Physical Sciences
High-Frequency Ultrasonic Measurement of Angiogenesis in Mice with Breast Tumors and Ligated Femoral Arteries
Michaelle Cadet, Utah Valley University Physical Sciences Breast cancer is the most common cancer among women in the United States. Tumor angiogenesis and its inhibition is an important aspect of oncology and the treatment of cancer. High-frequency ultrasound (10-100 MHz) is particularly sensitive to small vascular structures that are close in size to the ultrasound wavelength (15-150 _m). The ability to rapidly determine the degree of vascularization in small animals in vivo would provide a useful characterization tool for breast cancer studies. The objective of this study was to determine if direct ultrasonic measurements in the 10-100 MHz range could be used as a vascularization assay for breast tumors and other tissues. To accomplish this, six mice from the Huntsman Cancer Institute (Salt Lake City, Utah) with grafted breast cancer tumors (three control and three treated with an angiogenesis inhibitor called Avastin) were tested in vivo using through-transmission ultrasonic measurements. A second study was also performed at the Ludwig Boltzmann Institute for Experimental and Clinical Traumatology (Vienna, Austria), where the femoral artery in one hind leg of each of sixteen mice was ligated and tested over the time period of eight days. Eight of the ligated limbs were treated with vascular endothelial growth factor (VEGF) while the remaining eight ligated limbs were allowed to grow ischemic. The unligated limbs were controls. Results from the Huntsman Cancer Institute study indicated that breast tumors in Avastin-treated mice showed higher ultrasound velocities than control tumors. This can be ascribed to the vasculature in the nontreated tumors creating greater wave scattering in the tissue, thus decreasing the velocity. Results from the Boltzmann Institute study indicated that in mice with ligated femoral arteries, ultrasonic signals from ischemic limbs displayed a decrease in wave velocity over the test period as compared to the VEGF-treated limbs. However, both the ischemic and VEGF-treated limbs showed decreases in ultrasonic attenuation during the entire test period. Results from Avastin-treated mouse tumors and mouse limbs with ligated femoral arteries revealed that high-frequency ultrasound holds potential for measuring angiogenesis in vivo.
Peak Density and Attenuation as Complementary Parameters for Differentiating Breast Tissue Pathology
Nicole Cowan, Utah Valley University Physical Sciences Breast cancer is the second most prevalent cancer among women, affecting one out of eight women in their lifetime. The ability to differentiate between malignant and normal tissues during breast cancer surgery would enable the surgeon to remove all of the cancer from the affected region in the breast, thereby reducing the risk of recurrence and the need for subsequent surgeries. A pilot study conducted at the Huntsman Cancer Institute showed that high-frequency ultrasound (20-80 MHz), and in particular the ultrasonic parameter peak density, was sensitive to breast tissue pathology. The objective of this study was to determine the effect of tissue microstructure on peak density using phantoms that mimic the histology of breast tissue. Phantoms were created from a mixture of distilled water, Knox gelatin, and Metamucil fiber. In order to simulate breast tissue histology and terminal ductal lobular units, polyethylene microspheres were embedded into the phantoms in layers, totaling 4 layers per phantom. The volume percent of polyethylene microspheres was kept constant in each phantom while varying microsphere sizes (58-925 μm diameter). Pitch-catch and pulse-echo measurements were acquired using 50-MHz transducers (Olympus NDT, V358-SU, 50 MHz, 0.635-cm diameter active element), a HF pulsar-receiver (UTEX, UT340), and a 1-GHz digital oscilloscope (Agilent DSOX3104A). Glycerol (Genesis Scientific) was used as a coupling agent between the transducers and the phantoms. Spectra were derived from the data, giving peak density (the number of peaks and valleys in a specified spectral range) and attenuation values. In a previous study, histology- mimicking phantoms were fabricated where the weight percent of polyethylene microspheres was kept constant, but the microsphere diameter was varied. The former study showed a clear trend of higher peak density values for smaller diameters, but no trend for attenuation. In contrast, the phantoms from this study showed no trend in peak density, but a clear trend of higher attenuation values for larger microspheres. The results show that specific changes in tissue microstructure affect the parameters of peak density and attenuation differently. Changes in the number of scatterers and in their size, as in the previous study, affected peak density most significantly. In contrast, changes solely in the size of the scatterers, but not in their number, affected attenuation most significantly. These results are consistent with attenuation results for lobular carcinoma in the pilot study. These results show that peak density and attenuation are complementary parameters, and could be used together to characterize a variety of tissue pathologies
Influence of antibiotics on Gut Microbiota and Resultant Psychological Behavior
Shireen Partovi, Utah Valley University Physical Sciences The normal flora of microbiota that resides in our gastrointestinal tract acts as a community and provides a number of functions such as assisting with the breakdown of waste, protecting our tissues and organs from invading species, and playing a role in the immune response. These microorganisms may also play a role in altering our brain chemistry and changing our psychology and behavior. This mechanism is considered to be due to their ability to produce neurochemicals that mimic those produced by our own bodies. Therefore, it is possible that antibiotics may have a detrimental effect on our gut flora, thereby inducing a host of undesired side effects. These described side effects may include changes in normal psychological behavior, such as the presentation of anxiety or depression. This hypothesis is increasingly relevant as antibiotic resistance is rising due to poor education regarding bacterial infections and as the appeasement of insistent patients continues. This research aims to illustrate the harm that over-medicating may have on our behavior as a result of afflicted gut microbiota. This research will use peer reviewed journal articles that include studies and experiments to determine the influence of gut microbiota on brain chemistry and therefore psychology and behavior. Specifically, the exact implications of consistent antibiotic use and the impact on gut microbiota will be examined and a correlation will be presented. Therefore, the purpose of this research is to illustrate this problem in regards to the healthcare industry and the over-medication of patient.
Developing a Low-cost NIR Imaging System to Introduce Students to Medical Imaging Techniques
Ashleigh Wilson, Utah Valley University Physical Sciences At many institutions, the algebra-based introductory physics courses are populated with students specializing in biological fields such as preparation for medical or dental schools. While the main focus on the course is to provide the students with a solid conceptual understanding and solving problem skills in physics, the students often see little application towards their fields. This is particularly true in the traditional introductory physics laboratory experiments and demonstrations, which often focus on basic applications and offer no direct relation towards the medical fields. As part of a summer research project, we explored the possibility of developing a low-cost NIR imaging system, which could be used in demonstrations, laboratory exercises, as well as student research projects. The use of infrared imaging in medical physics is an emerging technology with promising prospects, including thermography, biometry, and phlebotomy. For example, when using near infrared (NIR) light (700-1100 nm), vein imaging and mapping is possible. Due to the deoxidized nature of hemoglobin in veins, it exhibits strong absorption at a certain wavelength (~730 nm). The surrounding tissue and arteries, however, allow the radiation to pass through. Utilizing an array of different NIR wavelengths and a modified web camera with a combined cost of $150, we successfully created a low-cost NIR imaging system capable of mapping out veins. This poster will present the instrument setup as well as show the preliminary results. Further potential use of this system will also be presented.
A Comparative Study on the Uptake of Nutrients and Trace Metals of Two Plant Subspecies (P.australis and P.americanus) in Utah Lake
Ashley Ostraff, Utah Valley University Physical Sciences Utah Lake has a long history of being impacted by anthropogenic activities like, mining, agriculture, and surrounding industry. All of these activities have contributed to the runoff that feeds the lake, increasing the likelihood that this area contains high levels of trace metals, nitrogen, andphosphorus. Utah Lake contains two subspecies of phragmites, a wetland reed, one native (P. americanus) and one non-native (P. australis). P. australis is replacing the native species at an alarming rate. P. australis is known to have a deeper root system than the native subspecies, because of this we suspect that this allow access to a less competitive soil level giving this subspecies greater opportunity for nutrient and trace metal uptake. By comparing the root zone soils of both subspecies we hope to gather results that support this hypothesis. Examination of the roots will also showthe potential influence the soil conditions have on their growth and development. This study will compare nutrient and trace metal uptake of each subspecies to determine impact. Other factors that will be assessed include plant physiology, carbon to nitrogen ratio (C:N), bioconcentration factor (BCF) and total trace metal content in tissues of both species. Samples of P. americanus and P. australis will be collected at 9 locations in Utah Lake. Soil samples at the root zone of each plant will also be evaluated. Each sampl e will be digested in the Microwave Accelerated Reaction System and analyzed in the Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES) for C, N, P, K, Ag, Al, As, Ca, Cd, Cr, Cu, Fe, Hg, K, Mn, Na, Ni, P, Pb, Ti, and Zn. Results from this study will contribute valuable data to future efforts being used to preserve the biodiversity of the plants and animals that live in and around Utah Lake. The end goal of this student project is to be submitted to peer-reviewed scientific journals for publication and to be presented at academic and scientific conferences.
Effect of Roundup on Brine Shrimp (Artemia) Development
Kimberly Lowder, Weber State University Physical Sciences The herbicide Roundup and its active ingredient, Glyphosate, are widely used for weed control. These chemicals end up into streams and lakes, including the Great Salt Lake where it adversely affects wildlife. The goals of this project are a) to assess the mortality rate of Artemia larvae exposed to various concentrations of Roundup concentrate after a short exposure (48h) or a long-chronic exposure (7 days), b) to assess the effect of chronic on survival, maturation and fertility and c) to quantify the stress response of the shrimp on the heat-shock proteins 90 and 70. Materials and Methods: For the acute exposure, Artemia larval mortality was calculated in larvae exposed to Roundup concentrations ranging from 10-3 to 10-10 ml/l of Roundup concentrate for 48 h. For the chronic exposure, larvae were raised in the above Roundup concentrations. Mortality, maturation and fertility rates were calculated. The response to stress was assessed by quantifying the up-regulation of stress proteins hsp90 and 70 using western blots. Results: All larvae were killed after exposure at 10-4 g/l or greater of Roundup concentrate. Most larvae survived at Roundup concentrations of 10-6 ml/l or less. While chronic exposure to lower Roundup concentrations did not seem to affect survival or maturation rate, it did affect larval development. Larvae developing in 10-7 ml/l or more Roundup had about a 20% risk of not hatching or dying shortly after hatching. Hsp70 western blots showed an upregulation of this heat-shock protein at 10-5 ml/l or higher Roundup concentrations.
Geophysical Survey of Gossans in the Eastern Uinta Mountains, Utah
David Sutterfield, Utah Valley University Physical Sciences When sulfide-bearing rocks are exposed to oxidizing conditions, they become destabilized, leaving behind a framework of leached, altered, and replaced host rock called a gossan. Many of these gossans form by the oxidation of ore minerals and have been known since antiquity to be associated with ore deposits. However, the extent and quality of ore mineralization beneath a given gossan cannot readily be determined through surface sampling of minerals. Work conducted by mineral exploration professionals (in Africa, Australia, India, and the Middle East) has indicated that geomagnetic and geoelectric surveys of a gossan can be useful for constraining the shape, size, and economic potential of an associated ore deposit. Although gossans are found in Utah, there have been no published studies of these rock units either in terms of their economic potential or geophysical signature. The objective of this study was to carry out geomagnetic and geoelectric surveys to determine the geophysical signature of gossans exposed about 10 miles northwest of Vernal, Utah, on the southeastern margin of the Uinta Mountains, for the purpose of estimating the grade and depth of possible sulfide mineralization. The gossans overlie a heavily brecciated wedge of Mississippian Madison Limestone and are structurally bounded by the South Flank Fault, which forms the boundary between the Permian Weber Sandstone to the south and the Neoproterozoic Uinta Mountain Group metaquartzites to the north. Geoelectric measurements with an Iris Instruments Syscal Junior Resistivity System and inversion of a portion of the resistivity and chargeability data with the Interpex IX1D Sounding Inversion software shows a resistivity low (~200 Ω·m) and a chargeability high (~7 ms) below 23 m depth. Measurements of total magnetic field using a Geometrics G-856 Proton Precession Magnetometer were modeled with Interpex IX2D-GM Magnetic Interpretation Software and constrained with magnetic susceptibilities of exposed rocks measured in the field using a SM-20 Magnetic Susceptibility Meter. Models based upon a portion of the data show anomalies of amplitude about 100 nT and wavelength about 50 m, suggesting isolated bodies of elevated magnetic susceptibility (~0.08 SI units) with upper surfaces 20-30 m below the surface. Since, based upon the topography, the depth to the water table is also 20-30 m, the geophysical measurements are consistent with the presence of reduced sulfide bodies below this depth. Further work will include interpretation of remaining data and possible drilling for improved calibration of geophysical models.
Quantifying Heavy Metal Pollution in Utah Lake via Root System Accumulation in Two Subspecies of Phragmites Australis and Subsequent Determination of Anthropogenic Relevance
Kevin Jackman, Utah Valley University Physical Sciences Phragmites australis is a non-native subspecies of wetland reed that was introduced to Utah Lake from Europe during early exploratory settlements and is now outcompeting native flora in the lake’s wetland ecosystem. Utah Lake is a repository for toxic heavy metals from diverse mining operations and industrial operations proximal to the water. International studies have shown Phragmites to have strong potential as a phytoremediator and a reliable biomonitoring species of polluted water and soil, yet no work in this regard has ever been performed in the state of Utah or on Utah Lake. It is by measuring the concentrations of arsenic, lead, and 12 other trace metals within the root and rhizome system of these plants that a measurement of the contamination of the lake can be made, and to determine a quantitative concentration and severity of contamination with regards to public health and safety. If these trace metals are present in excess in the lake and its soils, toxic, and harmful conditions are present and are an issue of health to the natural ecosystem of the lake, as well as the citizens recreating and working throughout the lake on a regular basis. Determination of atomic content evaluation will be performed by the Induced Coupled Plasma Optical Emission Spectrometer. Future work can then be proposed to remediate the lake, in an effort to improve the human and environmental condition of the area. This project has the interest of the Utah Department of Environmental Quality and relationships have been established for current and future cooperation. The aim of this project is to be published and presented on a peer-reviewed level in scientific journals and at conferences.
Peak Density Histograms and Pathology Interpretations for High-frequence Ultrasonic Testing of Breast Cancer Surgical Specimens
Robyn Omer, Utah Valley University Physical Sciences Removal of all malignant tissue during lumpectomy is critical for preventing local recurrence of the breast cancer. Failure to remove all cancer results in 20-40% of lumpectomy patients returning for additional surgery. At Utah Valley University, a method is being developed to detect cancer during the initial surgery to ensure all of the cancer has been removed. Peak density, which is the number of peaks and valleys in a specified spectral range of a high-frequency (HF) ultrasound signal, correlates to breast pathology in lumpectomy specimens. The objective of this study was to determine if the histograms of peak density versus the number of measurements provide information on corresponding breast tissue pathology. High-frequency ultrasonic data were obtained from a blind study of surgical specimens obtained from 73 lumpectomy patients at the Huntsman Cancer Institute in Salt Lake City, Utah, and South Jordan, Utah. The data were normalized to remove bias between patients. The ultrasonic signals were converted to spectra using a Fourier transform. Peak densities were calculated from the spectra by counting the number of peaks and valleys in the 20-80 MHz range. This was achieved by counting where the slopes of the spectra (their derivatives) crossed zero. A histogram was created by assigning each peak density value to a bin, and then counting the number of measurements that fell within that bin. The histogram of the peak densities produced an asymmetric Gaussian-type distribution with a range of peak density values from 0 to 27 and a mode of 5. Using threshold values determined from a pilot study for differentiating pathology with peak density, it was determined that the peak of the distribution (5-6) corresponded to normal tissue pathology, the shoulders of the distribution (0-4 and 7-10) corresponded to abnormal pathologies, and the tail of the distribution (11-27) corresponded to malignant tissue types. These correlations matched the types of specimens tested, specifically tumors, margins, and lymph nodes. The correlations also provide a measure of the success of removing malignant tissue and achieving negative margins during lumpectomy procedures. Using histograms to analyze the data not only provides a new approach for differentiating tissue pathology, but also provides a statistical measure of the success of lumpectomy procedures performed by a specific surgeon or at a specific institution.
Analysis of Flavonoids, Catechins, and Proanthocy anidins in Cacao Chocolate
Brad Draper, Hannah Firth, and Patricia Stauffer, Weber State University Physical Sciences It is widely known that cacao beans are one of the most abundant sources of naturally-occurring flavonoids on earth. However, chocolate products contain only a small percentage of the original flavonoids present in cacao beans, indicating that up to 95% of these flavonoids are lost during the manufacturing of chocolate. However, no one has identified the specific events or steps in chocolate preparation that destroys these flavonoids. We have measured the concentrations of a variety of nutritionally beneficial flavonoids at each step of the chocolate manufacturing process to identify the related extent of flavonoid losses. Following multiple-step extractions and sample preparations, we utilized chemical techniques of TLC, UV/VIS Spectroscopy, HPLC, and organoleptic testing to measure the levels of catechins and proanthocyanidins at each step of the chocolate making process.
Spanish Advertising Use Relative to Median Household Income
According to the 2010 US Census, the Hispanic population in Ogden City, Utah has grown by over 36%. This influx of population of Hispanic descent has influenced local businesses to begin advertising in Spanish through multiple mediums. To determine what factors influence a business’s decision to advertise in Spanish, locations of all print advertising in Ogden were determined through personal investigation. Second, neighborhoods and areas were divided according to census divisions that appear on the official website and median household income as well as the population of Hispanic people was recorded to determine if socioeconomic bias was present in the selection of where to advertise in Spanish. A linear regression comparing the total number of Spanish advertisements found in each geographical area was compared first to income, and then to total Hispanic population. The results of the regression illustrate a potential bias based on financial circumstances rather than ethnicity. Further study is needed to determine if this use of Spanish-advertising in the low-income areas affects Spanish-speakers’ access to healthy foods, housing, or other critical aspects of quotidian life.
Towards a New Classification of Rivers Based upon Generic Stage-Discharge Rating Curves
Jeremiah Rundall, Utah Valley University Physical Sciences The practice in hydrology is to deduce stream discharge from stream stage by creating a rating curve for each stream site from simultaneous measurements of stage and discharge. If a river could be assigned a generic rating curve with a small number of parameters, the cost of developing rating curves could be reduced. The first step has been to classify rivers according to whether there is a unique relationship between stage and discharge. The USGS National Water Information System database of about 3.8 million simultaneous measurements of stage and discharge at15,345 active and historic stream gaging sites was imported into a Python-driven data manipulation script. Linear relationships between z-scores of the logarithms of stage and discharge were developed for each site. A frequency spectrum of the slopes of the linear relationships was created by summing the normal distributions for each site with mean equal to slope and standard deviation equal to uncertainty in slope. There were no stream gaging sites at which discharge changed without a change in stage. At about 70% of stream gaging sites, over 90% of the variation in stage corresponded to a variation in discharge. At the remaining sites, significant variation in stage occurred without a variation in discharge. Current research involves identifying the characteristics of stream sites that lack a unique stage-discharge relationship and creating classes of generic rating curves by considering more complex functional fits.
Chernobyl and Fukushima
Valerie Jacobson, Weber State University Physical Sciences This study will compare and contrast the differences between nuclear accidents in Chernobyl and Fukushima. The environmental impacts of the “fall-out” across the two differing landscapes and the displacement of the populations due to radiation contamination, e.g., soil contamination, will be analyzed. Research on health issues, such as the increased numbers of thyroid cancer cases in Ukraine and Belarus in those who were children at the time of the disaster in 1986, will also be reviewed and compared to current health issues in Fukushima. Certain weather patterns distributed the radioactive materials over specific geographic areas that later came to be known as “hot-spots.” The study will evaluate the evacuations handled by the respective governments and the “exclusion zone” measures put in place by each. While the nuclear disasters at Chernobyl and Fukushima have been compared as similar in disaster level, research and data collection of the fallout zones, or hot spots, reveal that the two disasters are not of an equal level. Factors such as air temperature, political and social responses all contributed to the disparity in levels of the two disasters.
A Plan for Complete Recycling of Stormwater on the Utah Valley University Main Campus, Orem, Utah
Paul Robertson, Utah Valley University Physical Sciences Evaluation of Utah Valley University’s stormwater plan reveals a simple system meant to collect stormwater into the city storm drains as quickly as possible. It is, however, vastly underdeveloped and many unspectacular summer and springtime storms have resulted in property damage, including those of nearby residents. The stormwater runoff has also collected concentrated amounts of hydrocarbons, nitrogen and heavy metals which are being fed directly into Utah Lake, acting as a significant source of pollution for the lake environment. The intentions of this project are to design a stormwater management plan that can withstand a 100 year, 24 hour event and prevent pollutants from entering the Utah Lake system. Mapping and modeling of the University’s storm drains will be accomplished using GIS as well as modeling for efficient retention sites on campus. Captured stormwater will then be used for a variety of functions here on campus and runoff into the adjacent lake will be reduced to insignificant values. Decisions regarding the ultimate implementation of this project will work in concordance with the University’s master plan of future development in order to realistically secure a reliable, low-maintenance system.
Mobility and Distribution of Trace Element Pollution in Sediments of the Utah Lake Outlet
Henintsoa Rakotoarisaona, Utah Valley University Physical Sciences The Jordan River is the only outlet of Utah Lake. Historically, this area has been impacted by urbanization, long term mining operations, industrial and agricultural activities resulting in potentially high levels of trace metal pollutants at the headwaters of the Jordan River. Since trace metals are known to be toxic at elevated levels, it is important to evaluate their concentration, distribution and mobility in this sensitive area in order to determine risk to wildlife, humans and downstream users of the Jordan River. Three core samples from 0 cm to 95 cm in depth were collected at the east (industrialized area), west (newly developed area) and north (an island barrier) sides of the outlet of Utah Lake. Each sample was digested in triplicates in the Microwave Accelerated Reaction System (MARS) using US Environmental Protection Agency Method 3052 and analyzed in the Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES) for As, Cd, Cr, Mn, Pb, Cu, Zn, Co, and Ni. A multivariate analysis of variance (MANOVA) was used to analyze the data, with a boneferroni adjustment made for multiple comparisons. The results indicated that the East and North sediments of the Jordan River were significantly (P < 0.5) more heavily impacted by trace metal pollutants than the West side, with the North area accumulating higher levels of the majority of the trace metals or metalloid evaluated. Enrichment of Co, Cr, Pb and Zn was observed on the East sediment at concentrations reaching 10,821, 4.07, 13.7, 12.7, 119.4 mg kg-1, respectively. The most substantial elevation in the concentration of trace metals occurred with Cu in the North section of the lake, increasing from 349 mg kg-1 at 0-15 cm to 1383 mg kg-1 cm depth, showing high mobility, followed by Zn which increased from 46.7 mg kg-1 at 0-15 cm to 592 mg kg-1 30-45 cm depths. The enrichment of these trace metals in the East and North sediments at the outlet of Utah Lake pose a health risk to animals and humans who use these areas for recreational or agricultural purposes.
High-Sensitivity Spot Tests Used for the Detection of Diphenhydramine
Melissa Warren, Weber State University Physical Sciences Spot tests are commonly utilized as presumptive qualitative tests for detecting chemical substances. Such tests are the basis for detection of illegal drugs or for cleaning validations in manufacturing systems. In this study we evaluate the use of Scott’s reagent and Mandelin reagent for the detection of trace quantities of diphenhydramine (Benadryl). These reagents have been reported to give false positive tests for illegal drugs such as ketamine (cocaine) when diphenhydramine is present. Our studies were focused on enhancing the detection limits of these reagents and their application of swab tests for diphenhydramine. We report the limits of detection and swab techniques that enhance selectivity and sensitivity for this analyte.
Monitoring Angiogenesis in Early Chick Dev elopment Using High-frequency Ultrasound: Method Development and Preliminary Results
Cameran Mecham, Utah Valley University Physical Sciences Introduction:
Validation of Metal Chelation by FTIR Spectroscopy
Monika Miller, Weber State University Physical Sciences Nutritionally important minerals are more readily absorbed by living systems when they are combined with organic acids. These combined metal-organic acid complexes are called chelate metals or chelates. The synthetic processes utilized to prepare these mineral chelates adds significant cost to the final product. Occasionally, manufactures sell cheaper dry blends of unreacted minerals and organic acids to gain an unfair competitive advantage in the market place. There are few if any reliable methods for reliable measurement of the extent of chelation between metals and organic acids. We report our successful application of Fourier-transform Infrared Spectroscopy (FTIR) for the quantitative determination of chelation in solid samples of mineral chelates.
A Study of Bonneville Cutthroat Population and Habitat for Potential Transplant
Jens Swensen, Southern Utah University Physical Sciences
Facile Preparation of First-Row Transition Metal Chalcogenides as Hydrogen Evolution Catalysts in Water
Lia Bogoev, Utah State University Physical Sciences
Magnetic Susceptibility of Tree Leaves as a Simple, Cost-Effective Means of Monitoring Air Quality
Lucas Lloyd, Utah Valley University Physical Sciences The high cost of air quality monitoring stations makes it difficult for citizens or local governments to monitor air quality in their own neighborhoods. For example, Utah County, Utah, with an area of 2141 mi2, has only four air-quality monitoring stations: (1) north Provo close to both Provo High School and Brigham Young University (2) Spanish Fork Airport (3) near State Street in Lindon (4) just south of SR-92 on 6000 W in Highland. The air-quality stations monitor levels of CO, NO2, O3, PM-2.5 (particulate matter smaller than 2.5 microns), and PM-10. The objective of this study is to find a much cheaper method of measuring air quality. The objective was addressed by measuring the magnetic susceptibilities of 10 replicates each of the leaves of 12 species of trees (cypress, crab apple, elm, flowering pear, green ash, honey locust, linden, Norway maple, pine, red maple, Russian olive, spruce) collected within a two-mile radius of each of the four air-quality monitoring stations in Utah County. After air-drying and crushing the samples, both low-frequency (0.46 kHz) and high-frequency (4.6 kHz) magnetic susceptibilities were measured with the Bartington MS3 Magnetic Susceptibility Meter. The best correlations between tree leaf magnetic susceptibilities and air-quality parameters were between the three-year average of PM-2.5 and the high-frequency magnetic susceptibility of leaves of pine (Pinus aristata) (R2 = 0.87) and Norway maple (Acer platanoides) (R2 = 0.86). The correlation was used with measured high-frequency magnetic susceptibilities of pine to estimate PM-2.5 in two unmonitored locations heavily impacted by highway traffic (corner of 800 N and I-15 and corner of University Parkway and I-15, both in Orem, Utah) on one day in August 2013. It was found that estimated levels of PM-2.5 were 9.5 µg/cm3 and 8.9 µg/cm3, respectively, which were within the EPA PM-2.5 Standard of 12.0 µg/cm3.
Catalysis of the Reduction of Sodium Borohydride with Microenvironments of Gold Nanoparticles
Frederickk Sudbury, University of Utah Physical Sciences Triphenylphosphine stabilized gold nanoparticles were synthesized using a method developed previously by the Jennifer Shumaker-Parry group. Aminated silica colloids were obtained from the Ilya Zharov group. The gold nanoparticles were adhered to the silica colloids using a method developed for another purpose by the Zharov group. The presence of the particles on the silica colloids was confirmed using both scanning and transmission electron microscopy. The catalytic activity of the gold nanoparticles both with and without adhesion was investigated. It was found that free nanoparticles had significant catalytic activity, in agreement with previous research. Gold nanoparticles attached to silica colloids do not seem to exhibit the same level of catalytic activity as the free particles. It was also found that not all the gold nanoparticles adhered to the surface of the silica particles. Experiments were conducted to determine if there was a critical concentration of silica colloids that would allow for high levels of adhesion of the gold nanoparticles. It was found that only by adding a significant excess of silica colloids to the solution can all the gold nanoparticles be removed from the solution. It was also found that the silica can be saturated with gold nanoparticles by including a small amount of them in a very concentrated gold nanoparticle solution. Further studies for functionalization of the silica colloids and the ability to physically isolate the silica with gold nanoparticles from free nanoparticles are currently in progress.
Band gap tunability of protein-based ferrhihydrite nanoparticles
Stephen Erickson, Brigham Young University Physical Sciences “The spherical protein ferritin has often been used to fabricate nanoparticles of various shapes and compositions with its walls. Ferritin occurs naturally with a ferrihydrite (FeOOH) mineral core, but it has also been used to synthesize nanoparticles of several other semiconductors. While the methods for creating these nanoparticles within ferritin are well established, the characterization of such nanoparticles is not. Previous studies on native ferrihydrite core ferritin disagree on the band gap, giving values anywhere from 1.1-3.5 eV, depending on the method. We have used absorption spectroscopy to measure these band gaps with an unprecedented accuracy of up to .01 eV. This method also allowed us to determine that ferrihydrite nanoparticles are indirect gap semiconductors. By employing this method on particles of various sizes, we have shown the effects of quantum confinement, resulting in variations in the band gap. We also provided the first ever direct evidence that ferritin works to crystalize its core with time, an effect that has long been theorized but never observed. By characterizing the effect of size and time on nanoparticle band gap, we have shown the potential for selectively tuning that gap. This opens up a world of possible applications in light harvesting and photo detectors. By controlling the band gap, we will be able to select which wavelengths of light are absorbed, allowing for full spectrum photovoltaic cells and wavelength specific optical detectors. Future studies will focus on nanoparticles of other metal hydroxides and various anion replacements to further expand our tunable range of band gaps.
Geoelectric and Magnetic Characteristics of Fracture Traces: A Tool for Groundwater Exploration in Igneous Rocks
Jeremiah Rundall, Utah Valley University Physical Sciences Utah Valley University has a long-term program of groundwater development in the Trans-Mexican Volcanic Belt in the state of Guanajuato, Mexico, in cooperation with Choice Humanitarian. Thus far, we have drilled a successful 50-m well in basalt and an unsuccessful 22-m well in rhyolite. Well sites have been chosen based on spring locations and fracture traces (linear features as seen on aerial photos). The objective of this study is to measure and model the geoelectric and magnetic characteristics of fracture traces as a means of determining which fracture traces are most indicative of actual fractured rock. Thus far, studies have been carried out on 20 fracture traces in rhyolite in the Trans-Mexican Volcanic Belt, six fracture traces in rhyolite/diorite/monzonite of the La Sal Intrusives in the La Sal Mountains of Utah, and one fracture trace in rhyolite of the Soldiers Pass Formation west of Utah Lake. The total magnetic field has been measured at about 1-m spacing along profiles perpendicular to fracture traces using the Geometrics G-856 Proton Precession Magnetometer. Geoelectric soundings for resistivity, chargeability and self-potential have been carried out both on and off fracture traces using the Iris Instruments Syscal Junior Resistivity Meter with the Schlumberger array parallel to the fracture trace at spacings in the range AB/2 = 2.29-137 m. Geoelectric profiles have been carried out perpendicular to fracture traces (array parallel to the fracture trace) at spacings AB/2 = 15.2 m and 137 m. Geoelectric and magnetic modeling is being carried out using the 1X2D-GM Magnetic Interpretation Software and the 1X1D Sounding Inversion Software. Preliminary results indicate that some fracture traces are associated with both magnetic and electrical resistivity lows consistent with intermediate depth (~ 50 m) fractured rock, although not all fracture traces have these characteristics. Further results will be reported at the meeting.
Patterning and Functionalizing Carbon Nanotube Forests for Antigen Detection
Benjamin Pound, Utah State University Physical Sciences Carbon Nanotube (CNT) Forests are vertically grown carbon nanotubes. They can be as tall as millimeters, with radii from less than one nanometer (single-walled) to tens of nanometers (multi-walled). Their high surface area to volume ratio provides a unique material system for biosensor applications. However, the CNT surface does not provide covalent bonding sites to many antibodies of interest. One approach is to attach linker molecules with aromatic rings via π-stacking to the CNT surface and activating the linker molecules to bind covalently to specific antibody molecules. Unfortunately, the conventional solution-based functionalization approach often leads to collapse of the CNT forest and hence a significant loss of binding sites. In this presentation we demonstrate that CNTs can be lithographically defined to form various structures that are resistant to liquid-induced collapse. We show that the CNT forest can be functionalized with 1,5-diaminonaphthalene as a linker molecule and its coverage can be characterized by fluorescence spectroscopy.
General Approach for Engineering Small-Molecule-Binding DNA Split Aptamers
Alexandra Kent, University of Utah Physical Sciences Prescription drug overdose and abuse is a leading cause of death in the United States. It is a serious issue and has become increasingly problematic as opioids are being prescribed at a higher frequency. For this reason, fast, accurate detection of small drug molecules is crucial. The current standard for use in clinical drug detection is an enzyme-linked immunosorbent assay (ELISA) that uses a series of antibodies to bind to the target drug and enable quantification via a colorimetric output. However, the antibodies used in an ELISA often cannot distinguish between similar molecules. Aptamers are short sequences of DNA that have emerged as a promising alternative to antibodies, as they are generated in vitro, where negative selections can be used to increase target selectivity. These aptamers can be cleaved to make split aptamers that only assemble in the presence of the target small molecule. One inherent problem of this system is the need for split aptamers that are selective for their small molecule targets. While there are many known aptamers, there are only a few known split aptamers that bind small molecules. Separating aptamers with a privileged, three-way-junction structure provides a reliable method to generate new split aptamers.
Creation of coherent complex pressure measurements through overlapping scan-based measurements
Jazmin Myres, Brigham Young University Physical Sciences In scan-based array measurements, stationary reference sensors are needed to temporally correlate the different measurement scans and produce coherent complex pressure fields. Because the number of references required increases with the number of subsources contributing to the sound field, an extended, partially correlated source comprising many ill-defined sources can result in significantly increased measurement complexity. A different approach to creating spatiotemporally coherent pressures is demonstrated here. Scan based measurements of a partially coherent line source have been taken in an anechoic chamber. This experimental data has been used to explore “stitching” together a complex pressure field by spatially overlapping measurement scans instead of using separate reference channels. Various methods of stitching have been explored and the most robust method identified. Unwrapping of intrascan phases is first accomplished with a two-dimensional phase unwrapping algorithm. Individual scan positions are then stitched together using median phase differences between multiple adjacent scans to create coherent planes of data. Amplitude-stitching is done by averaging across scans and preserving the integrated squared pressure across the overall aperture. This method has been verified using reference microphones. This stitching method has been applied to scan based measurements of a military aircraft, exhibiting its effectiveness dealing with a partially correlated complicated source. This method works well for low-frequency jet data, where there is not a ground-based interference null creating a physical phase discontinuity. This technique provides direction for efficient experimental design for scan-based array measurements of extended sources. [Work sponsored by ONR.]
Arsenic and other Heavy Metals in Surface Water and Shallow Groundwater in Utah Valley, Utah
Brandon B Davis, Utah Valley University Physical Sciences A recent study (Ferreira 2013) examined concentrations of fluvial As and transition metals associated with As in Provo and American Fork Rivers, which flow westward across the Wasatch Range and drain into Utah Lake. Within Utah Valley average fluvial As for Provo River (As= 0.342 mg/L) and American Fork River (As= 0.152 mg/L) exceeded the EPA standards for freshwater streams for acute exposure (As= 0.340 mg/L) and chronic exposure (As = 0.150 mg/L), respectively. The objective of this study is to determine whether elevated levels of As and other heavy metals also occur in shallow groundwater in Utah Valley. The objective is being addressed by analyzing water samples from the “backyard wells” in Utah Valley, shallow (depths < 10 m), hand-dug wells which many residents maintain as their "emergency water supply" or for small scale agriculture. Since nearly all backyard wells are unregistered, they are being sought through conversations with water departments, real estate listings and local residents. Water and sediment samples are also being collected from American Fork River, Hobble Creek, Provo River and Spanish Fork River, which drain into Utah Lake. Samples are being analyzed for nitrate, phosphate and sulfate using the Hach DR-2700 Spectrophotometer, while the PerkinElmer Optima 8000 ICP-OES is being used to measure for As, the transition elements Co, Cu, Cr, Fe, Mn, Ni and Zn, and other associated elements Ag, Cd, Pb and Ti. Preliminary results indicate that shallow groundwater As in the American Fork watershed is much lower (mean As= 0.0022 mg/L) than fluvial As and an excellent negative correlation (R2 = 0.83) between groundwater As and Ti. It is suggested that TiO2, which may originate in the Cottonwood Stock in the American Fork watershed, may play a role in the demobilization of groundwater As. Further results will be reported at the meeting.
Environmental and global carbon cycle signals recorded in 6 million year carbon isotope record from the Paleocene Black Peak Formation, Big Bend National Park
Stephen Ruegg, University of Utah Physical Sciences The Black Peaks Formation (BPF) from the Tornillo Group in Big Bend National Park (BBNP) is comprised of a series of stacked paleosols and sandstone channels deposited by a fluvial system in a sub-tropical intramountain basin during the Laramide orogeny. Paleosols constituting the BPF display alternating drainage and development conditions. The BPF is bounded by the Late Cretaceous Javelina Formation and the Early Eocene Canoe Formation and is therefore thought to be of Paleocene age (65.5-55.8 million years ago). The BPF is an interesting target for paleoenvironmental reconstruction because little data have been generated from the Paleocene for sub-tropical regions, limiting the validation of global climate model predictions in these regions. However, previous attempts to resolve the age of the formation using biostratigraphy, magnetostratigraphy and chemostratigraphy gave ambiguous results limiting the potential of the BPF for paleoenvironmental reconstruction. We analyzed the carbon isotope ratio (δ13C ) of carbonate nodules collected from pedologically distinct paleosols throughout the BPF. δ13C of carbonates nodules found in reduced black paleosols are systematically 3-4‰ lower than δ13C from non-black paleosols from neighboring stratigraphic intervals. We hypothesize that this isotopic difference is related to the lower contribution of atmospheric CO2 to soil CO2 in water-logged and/or poorly drained black soils. Large-scale stratigraphic patterns of carbon isotope variations in carbonate nodules from non-black paleosols throughout the BPF strongly resemble well-documented secular changes in δ13C values of marine carbonates for the Paleocene. Several recognizable features are present in both curves, including the Paleocene Carbon Isotope Maximum (PCMI) and possibly the Late Danian carbon isotope excursion (LDE). These features provide a new basis for correlation of the BPF to the global geological timescale, and suggest that the Formation preserves a 6 million year record of deposition and paleoenvironmental conditions spanning the majority of Paleocene time (63-57 million years ago).
Optimizing the measurement of monomethylmercury in natural waters by direct ethylation
Christopher Mansfield, Westminster College Physical Science The method currently used to measure monomethylmercury (MMHg) in natural waters involves a lengthy distillation step in order to remove certain ions and dissolved organic matter that have been reported to interfere with the subsequent reaction in which MMHg is ethylated. It has recently been reported that the analysis of MMHg in seawater by direct ethylation was successfully carried out, thus removing the day-long distillation. However, the effect of many potential interfering ions and compounds on this method have not been characterized, and it has not been tested for use in natural freshwaters or the hypersaline waters of the Great Salt Lake. Thus, these became the two goals of this project. We found that optimal ethylation conditions included buffering samples to pH 4.0-4.1, reducing the amount of sodium tetraethylborate, adding EDTA to complex interfering trace metals, and adding chloride to overcome interferences by thiols and organic matter. We have since employed this improved method to analyze MMHg in natural water samples from fresh and saline lakes, achieving > 90% MMHg spike recoveries without the use of distillation.
Evolution of Burrowing Mayflies: Tusks be gone
Stephanie Bartlett, Utah Valley University Physical Sciences Ephemeroptera, commonly referred to as mayflies, are found throughout the world. Within the order of Ephemeroptera resides a superfamily, Ephemeridea, commonly called burrowing mayflies. This common name was acquired due to certain physical and behavior characteristics present as nymphs. Ephemeridea nymphs live in the silt of aquatic environments and have adaptations for burrowing which include strong legs, as well as mandibular tusks. One exception to this is the family Behningiidae, which burrow, but lack the commonly associated mandibular tusks. Morphological data supported Behningiidae as sister to the other tusked burrowing mayflies, indicating that first burrowing behavior evolved and was later followed by the development of tusks(McCafferty; 1975 and 2004). While morphological data provides important insights into the evolution and phylogeny of mayflies, the development of molecular phylogenetics offers new contributions when determining evolutionary relationships within this superfamily. Objective: The purpose of this study is to investigate the relationships of the families of burrowing mayflies in order to test the hypothesis of tusk evolution. Methods: The specimens were acquired from collection efforts and colleagues. For each specimen the following laboratory procedures were carried out: DNA extraction, gene amplification via polymerase chain reaction, visualization via gel electrophoresis, and DNA sequencing. The genes targeted for sequencing included 12S mitochondrial rDNA, 16S mitochondrial rDNA, 18S nuclear rDNA, 28S nuclear rDNA, H3 nuclear protein coding, and CO1 mitochondrial protein coding. Data was also acquired from Genbank in order to augment missing data. Taxon sampling consisted of around 20 ingroup and 5outgroup taxa. Phylogenetic relationships were estimated using Maximum Parsimony, Maximum Likelihood, and Baysian methods. Conclusion: The families Behningiidae, Potamanthidae, Palingeniidae were supported as monophyletic. Behningiidae nested well within the other burrowing families. Hence, tusks evolved and were subsequently lost in the family Behningiidae even though it retained the burrowing lifestyle in the nymph.
Nondestructive Isolation of Forensic Analytes with Ionic Liquids
Mattie Jones, Dixie State University Physical Sciences New methods aimed at forensic analysis of sensitive, minute samples are critical to the intelligence community. In particular, successful extraction of dyes from materials found at crime scenes will provide innumerable benefits for matching, identifying, and finding origins of these materials and dyes. Current methods of isolating components of samples by their unique chemical properties are lengthy and often destroy important forensic evidence. Ionic liquids possess the necessary chemical properties to ensure efficient extractions, while maintaining the forensic signatures of the original materials. They also provide a one-pot approach that avoids intermediate species and increases analyte yield while extracting and separating constituents in a more efficient manner. By combining traceable dyes with an ionic liquid, the versatility of single-component extraction-separation-identification was demonstrated. Analysis using absorption and fluorescence spectroscopy validated complete extraction and recovery of trace analytes. Following extraction and isolation, identification by infrared spectroscopy has provided evidence of preserved quality and complete separation of material and dye. This novel approach to forensic analysis is advantageous particularly when sample sizes are extremely limited, but it can be readily scaled to larger applications. Developing a simple and affordable method of achieving specific molecular interactions provides a solution for often unidentifiable evidence in crimes. Harnessing the versatility of ionic liquids in a high-yielding recovery and efficient single-pot methods will enhance forensic abilities for the intelligence community and forensic investigators.
Investigating Anthropogenic Impacts on the Utah Lake-Jordan River Transition Zone Using a Multi-proxy Approach
Buchanan Kerswell, Utah Valley University Physical Sciences This project is designed to investigate anthropogenic impacts on the geochemistry and physical characteristics of Utah Lake-Jordan River transition zone, in Utah Valley, Utah. The zone has experienced dramatic, multifaceted shifts since European settlement in 1847, especially in recent decades. Our chosen study location is uniquely situated to capture changes recorded in the sediment cores due to land use, nutrient enrichment, vegetation shifts and river dynamics since pre-settlement.
Methods to decrease error in conductivity measurements of highly disordered materials
Phillip Lundgreen, Utah State University Physical Sciences By developing a low-noise, high-voltage battery power supply, system noise has been reduced, increasing accuracy of conductivity measurements of highly disordered insulating materials. The method involves a simple parallel plate capacitor setup with the sample sandwiched between electrodes, a voltage potential applied to one electrode, and a measurement device applied to the back electrode measuring current. Previous methods involved use of a commercial power supply with a claimed low noise and high linearity, but with a low AC output ripple. At high voltages (1000 V), however, the noise became apparent in the readings and an unacceptable uncertainty was introduced in our precision conductivity measurements. Through the use of a stable dc battery high-voltage power supply, we were able to reduce noise in current measurements and achieve a more accurate measurement of conductivity for various samples.
Mode transitions in strings with an abrupt change in mass density
Nathaniel Wells, Utah Valley University Physical Sciences Previous research with bottle-shaped thermoacoustic prime movers has revealed hysteresis with transitions to higher modes as the cavity length is varied. A string with an abrupt change in mass density was studied to investigate potentially similar behavior. Three base guitar strings were studied at three different tensions with weights of 25, 30, and 35 lbs. Each string consisted of a “thin side” that was stripped to the stainless steel core and a “thick side” with an outer wrapping of nickel around the core. The strings studied had diameters of 0.65, 0.45, and 0.50 mm on the thin side and 2.14, 1.31, and 1.24 mm on the thick side, respectively. An anchor was attached on one end of a short board with a pulley at the other for hanging the weight. The end of the thick side of the string was attached to the anchor, and the string was guided over the pulley, with the change in mass density occurring approximately 12 cm from the pulley. Measurements were taken after placing a glass jar under the thick end of the string, between 42 cm and the position of the change in mass density, in 3-cm steps. The string was plucked and the dominant frequency was recorded with a microphone at each location. Frequency data is generally consistent with a solution to a 1D wave equation. Preliminary results indicate mode transitions occurring for all strings, with several hysteresis region candidates.
Correlation analysis of military aircraft jet noise
Zachary Anderson, Brigham Young University Physical Sciences Correlation analysis is useful in extracting spatiotemporal relationships between signals and can be used to examine features of near-field jet noise for source properties. Characteristic correlation envelopes determined by Harker et al. [JASA 133, EL458 (2013)] can be used to relate correlation lengths to fine and large-scale turbulent structures. As an extension, cross-correlation shows spatial variation in jet noise and further reveals the transition between short (fine-scale) and long (large-scale) correlation lengths. These analyses are applied to a military jet dataset of a ground based linear microphone array positioned 11.6 m from the jet axis. Correlation analyses over multiple engine conditions and observation directions are reported. In particular, a maximum correlation coefficient greater than 0.5 exists over a range spanning multiple wavelengths in the region of greatest overall sound pressure level at military power. [Work supported by ONR.]
Analysis of Untriggered Small Events in the HAWC Telescope
Ian Sohl, University of Utah Physical Sciences Current software in the High Altitude Water Cherenkov (HAWC) Telescope data collection system only triggers saving of events that pass a specified number of hits and energy. Our analysis of the untriggered (and unsaved) data will identify the number of potentially significant events that are bypassed by the existing software. By the application of a sorting function onto current Monte Carlo generated data, we can categorize incoming events into various types of particles, primarily muons, while also filtering out randomized noise from the photomultiplier tubes used in HAWC. Due to the relatively low rate and energy of the photomultiplier tube noise, many of the significant events for the untriggered set are potential useful particles. Our triggering algorithm, based on the energy, timing and saturation of the tanks is primarily focused on separating muons from the bulk of data. These raw rate data for small events are a relatively unexplored area for HAWC and measurements can be useful for a variety of calibration tasks for the telescope. They can be useful for understanding the impact of the atmosphere on the telescope’s data collection, as well as the triggering of the photomultiplier tubes through secondary sources. This untriggered data can also be used in a variety of useful forms not directly related to HAWC’s primary usage goals, primarily solar physics. Due to the relatively low energy and hit count from solar events, most of the data are thrown away by the triggering algorithm.
Evaluation of potential impact of tar sands mining on the integrity of groundwater quality in PR Spring, Uinta Basin, Utah
Mallory Millington, University of Utah Physical Sciences Groundwater in the western United States is a limited and important resource for agriculture, industry, and residents alike. Knowing the movement of groundwater is critical to understanding the potential of groundwater contamination from human activities. While groundwater flow is difficult to quantify, it typically recharges in high elevation and discharges towards lower elevation. The first commercially-approved tar sands mine in eastern Utah is located on a ridgetop in the PR Spring area within the high plateaus on the south rim of the Uinta Basin. To evaluate the potential of groundwater contamination due to tar sands mining a study was conducted to understand groundwater flow in the PR Spring area, specifically the canyon directly south of the tar sands mine called Main Canyon. Water samples were taken from four groundwater springs at elevations ranging from 7040 to 8040 ft in or near Main Canyon. Water quality measurements taken in the field showed that the lower springs exhibited higher conductivity (900 vs. 636 μS/cm) and lower dissolved oxygen (30% vs. 88% saturation) than the higher elevation springs. This suggests that the lower springs have had a greater amount of water-rock interaction and so are chemically more evolved than the springs at higher elevations. SF6 age dating indicated that the high elevation springs are younger than the lower elevation springs, 5.5 vs. 16.0 years since recharge respectively. The field parameters and SF6 age data all indicate that higher elevation springs are younger and less chemically evolved than the water at lower elevations. This indicates that the springs in Main Canyon are sourced from local recharge at the ridgetops. Given these findings the tar sands mine should consider taking preventative measures to protect groundwater resources.
Wavelength Detection from Filtered Photodiodes
Nils Otterstrom, Brigham Young University Physical Sciences Filtered photodiodes show potential as inexpensive laser wavelength meter. Photocurrents are measured digitally. The photocurrent is digitized using externally controlled integration times to achieve the highest precision possible from the digital to analog converters on the photosensor chip. Using an algorithm we’ve developed and calibrated intensity curves, we can precisely calculate wavelength from the output of the different photodiodes. Limitations due to etaloning from reflections off of the surfaces of the filters were analyzed and effectively mitigated, allowing the device to achieve high precision with a stability of 0.102 nm over several hours.
Characterization of undocumented bonneville shorelines with evidence of possible tsunamis
Brittney Thaxton, University of Utah Physical Sciences There are many undocumented shorelines seen in Utah. As many as 30+ shorelines have been identified along the edges of the basin throughout the state. The purpose of this study is to characterize undocumented shorelines and identify potential evidence for tsunamis that might have occurred in Lake Bonneville thousands of years ago in areas such as Little Mountain, Stansbury Island, and Promontory Point, Utah. Lake Bonneville existed 32-10K years ago and was influenced by the Wasatch fault which was active as early as the Miocene. Scarps of this age are common and range between 15-20 feet in height (Machette, Personius, Nelson, Schwartz, Lund 1991; Dinter, Pechman, 2004a and 2004b). Several faults beneath Lake Bonneville could have produced tsunamis. The more water that is displaced the greater the tsunami will become and leave a greater impact onshore (Dutykh and Dias 2009). The East Great Salt Lake fault cuts NS across Bear River Bay east of Promontory Range. This fault line is an excellent candidate for causing a tsunami during the Lake Bonneville highstand because it is beneath the Great Salt Lake meaning it would have uplifted the entire water column of Lake Bonneville and since it is also close to the Promontory Range, it is likely it would leave tsunamite evidence along the shore. The fault rupture interval is between 3,000 and 3,500 years meaning fault ruptures could produce a tsunami during the lake’s high stand. Tsunamite is the term used for deposits related to tsunamis. The tsunamite features found along the shorelines will be similar to sedimentary features such as normally graded sand, mudstone clasts, and other gravel deposits that are out of place with the known shorelines (Shanmugam 2006). This is a unique opportunity to discover ancient tsunami evidence in Utah, a topic that has yet to be pursued.
How many class ii wells present a risk for induced seismicity?
Isaac Allred, Utah State University Physical Sciences We examine the number and location of Class II wells in the central U.S. to constrain future work on the potential for induced seismicity. The EPA, state oil & gas commissions, scientific papers, and media stories frequently state that there are ~140-160 k Class II wells. Excluding California, we expected to find approximately 120 k wells; but instead found ~ 82 k active injectors in the available databases. State datasets vary in accessibility, availability, and content of well data. Lack of digitized well data also limited our online search, and several states require FOIA requests to be filed. State databases with poor searching and sorting functions further complicated data mining, requiring a well-by-well search, and for several states, well locations and injections were difficult to determine. Common discrepancies between EPA well totals and state database totals appear to be due to counting of plugged and abandoned wells, and wells that are permitted but not in use. No data has been retrieved for about 1,600 wells on tribal lands and Indian Country, and several states would not provide “confidential” well data. Of the active injectors, at least 55 k wells inject into producing, pressure-depleting oil and gas formations and are less likely to generate damaging earthquakes. Of the ~ 16 k non-EOR wells, we found 3,400 wells that inject at depths > 1.8 km, where most M > 3.0 midcontinent earthquakes occur. We will present examples of data from several states, that show the locations and depths of injectors, earthquakes, depth to basement, and we will provide an overview of the public file sharing system of the data. We will search for correlations between the depth of injection, the number of injection wells, recent seismic activity, the nature of the subsurface geology, and regional stresses.
Histone modifications are altered in the renal cortex of ventilated preterm lambs
Adam Blair, University of Utah Physical Sciences Objectives: Histone covalent modifications influence regulation of gene expression. Changes in histone covalent modifications are triggered by abrupt changes in environment, such as preterm birth followed by mechanical ventilation (MV). Whether histone modifications also occur in the kidney of chronically ventilated preterm lambs is not known. We hypothesized that ventilation of preterm lambs affects histone modification in kidneys.
Effects of Environmental Pollutants on Endophytes in Rumex crispus
Yonic Michaca, Utah Valley University Physical Sciences It is well known that some of the worst air pollution in the country each winter is found along the Wasatch front in northern Utah. This study examines the effects of environmental pollutants on the production of the novel compounds produced by the endophytes found in Rumex crispus. The Rumex crispus plant was selected due to its natural medicinal uses. It is anticipated that environmental pollutants have an effect on the production of bioactive compounds in order to protect their plant host from foreign pathogens. The theory is that the more stressful environment a plant lives in, i.e. desert climates, high altitude, and man-induced stresses such as pollution, the more bioactive compounds the endophytes produce as a response to protect their plant host. This study analyzes the effects of environmental pollutants along the Wasatch front on the production of novel bioactive compounds produced by the endophytes found in Rumex crispus. Plant samples are also collected from sites near the Wasatch front, but they are not exposed to the same amount of air pollution to be used as a control.
Protein phosphatase (PP) 1 and PP2B do not contribute to palmitate-induced disruption of eNOS enzyme function.
Ting Ruan, University of Utah Physical Sciences Cardiovascular complications are more prevalent in patients with diet-induced obesity and type 2 diabetes. Both of these conditions are associated with elevated levels of free fatty acids (FFAs). Elevated FFAs might precipitate cardiovascular complications by disrupting endothelial nitric oxide (NO) synthase (eNOS) enzyme function. The physiologically abundant saturated FFA palmitate decreases eNOS phosphorylation at serine 1177 (p-eNOS S1177) in a ceramide and protein-phosphatase 2A (PP2A) -dependent manner. p-eNOS S1177 is a positive regulatory site on the eNOS enzyme. As such, p-eNOS S1177 to total eNOS can be used as an estimate of eNOS enzyme function. We sought to determine the extent to which two other phosphatases that are abundant in the cytosol i.e., protein phosphatase 1 (PP1) and protein phosphatase 2B (PP2B) might contribute to palmitate-induced reductions in p-eNOS S1177 to total eNOS. Bovine aortic endothelial cells (BAECs) were treated for 3 hours with 500 uM palmitate or vehicle in the absence and presence of the PP1 inhibitor tautomycin (3 uM). p-eNOS S1177 to total eNOS was assessed using immunoblotting procedures. Palmitate-induced reductions (30±3%, p<0.05, n=3) in p-eNOS to total eNOS were similar in the absence and presence of tautomycin. These data indicate that PP1 does not contribute to palmitate-induced disruption of eNOS enzyme function. Next, BAECs were treated for 3 hours with 500 uM palmitate or vehicle in the absence and presence of the PP2B inhibitor cyclosporine (100nM). Palmitate-induced reductions (31±4%, p<0.05, n=3) in p-eNOS to total eNOS were similar in the absence and presence of cyclosporine. Taken together, these data suggest that neither PP1 nor PP2B contribute to palmitate-induced reductions in p-eNOS S1177 to total eNOS.
The Use of ArcGIS and Shallow Groundwater Monitoring for Stormwater and Irrigation Management with a High Water Table, Springville, Utah
Andrew Fletcher, Utah Valley University Physical Sciences Springville, Utah, is known for its high water table and many freshwater wetlands and springs, which gave rise to the name of the city. Flooding of barns is a common problem among farmers in western Springville, which is just east of Utah Lake. These frequent barn floods are anecdotally linked to high-intensity precipitation events and the common use of flood irrigation. The objective of this study is to determine the cause of barn flooding and to make recommendations for mitigation of barn flooding for individual farmers with whom we are working in this area. The objective is being addressed first by using ArcGIS to determine the watershed of each barn and the NRCS (Natural Resource Conservation Service) Web Soil Survey to map hydrologic soil groups within each watershed. Results from the larger-scale Web Soil Survey will be supplemented with measurements of soil hydraulic conductivity using the SoilMoisture Equipment Model 2800K1 Guelph Permeameter. The above data will be used in the NRCS Curve Number Method to estimate the volume of surface runoff expected in a 100-year 24-hour precipitation event. The objective is also being addressed by installing shallow, hand-augured wells for monitoring the depth to the water table during high-intensity precipitation events and flood irrigation events. The results will be used to develop recommendations for a combination of (1) installation of French drains for diversion of stormwater (2) modification of current irrigation methods (3) pumping and diversion of groundwater. Results and specific recommendations for individual farmers will be presented at the meeting.
Novel Bioactive Compounds Produced by Juniperus osteoperma
Kip Brower, Utah Valley University Physical Sciences Juniperus osteoperma has been reported to exhibit beneficial pharmacological activity against symptoms of diabetes, as a traditional treatment for kidney ailment and the essential oil of juniper berries has also been subject to investigation for antioxidant activities. Endophytes, particularly endophytic fungi, have produced numerous novel bioactive compounds, several of which are currently used as antifungal, anti-bacterial, and anti-cancer agents in organisms other than their plant hosts. This investigation looks into the possibility of endophytic fungi being a means of producing compounds that may be a functioning agent in antioxidant, antifungal, or hyper/hypoglycemic activities of Juniperus osteoperma. The investigation involves samples of Juniperus osteoperma collected from multiple different locations within Utah, and isolates the resident endophytic fungi.
Exploring Norbornenyl Solvolysis Rates with Electronic Structure Computational Methods
Byron Millet, Weber State University Physical Sciences The relative solvolysis rates of norbornenyl derivatives have been of interest. To date, only one other norbornenyl compound has been found that solvolyzes slower than anti-7-norbornene. It has been suggested that through-space interactions between π-bonds plays a significant role in stabilizing the carbocations. However, through-space interactions do not account for the similar observed solvolysis rates of nearly identical compounds both with and without adjacent π-bonds. Studies have shown that the stability of these compounds is significantly affected by σ-bond interactions. We report on our current computational study of the relative energies of several norbornenyl compounds with and without adjacent π-bonds to evaluate both π-bond and σ-bond effects on the stability of the norbornenyl cations. The effect of a ketone functional group on the relative stability of the carbocation is also analyzed. The literature solvolysis rates of the various norbornenyl derivatives and the stability of their respective cations is compared. With some exceptions, a correlation was found between the stability of a derivative’s carbocation and its respective rate of solvolysis.
Bio-Inspired Molecular Manganese-Calcium Catalysts for Water Oxidation
Nicholas Labrum, Utah State University Physical Sciences Increasing concerns on the anthropogenic climate change, rising global energy demands, and diminishing fossil fuels have urged the search of alternative carbon-neutral and sustainable energy resources, among which solar energy stands out as the most promising target since it is the largest exploitable resource. However, its nature of diurnal variation, intermittence, and unequal distribution requires efficient and cost-effective capture, conversion, and storage. Generation of chemical fuels, such as hydrogen, from solar energy input represents an appealing approach to meet this goal. An ideal scheme would tap hydrogen from the splitting of water with concomitant evolution of oxygen. Due to the nature of the four-proton and four-electron process, water oxidation is the bottle neck of the overall water splitting process. Nature catalyzes water oxidation using an oxygen evolving complex (OEC) in photosystem II. This project aims at mimicking the OEC to prepare and investigate bimetallic Mn-Ca catalysts for water oxidation catalysis. Calcium has been reported to be critical in water oxidation by OEC, however its functional role has not been well studied. By positioning a calcium atom in the second coordination sphere of manganese in molecular scaffolds, we are able to systematically study the functional role of calcium at the molecular level. Our project will prompt the development of water oxidation catalysis and benefit artificial photosynthesis at large.
Melting Glaciers: A source of mercury and other trace elements to high elevation ecosystems at Grand Teton National Park?
Greg Carling, Brigham Young University Physical Sciences Wyoming the second most glaciated state in the lower 48 United States has seen drastic changes in the size of its glaciers. Glaciers in high elevation ecosystems of Grand Teton National Park are not anywhere near to the size that they were 100 years ago. The glaciers continue to decrease in size every day. As the environment changes the glaciers change in size and can be affected by many factors in the environment. Deposition of particulate matter from the atmosphere into the glaciers occurs as pollution is becoming worse and more common. Studies done throughout the world have shown that glaciers can act as a source for mercury and other trace metal elements in high elevation ecosystems. Through the assistance of the UW-NPS Research Station Dr. Greg Carling of BYU and his team of graduate and undergraduate assistants retrieved 100 glacial melt water samples from the Middle Teton, and Teepee Glaciers and stream sites in Garnet Canyon, and from the Teton Glacier in the Glacier Gulch area. In the data analysis completed up until this point, concentrations of various trace elements have found in sample sites in close proximity to the Middle and Teton glaciers on the glacial moraine. We hypothesize that these glaciers act as a source for mercury and trace elements that can then be transported to lower elevation ecosystems within the Greater Yellowstone Ecosystem.
Trace element concentrations showing signs of urbanization along the Provo River, Utah
Tucker Chapman, Brigham Young University Physical Sciences The Provo River provides the opportunity to study three systems from low to high anthropogenic activity. Its headwaters are in an undeveloped area of the Uinta Mountains. The river then moves into a valley that is developing from an agricultural to an urban system. The lower portion of the river moves into the urbanized Utah Valley. These systems give the ability to study the changes in trace element chemistry from a variety of sources. Trace element data were collected during the 2013 water year including the spring snow melt. Correlation was analyzed among the different trace elements using multivariate statistics in order to discover trace element sources. The element loads were calculated using USGS Load Estimator (LOADEST) software. The study has implications involving the drinking water of >2 million people in the Utah and Salt Lake valleys and the changes that the shift from agriculture to urban is causing.