it. While learning complicated medical anatomy, students take an enormous stride from the anatomy lab to situational surgical settings. 3D models can bridge this gap in medical education without patient risk, particularly for the brain where surface regions have strong associations to specific physiological activity. Subject specific models are especially advantageous for comprehending real surface morphology of neurologic diseases. Using rapid prototype technology, we have developed an accessible process to produce physical 3D models from specific MRI data of stroke and Alzheimer’s subjects. The neuroanatomical abnormalities modeled from real data by our 3D printouts will educate students on the anatomical variations encountered in an authentic clinical scenario of neuropathology. Our project consists of three phases: (1) image acquisition, (2) post-processing imaging data with segmentation, and (3) 3D printing. By delineating cortical regions we are providing a unique multidimensional facet of clinically accurate data not before available to the classroom. This powerful and versatile technique can allow students and professionals to visualize the inherently complicated structures as seen in clinical neuropathology. From students in the classroom, lawyers in the courtroom or preoperative surgical explanations, these customizable models will resemble real anatomical information. Through rapid prototyping of specific subject data, unique variations in pathology can be reviewed outside of the clinical setting. Beyond its potential use by teachers, lawyers and doctors can benefit from a 3D production to enhance their explanations of anatomical variations from specific pathological subject data.

Life at the Extremes: Finding Earthly analogs for potential life on Mars

January 01, 2014 12:00 AM
Alysa Fratto, Westminster College Life Sciences Although the idea of life on other planets is mused over by many, the scientific study of the potential for extraterrestrial life did not begin until the mid-1950s (SETI, 2013). Since then, many technological advancements have been made that make the study of life on other planets simpler, however it is inherently difficult to study the potential for life in an environment that one cannot access. To address this issue, scientists look on Earth for extreme environments that mimic those found elsewhere in the universe.

Rapid adaptation of d2 dopamine receptor responses following acute ethanol

January 01, 2014 12:00 AM
Joseph Linzey, Brigham Young University Life Sciences Dopamine (DA) D2 receptor expression parallels DA levels in the brain and these autoreceptors on DA neurons been shown to be modulated by long-term ethanol exposure. We have previously demonstrated that VTA GABA neurons also express D2 receptors, and that DA and D2 receptor agonists markedly enhance the excitability of VTA GABA neurons, opposite to their well-known inhibition of DA neurons. Most importantly, D2 receptor antagonists block ethanol inhibition of VTA GABA neurons and D2 receptor expression in VTA GABA neurons down-regulates with chronic ethanol. This study evaluates short-term D2 receptor adaptation in VTA GABA neurons and in DA release in the nucleus accumbens (NAc) by acute ethanol. In electrophysiology studies in anesthetized rats, periodic iontophoretic application of DA, or the D2 agonist quinpirole, markedly enhanced VTA GABA neuron firing rate, which was initially inhibited by ethanol, but resulted in latent and marked rebound excitation 30-60 min following injection. Using fast scan cyclic voltammetry (FSCV), we evoked DA signals in the core of the NAc by electrical stimulation of the medial forebrain bundle at the level of the lateral hypothalamus (60 Hz, 24 pulses). Intraperitoneal (IP) administration of ethanol (1.0-3.0 g/kg) dose-dependently decreased the amplitude of the MFB-evoked NAc DA signal. IP administration of the D2 antagonist eticlopride (1 mg/kg) markedly increased (250%) the amplitude of the evoked DA signal. When ethanol was administered after eticlopride it increased the amplitude of the DA signal an additional 42%. These findings suggest that ethanol induced decreases in evoked DA release may be due to autoreceptor feedback. Work is in progress to evaluate the short-term expression of D2 receptors in VTA GABA neurons following acute ethanol and to evaluate the effects of ethanol-induced short and long-term adaptations in VTA GABA neuron D2 expression in mediating ethanol effects on DA release in the NAc.