Skip to main content
Utah's Foremost Platform for Undergraduate Research Presentation
2014 Abstracts

General Approach for Engineering Small-Molecule-Binding DNA Split Aptamers

Alexandra Kent, University of Utah

Physical Sciences

Prescription drug overdose and abuse is a leading cause of death in the United States. It is a serious issue and has become increasingly problematic as opioids are being prescribed at a higher frequency. For this reason, fast, accurate detection of small drug molecules is crucial. The current standard for use in clinical drug detection is an enzyme-linked immunosorbent assay (ELISA) that uses a series of antibodies to bind to the target drug and enable quantification via a colorimetric output. However, the antibodies used in an ELISA often cannot distinguish between similar molecules. Aptamers are short sequences of DNA that have emerged as a promising alternative to antibodies, as they are generated in vitro, where negative selections can be used to increase target selectivity. These aptamers can be cleaved to make split aptamers that only assemble in the presence of the target small molecule. One inherent problem of this system is the need for split aptamers that are selective for their small molecule targets. While there are many known aptamers, there are only a few known split aptamers that bind small molecules. Separating aptamers with a privileged, three-way-junction structure provides a reliable method to generate new split aptamers.