Skip to main content
Utah's Foremost Platform for Undergraduate Research Presentation
2015 Abstracts

A Comparative Study on the Uptake of Nutrients and Trace Metals of Two Plant Subspecies (P.australis and P.americanus) in Utah Lake

Ashley Ostraff, Utah Valley University

Physical Sciences

Utah Lake has a long history of being impacted by anthropogenic activities like, mining, agriculture, and surrounding industry. All of these activities have contributed to the runoff that feeds the lake, increasing the likelihood that this area contains high levels of trace metals, nitrogen, andphosphorus. Utah Lake contains two subspecies of phragmites, a wetland reed, one native (P. americanus) and one non-native (P. australis). P. australis is replacing the native species at an alarming rate. P. australis is known to have a deeper root system than the native subspecies, because of this we suspect that this allow access to a less competitive soil level giving this subspecies greater opportunity for nutrient and trace metal uptake. By comparing the root zone soils of both subspecies we hope to gather results that support this hypothesis. Examination of the roots will also showthe potential influence the soil conditions have on their growth and development. This study will compare nutrient and trace metal uptake of each subspecies to determine impact. Other factors that will be assessed include plant physiology, carbon to nitrogen ratio (C:N), bioconcentration factor (BCF) and total trace metal content in tissues of both species. Samples of P. americanus and P. australis will be collected at 9 locations in Utah Lake. Soil samples at the root zone of each plant will also be evaluated. Each sampl e will be digested in the Microwave Accelerated Reaction System and analyzed in the Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES) for C, N, P, K, Ag, Al, As, Ca, Cd, Cr, Cu, Fe, Hg, K, Mn, Na, Ni, P, Pb, Ti, and Zn. Results from this study will contribute valuable data to future efforts being used to preserve the biodiversity of the plants and animals that live in and around Utah Lake. The end goal of this student project is to be submitted to peer-reviewed scientific journals for publication and to be presented at academic and scientific conferences.