Skip to main content
Utah's Foremost Platform for Undergraduate Research Presentation

Physical Sciences

Pursuit of Methods for Antibiotic Synthesis: The Synthesis and Formal [2+2] Cycloaddition Reactions of 1-Phenylprop-2-en-1-one

January 01, 2022 12:00 AM
Presenter: Madison Fisher, College of Science and Engineering, Physical Science

Engineering a microbial fuel cell to reduce methane production in waste water

January 01, 2022 12:00 AM
Presenter: Jessica Hertig, College of Sciences, Physical Science

Bioconjugation of Rhodamine-B and C-Phycocyanin from Spirulina Sp.

January 01, 2022 12:00 AM
Presenter: Tyler Holmes, College of Science, Chemistry

Phylogenetic Relationships of the Flat-headed Mayflies (Ephemeroptera)

January 01, 2022 12:00 AM
Presenter: Taylor Murphy, College of Science, Biology

TELSAM-target protein fusions can form diffraction-quality crystals without direct inter-polymer contacts

January 01, 2022 12:00 AM
Presenter: Braydan Bezzant, Brigham Young University, Chemistry and Biochemistry

Laser Mediated Photochemistry: Exploring the Isomerization and Decaying Behavior of Dipyrroles

January 01, 2022 12:00 AM
Presenter: Taime Clark, College of Science and Engineering, Physical Science

The Effects of Pterostilbene on the Oxidant Status of Red Blood Cells in Hyperglycemic Conditions

January 01, 2022 12:00 AM
Presenter: Hana Hanks, College of Physical Sciences, Chemistry

Elucidating the Molecular Mechanism of Action of the Microsclerodermins

January 01, 2022 12:00 AM
Presenter: Billy Nguyen, College of Science, Chemistry

Raman Spectroscopic Analysis

January 01, 2022 12:00 AM
Presenter: Bianca Durrant, College of Sciences, Physics

The Effect of Roughness on Blazed Gratings in the EUV

January 01, 2022 12:00 AM
Presenter: Ethan Edwards, College of Physical and Mathematical Sciences, Physics and Astronomy

Preparation of Monoalkyldiphenylphosphonate by use of Grignard Reagents and Lewis Acids from Triphenyl Phosphate.

January 01, 2022 12:00 AM
Presenter: Sydney Rowley, College of Physical Science, Chemistry

Thermal Imaging of Groundwater Sources into Utah Lake, UT, USA

January 01, 2022 12:00 AM
Presenter: Allison Smith, College of Science, Earth Science

Determination of the Relationship Between Hypertension and Endogenous Ouabain Placental Concentration in Preeclampsia

January 01, 2022 12:00 AM
Presenters: Samantha Tilley, College of Science, Chemistry

Measuring Aluminum Fluoride Optical Constants in the EUV

January 01, 2022 12:00 AM
Presenter: Devin Lewis, College of Physical and Mathematical Sciences, Physics and Astronomy

Deletion of Nr4a nuclear receptors on β-cells in hyperlipidemia

November 16, 2020 10:51 PM
Weston Elison, Brigham Young University

Impact of Micro- and Nano-Structured Surfaces on Condensation Heat Transfer Effectiveness

November 03, 2020 01:24 PM
Jacob Butterfield, Brigham Young University

Osseointegration on a Carbon-Infiltrated Carbon Nanotube Coated Titanium Surface

January 01, 2018 12:00 AM
Jacquelyn Monroe; Brian Jensen; Laura Bridgewater; Natalie Kwon, Brigham Young University

Synthesis and Characterization of Low Toxicity Extraction Solvents

January 01, 2018 12:00 AM
Gift Ifijeh, Dixie State University

Nanoparticle Synthesis with Microfluidic Devices

January 01, 2018 12:00 AM
Kyler Radmall, Southern Utah University

Sources and Composition of Atmospheric Particulate Matter in the Salt Lake Valley

January 01, 2018 12:00 AM
Andrew Piskadlo; Adele Reynolds; Anna Robert; Gaurav Pandey, Westminster College

Uncertainty in Optical Particulate Counting Sensors

January 01, 2018 12:00 AM
Jared Blanchard, Brigham Young University

Effects of fire on aquatic ecosystems

January 01, 2018 12:00 AM
Lauren Nickell, Southern Utah University

MultiCRAFTI: Overcoming the Kinetic Energy Limitation to Measure the Cross Section of High-Mass Ions

January 01, 2018 12:00 AM
Brigham Pope; Daniel Joaquin; Jacob Hickey, Brigham Young University

Design of Martian Recurrent Slope Lineae Analogs to Study a Potential Environmental Niche for Life

January 01, 2018 12:00 AM
Jonathan Shumway; Scott George, Brigham Young University

Resistivity of Nickel Thin Films

January 01, 2018 12:00 AM
Michael Maynard; Alex Mitchell, Dixie State University

Grain Boundaries and Diffusivity

January 01, 2018 12:00 AM
Katie Varela, Brigham Young University

Effect of Overfishing: Analysis and Model

January 01, 2018 12:00 AM
Jace Howell, Dixie State University

Blu-ray Thermal Scanning Microscope

January 01, 2018 12:00 AM
Ryker Haddock, Brigham Young University

Public Understanding, Opinions, and Questions about Hot Topics in Science

January 01, 2018 12:00 AM
Alexandria DeGrauw, University of Utah

Using Exoplanet Transits to Calibrate the Great Basin Observatory

January 01, 2018 12:00 AM
Katherine Wilcox, Southern Utah University

Unexpected Copper Nanoparticle Synthesis from Bulk Copper Metal

January 01, 2018 12:00 AM
Mikaila Hunt, Southern Utah University

A Comparative Study on the Uptake of Nutrients and Trace Metals of Two Plant Subspecies (P.australis and P.americanus) in Utah Lake

January 01, 2015 12:00 AM
Ashley Ostraff, Utah Valley University Physical Sciences Utah Lake has a long history of being impacted by anthropogenic activities like, mining, agriculture, and surrounding industry. All of these activities have contributed to the runoff that feeds the lake, increasing the likelihood that this area contains high levels of trace metals, nitrogen, andphosphorus. Utah Lake contains two subspecies of phragmites, a wetland reed, one native (P. americanus) and one non-native (P. australis). P. australis is replacing the native species at an alarming rate. P. australis is known to have a deeper root system than the native subspecies, because of this we suspect that this allow access to a less competitive soil level giving this subspecies greater opportunity for nutrient and trace metal uptake. By comparing the root zone soils of both subspecies we hope to gather results that support this hypothesis. Examination of the roots will also showthe potential influence the soil conditions have on their growth and development. This study will compare nutrient and trace metal uptake of each subspecies to determine impact. Other factors that will be assessed include plant physiology, carbon to nitrogen ratio (C:N), bioconcentration factor (BCF) and total trace metal content in tissues of both species. Samples of P. americanus and P. australis will be collected at 9 locations in Utah Lake. Soil samples at the root zone of each plant will also be evaluated. Each sampl e will be digested in the Microwave Accelerated Reaction System and analyzed in the Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES) for C, N, P, K, Ag, Al, As, Ca, Cd, Cr, Cu, Fe, Hg, K, Mn, Na, Ni, P, Pb, Ti, and Zn. Results from this study will contribute valuable data to future efforts being used to preserve the biodiversity of the plants and animals that live in and around Utah Lake. The end goal of this student project is to be submitted to peer-reviewed scientific journals for publication and to be presented at academic and scientific conferences.

Mobility and Distribution of Trace Element Pollution in Sediments of the Utah Lake Outlet

January 01, 2015 12:00 AM
Henintsoa Rakotoarisaona, Utah Valley University Physical Sciences The Jordan River is the only outlet of Utah Lake. Historically, this area has been impacted by urbanization, long term mining operations, industrial and agricultural activities resulting in potentially high levels of trace metal pollutants at the headwaters of the Jordan River. Since trace metals are known to be toxic at elevated levels, it is important to evaluate their concentration, distribution and mobility in this sensitive area in order to determine risk to wildlife, humans and downstream users of the Jordan River. Three core samples from 0 cm to 95 cm in depth were collected at the east (industrialized area), west (newly developed area) and north (an island barrier) sides of the outlet of Utah Lake. Each sample was digested in triplicates in the Microwave Accelerated Reaction System (MARS) using US Environmental Protection Agency Method 3052 and analyzed in the Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES) for As, Cd, Cr, Mn, Pb, Cu, Zn, Co, and Ni. A multivariate analysis of variance (MANOVA) was used to analyze the data, with a boneferroni adjustment made for multiple comparisons. The results indicated that the East and North sediments of the Jordan River were significantly (P < 0.5) more heavily impacted by trace metal pollutants than the West side, with the North area accumulating higher levels of the majority of the trace metals or metalloid evaluated. Enrichment of Co, Cr, Pb and Zn was observed on the East sediment at concentrations reaching 10,821, 4.07, 13.7, 12.7, 119.4 mg kg-1, respectively. The most substantial elevation in the concentration of trace metals occurred with Cu in the North section of the lake, increasing from 349 mg kg-1 at 0-15 cm to 1383 mg kg-1 cm depth, showing high mobility, followed by Zn which increased from 46.7 mg kg-1 at 0-15 cm to 592 mg kg-1 30-45 cm depths. The enrichment of these trace metals in the East and North sediments at the outlet of Utah Lake pose a health risk to animals and humans who use these areas for recreational or agricultural purposes.

Correlation of Force and Peak Density during High-Frequency Ultrasound T esting: A Reliability Study

January 01, 2015 12:00 AM
Benjamin Finch, Utah Valley University Physical Sciences The Breast Cancer Research Laboratory at Utah Valley University has been using high-frequency ultrasound to test the pathology of surgical margins from breast cancer conservation surgery. Their studies have shown that high-frequency ultrasound may be sensitive to a range of breast pathologies. The ultrasonic parameter that has been shown to be the most sensitive to pathology is the number of peaks (peak density) in the frequency spectra from the captured waveforms. During testing, the ultrasonic transducers apply an amount of force to the tissues that can vary depending on the researcher. The central question of this study was to determine the effect that the applied force has on the final peak density reading, and therefore the reliability of the results. In order to determine the correlation of force and peak density, an experiment was designed to measure the force applied to tissue by the ultrasonic transducer during testing and to simultaneously measure the applied force while collecting ultrasonic waveforms. An Arduino Uno R3 instrument was obtained as well as an Interlink Electronics FSR 406 force sensor pad. The Arduino was programmed to read the voltage from the FSR sensor and use that information to provide force (N) and pressure (N/cm2) data from the stage. Peak density readings from bovine mammary tissue (very similar to human breast tissue) were acquired using varying amounts of force. The results obtained exhibited significant changes in peak density with applied force. The results showed that if the applied force is under 1.18N, the peak density will fluctuate significantly and will therefore give inconsistent results. However, if the force applied is greater than 1.18N, the peak densities will maintain a relatively consistent form. In conclusion, if the force applied during testing is above 1.18N, the waveforms captured from high-frequency ultrasound testing on breast cancer tissues will provide consistent and reliable results, thus improving the quality of the data and accuracy of diagnosis.

Patterning Supported Lipid Bilayers with Magnetic Tweezers

January 01, 2015 12:00 AM
Madeline Parson, Travis Bulloch, and Tyler Argyle, Southern Utah University Physical Sciences Lipid bilayers have many important purposes in living cells. A lipid bilayer forms a barrier which separates the fluid inside the cell from the fluid surrounding the cell. The arrangement of components within cell membranes can be extremely important, particularly in cell communications. For example, when our immune system attacks certain pathogens, it recognizes them by specific proteins in the inner and outer regions. This can be thought of as forming a “bull’s-eye” shape. The ability to generate such patterns in bilayers might see applications in many areas of biology. Our goal is to take an initially un-patterned supported lipid bilayer (model cell membrane) and use magnetic tweezers as a delivery system to generate patterns. We hope to show pattern formation using fluorescent-labeled lipids within our bilayer. In the past, we have used streptavidin and biotinylated lipids with Oregon Green. Currently, we are pursuing a fluorescein/anti-fluorescein system that has been yielding much more promising results. We are currently using a fluorescent microscope to confirm that patterns are forming within the bilayer.

Spatially Understanding Utah’s Water Resources: A Story Told through Maps

January 01, 2015 12:00 AM
Tim Beach, Utah State University Physical Sciences Successful management of the arid West requires a basic knowledge of available water resources, withdrawals, and existing management efforts. Utah, the second driest state in the country, is continuing its efforts to restore impaired water systems and teach the next generation to conserve water. Because of a fast-growing population, the diversity of Utah’s landscape, and strict regulations that govern water throughout the state, understanding the region’s current water condition can be difficult. Historically, the majority of this information has been stored in databases, represented by only numbers and statistics. In an effort to better conceptualize this data and increase the spatial understanding of Utah’s water, a set of maps have been produced. These maps were created using ESRI’s ArcMap software and Adobe Illustrator. Included are major lakes and rivers, average annual precipitation, average annual streamflow, total urban withdrawals per county, total agricultural withdrawals per county, and water management. Viewing visual representations of this information in multiple maps can aid in creating spatial inferences, and raise additional questions regarding aquatic restoration and management throughout the state. This set of maps can also be used to supplement physical science education at all school levels. Future work includes distributing these maps as posters to schools and water managers, as well making it a resource for teachers via websites and fact sheets.

Chernobyl and Fukushima

January 01, 2015 12:00 AM
Valerie Jacobson, Weber State University Physical Sciences This study will compare and contrast the differences between nuclear accidents in Chernobyl and Fukushima. The environmental impacts of the “fall-out” across the two differing landscapes and the displacement of the populations due to radiation contamination, e.g., soil contamination, will be analyzed. Research on health issues, such as the increased numbers of thyroid cancer cases in Ukraine and Belarus in those who were children at the time of the disaster in 1986, will also be reviewed and compared to current health issues in Fukushima. Certain weather patterns distributed the radioactive materials over specific geographic areas that later came to be known as “hot-spots.” The study will evaluate the evacuations handled by the respective governments and the “exclusion zone” measures put in place by each. While the nuclear disasters at Chernobyl and Fukushima have been compared as similar in disaster level, research and data collection of the fallout zones, or hot spots, reveal that the two disasters are not of an equal level. Factors such as air temperature, political and social responses all contributed to the disparity in levels of the two disasters.

A Plan for Complete Recycling of Stormwater on the Utah Valley University Main Campus, Orem, Utah

January 01, 2015 12:00 AM
Paul Robertson, Utah Valley University Physical Sciences Evaluation of Utah Valley University’s stormwater plan reveals a simple system meant to collect stormwater into the city storm drains as quickly as possible. It is, however, vastly underdeveloped and many unspectacular summer and springtime storms have resulted in property damage, including those of nearby residents. The stormwater runoff has also collected concentrated amounts of hydrocarbons, nitrogen and heavy metals which are being fed directly into Utah Lake, acting as a significant source of pollution for the lake environment. The intentions of this project are to design a stormwater management plan that can withstand a 100 year, 24 hour event and prevent pollutants from entering the Utah Lake system. Mapping and modeling of the University’s storm drains will be accomplished using GIS as well as modeling for efficient retention sites on campus. Captured stormwater will then be used for a variety of functions here on campus and runoff into the adjacent lake will be reduced to insignificant values. Decisions regarding the ultimate implementation of this project will work in concordance with the University’s master plan of future development in order to realistically secure a reliable, low-maintenance system.

Validation of Metal Chelation by FTIR Spectroscopy

January 01, 2015 12:00 AM
Monika Miller, Weber State University Physical Sciences Nutritionally important minerals are more readily absorbed by living systems when they are combined with organic acids. These combined metal-organic acid complexes are called chelate metals or chelates. The synthetic processes utilized to prepare these mineral chelates adds significant cost to the final product. Occasionally, manufactures sell cheaper dry blends of unreacted minerals and organic acids to gain an unfair competitive advantage in the market place. There are few if any reliable methods for reliable measurement of the extent of chelation between metals and organic acids. We report our successful application of Fourier-transform Infrared Spectroscopy (FTIR) for the quantitative determination of chelation in solid samples of mineral chelates.

Spanish Advertising Use Relative to Median Household Income

January 01, 2015 12:00 AM
According to the 2010 US Census, the Hispanic population in Ogden City, Utah has grown by over 36%. This influx of population of Hispanic descent has influenced local businesses to begin advertising in Spanish through multiple mediums. To determine what factors influence a business’s decision to advertise in Spanish, locations of all print advertising in Ogden were determined through personal investigation. Second, neighborhoods and areas were divided according to census divisions that appear on the official website and median household income as well as the population of Hispanic people was recorded to determine if socioeconomic bias was present in the selection of where to advertise in Spanish. A linear regression comparing the total number of Spanish advertisements found in each geographical area was compared first to income, and then to total Hispanic population. The results of the regression illustrate a potential bias based on financial circumstances rather than ethnicity. Further study is needed to determine if this use of Spanish-advertising in the low-income areas affects Spanish-speakers’ access to healthy foods, housing, or other critical aspects of quotidian life.

Developing a Low-cost NIR Imaging System to Introduce Students to Medical Imaging Techniques

January 01, 2015 12:00 AM
Ashleigh Wilson, Utah Valley University Physical Sciences At many institutions, the algebra-based introductory physics courses are populated with students specializing in biological fields such as preparation for medical or dental schools. While the main focus on the course is to provide the students with a solid conceptual understanding and solving problem skills in physics, the students often see little application towards their fields. This is particularly true in the traditional introductory physics laboratory experiments and demonstrations, which often focus on basic applications and offer no direct relation towards the medical fields. As part of a summer research project, we explored the possibility of developing a low-cost NIR imaging system, which could be used in demonstrations, laboratory exercises, as well as student research projects. The use of infrared imaging in medical physics is an emerging technology with promising prospects, including thermography, biometry, and phlebotomy. For example, when using near infrared (NIR) light (700-1100 nm), vein imaging and mapping is possible. Due to the deoxidized nature of hemoglobin in veins, it exhibits strong absorption at a certain wavelength (~730 nm). The surrounding tissue and arteries, however, allow the radiation to pass through. Utilizing an array of different NIR wavelengths and a modified web camera with a combined cost of $150, we successfully created a low-cost NIR imaging system capable of mapping out veins. This poster will present the instrument setup as well as show the preliminary results. Further potential use of this system will also be presented.

High-Sensitivity Spot Tests Used for the Detection of Diphenhydramine

January 01, 2015 12:00 AM
Melissa Warren, Weber State University Physical Sciences Spot tests are commonly utilized as presumptive qualitative tests for detecting chemical substances. Such tests are the basis for detection of illegal drugs or for cleaning validations in manufacturing systems. In this study we evaluate the use of Scott’s reagent and Mandelin reagent for the detection of trace quantities of diphenhydramine (Benadryl). These reagents have been reported to give false positive tests for illegal drugs such as ketamine (cocaine) when diphenhydramine is present. Our studies were focused on enhancing the detection limits of these reagents and their application of swab tests for diphenhydramine. We report the limits of detection and swab techniques that enhance selectivity and sensitivity for this analyte.

Towards a New Classification of Rivers Based upon Generic Stage-Discharge Rating Curves

January 01, 2015 12:00 AM
Jeremiah Rundall, Utah Valley University Physical Sciences The practice in hydrology is to deduce stream discharge from stream stage by creating a rating curve for each stream site from simultaneous measurements of stage and discharge. If a river could be assigned a generic rating curve with a small number of parameters, the cost of developing rating curves could be reduced. The first step has been to classify rivers according to whether there is a unique relationship between stage and discharge. The USGS National Water Information System database of about 3.8 million simultaneous measurements of stage and discharge at15,345 active and historic stream gaging sites was imported into a Python-driven data manipulation script. Linear relationships between z-scores of the logarithms of stage and discharge were developed for each site. A frequency spectrum of the slopes of the linear relationships was created by summing the normal distributions for each site with mean equal to slope and standard deviation equal to uncertainty in slope. There were no stream gaging sites at which discharge changed without a change in stage. At about 70% of stream gaging sites, over 90% of the variation in stage corresponded to a variation in discharge. At the remaining sites, significant variation in stage occurred without a variation in discharge. Current research involves identifying the characteristics of stream sites that lack a unique stage-discharge relationship and creating classes of generic rating curves by considering more complex functional fits.

Peak Density and Attenuation as Complementary Parameters for Differentiating Breast Tissue Pathology

January 01, 2015 12:00 AM
Nicole Cowan, Utah Valley University Physical Sciences Breast cancer is the second most prevalent cancer among women, affecting one out of eight women in their lifetime. The ability to differentiate between malignant and normal tissues during breast cancer surgery would enable the surgeon to remove all of the cancer from the affected region in the breast, thereby reducing the risk of recurrence and the need for subsequent surgeries. A pilot study conducted at the Huntsman Cancer Institute showed that high-frequency ultrasound (20-80 MHz), and in particular the ultrasonic parameter peak density, was sensitive to breast tissue pathology. The objective of this study was to determine the effect of tissue microstructure on peak density using phantoms that mimic the histology of breast tissue. Phantoms were created from a mixture of distilled water, Knox gelatin, and Metamucil fiber. In order to simulate breast tissue histology and terminal ductal lobular units, polyethylene microspheres were embedded into the phantoms in layers, totaling 4 layers per phantom. The volume percent of polyethylene microspheres was kept constant in each phantom while varying microsphere sizes (58-925 μm diameter). Pitch-catch and pulse-echo measurements were acquired using 50-MHz transducers (Olympus NDT, V358-SU, 50 MHz, 0.635-cm diameter active element), a HF pulsar-receiver (UTEX, UT340), and a 1-GHz digital oscilloscope (Agilent DSOX3104A). Glycerol (Genesis Scientific) was used as a coupling agent between the transducers and the phantoms. Spectra were derived from the data, giving peak density (the number of peaks and valleys in a specified spectral range) and attenuation values. In a previous study, histology- mimicking phantoms were fabricated where the weight percent of polyethylene microspheres was kept constant, but the microsphere diameter was varied. The former study showed a clear trend of higher peak density values for smaller diameters, but no trend for attenuation. In contrast, the phantoms from this study showed no trend in peak density, but a clear trend of higher attenuation values for larger microspheres. The results show that specific changes in tissue microstructure affect the parameters of peak density and attenuation differently. Changes in the number of scatterers and in their size, as in the previous study, affected peak density most significantly. In contrast, changes solely in the size of the scatterers, but not in their number, affected attenuation most significantly. These results are consistent with attenuation results for lobular carcinoma in the pilot study. These results show that peak density and attenuation are complementary parameters, and could be used together to characterize a variety of tissue pathologies