Skip to main content
Utah's Foremost Platform for Undergraduate Research Presentation

Engineering

Permanently Fog-Resistant Surfaces Optimized for Polycarbonate

January 01, 2018 12:00 AM
Thomas Shober; Jaxon Roller; Ashley Kennedy, University of Utah

Effects of coral mining on community dominance of macroalgae vs scleractinian coral on three reefs near islands of varying coral wall volumes in the corregimiento Nargana, Guna Yala Province, PanamÌÁ

January 01, 2018 12:00 AM
Jackson Podis, Westminster College In the Guna Yala archipelago, PanamÌÁ, the removal of coral species for construction of coral walls has been a common practice for the Guna Yala indigenous group. This practice has the potential to drastically alter the community structure of offshore reefs. This study analyzed three reefs offshore of islands with varying coral wall volumes to quantify macroalgae and scleractinian coral cover, diversity of scleractinian coral species, and correlation between macroalgae and scleractinian coral cover. All three study sites exhibited significant differences in scleractinian coral coverage; a significant negative correlation was shown between scleractinian coral cover and macroalgal cover, and the site with the largest coral wall volume showed the lowest rates of coral species commonly used for mining. These results are telling of the potential effects coral mining can have on coral reefs in the Guna Yala archipelago, and aim to inform the development of marine resource management plans in the future.

Fabrication of Multi-material Microfluidic Devices

January 01, 2018 12:00 AM
Gabriel Poulson, Brigham Young University

Utilization of Fluid Dynamic Testing to Improve Fluid Transport on Microfluidic PCR Chips

January 01, 2018 12:00 AM
Hayden Brady; Alex Jafek; Sean Harbertson; Raheel Samuel, University of Utah

Digital Representations of Microstructure

January 01, 2018 12:00 AM
David Fullwood; Madeline Foote; Akash Amalaraj, Brigham Young University

Micro Scale Filtration Using Spiral Channel Devices

January 01, 2018 12:00 AM
Sean Harbertson, University of Utah

Separation of biofuels from ionic liquids via reversible solubility

January 01, 2018 12:00 AM
Rhianna Wolsleger, Dixie State University

A Feasibility Study for Implementing a System of Electric Vehicles into Urban Environments

January 01, 2015 12:00 AM
Carlton Reininger and John Salmon, Brigham Young University Engineering Electric Vehicles (EV) are a rising alternative to standard combustion vehicles because of their energy cost savings and reduced carbon emissions. However, EVs come with limitations such as limited driving range and potentially long recharge times. The purpose of this study is to determine the feasibility of implementing an electric vehicle system into an urban environment. Using data provided by the New York City Taxi and Limousine Commission, models are developed and generated to simulate driver shifts and analyze system level impacts from EVs on driver behavior. The models evaluate the number of charge events over the course of a shift and calculate the potential revenue lost to missed fares during charge intervals. Across the system, the results indicate that for a majority of NYC taxi drivers, EVs can be implemented without significant changes in driver behavior, while providing an economic and environmental advantage over current combustion vehicles. These preliminary findings can be used to support implementing such a system in urban environments and these models could be used as a template toward analyzing EV taxi potential in other cities.

Economical Rapid Production of Therapeutic Proteins using Cell -free Protein Synthesis

January 01, 2015 12:00 AM
Hayley Ford, Kristen Wilding and Matt Schinn, Brigham Young University Engineering Therapeutic proteins are specially engineered proteins used to treat many large profile diseases. Such diseases include cancer, diabetes, hepatitis B/C, hemophilia, multiple sclerosis, and anemia. The use of these proteins is specific and highly successful and the demand for these proteins in rapidly increasing. One of the largest problems with the use of therapeutic proteins is the cost of making them. The cost of producing these proteins amounts to hundreds of billions of US dollars every year. There is a growing need to find better, faster, and cheaper ways to create them. As specific therapeutic proteins are coming off patent, research labs are able to explore the processes of making these drugs that have become such a large part of the pharmaceutical industry. Here we report the use of cell-free synthesis as a more cost-effective way to produce these therapeutic proteins. Cell-free protein synthesis is faster and allows for direct manipulation and control of the protein creating environment. Cell-free synthesis can produce proteins in a matter of days as opposed to the weeks it takes to produce them in vivo. The increased manipulation and control of the environment that comes with cell-free synthesis allows improved accuracy in creating the desired proteins and is more adaptable to changes if they need to be made.

Manufacture of Hemocompatible Coronary Stents

January 01, 2015 12:00 AM
Takami Kowalski, Warren Robison, Anton Bowden, and Brian Jensen, Brigham Young University Engineering Using a coronary stent to expand a blocked blood vessel as a way to treat coronary heart disease has proved effective in the past. However, there are risks, such as thrombosis, that are a natural side effect of inserting a foreign object into the body. Creating a stent out of a hemocompatible material such as carbon-infiltrated carbon nanotubes could potentially resolve these issues and also make unnecessary treatments such as dual antiplatelet therapy as a way of decreasing the risk of adverse side effects. Previous research done in this lab has shown that carbon-infiltrated carbon nanotubes can be grown in a pattern defined by photolithography on a planar surface. The present work demonstrates preliminary results from patterning a flat, flexible substrate and rolling it into a cylindrical shape before growing carbon-infiltrated carbon nanotubes as a way to fabricate cylindrical stents, fulfilling all necessary specifications for a stent with the added benefit of hemocompatibility. We also demonstrate growth on curved substrates and explore process parameters for achieving good-quality CNT forests.

Cardiac Tissue Engineering

January 01, 2015 12:00 AM
Jordan Eatough, Jeremy Struk, Andrew Priest, Brady Vance, Brielle Woolsey, Steven Balls, Camille

Retinal Regeneration: Implications of Müller Cell Dedifferentiation

January 01, 2015 12:00 AM
Theo Stoddard-Bennett and Steven Christiansen, Brigham Young University Engineering Damage to the human retina is often irreversible and so currently there are no established treatments of diseases such as dry age related macular degeneration (AMD). Dry AMD results in a loss of sight because of cell death in the macula, a centralized part of the retina which contains a high concentration of photoreceptor cells. One possible treatment would be to limit the rate of cell death within the macula, however this is not a comprehensive solution. Rather, regeneration of the photoreceptors within the retina is necessary to restore sight. In current research, Müller glia cells, a major glial component of the retina, can potentially be used as sources for photoreceptor regeneration in order to combat dry AMD due to their homeostatic regulation of retinal injury. Directed reprogramming would occur through a five step process. The Müller glia would need to undergo de-differentiation to Müller glia-derived progenitor cells (MGPCs), proliferation of MGPCs, migration of MGPCs, neuronal differentiation, and integration in order to generate retinal neurons. Müller cells can be isolated and cultured by dissociating retinal tissue in optimal media. Here we present the dissection and dissociation of rat retinal tissue to obtain purified proliferating Müller cell cultures. Our lab has tracked and modelled the rates of proliferation and phenotypically characterized the stages of proliferation. Using immunofluorescence and PCR tests to confirm purity, we will then expect to run a series of assays to identify growth factors, Wnt signals and cytokines to test the effects of retinal extracellular matrix proteins on Müller cell de-differentiation to MGPCs. The focus of our current research is the identification of reprogramming mechanisms that may possess beneficial data leading to both unique strategies for promoting retinal regeneration in mammals and clinical applications for those living with dry AMD.

Determining the Integrity of Decellularized Porcine Kidney Scaffolds

January 01, 2015 12:00 AM
Benjamin Buttars, Jeffrey Nielson, Spencer Baker, Jonathon Thibaudeau, Angela Nakalembe, Tim

Modeling Shale Oil Pyrolysis: Semi-empirical Approach

January 01, 2015 12:00 AM
Dan Barfuss, Brigham Young University Engineering Shale oil has long been seen as a source of energy that can be incorporated into existing infrastructure. It consists of kerogen (or organic matrix) bound to inorganic rock. This kerogen can be released as an oil-like substance by heating it up to high temperatures without the presence of oxygen (i.e., pyrolysis). Due to advances in NMR (Nuclear Magnetic Resonance) we were able to make an accurate structural based model that can predict the relative tar and light gas yields[1]. We modified the Chemical Percolation Devolatilization Model (CPD) of coal to fit with the more aliphatic nature of oil shale. The CPD model describes the aromatic regions as clusters and aliphatic regions as bridges. As these bridges are broken the model releases groups of clusters that will form tar. In coal the bridge breaking gives off light gases, whereas in shale oil the bridges are much heavier and mostly form tar. We built two models that accounted for this. We also used the composition of the tar and the gas found by Fletcher et. al. [2] to predict what elements would be left and the aromaticity of the carbons. We found that throughout the reaction new aromatic regions were formed. With information from this model,- we are able to better predict the products of oil shale pyrolysis, and describe what happens chemically.

Methods for Simulating SAED and Kikuchi Diffraction Patterns in Atomistic Structures

January 01, 2015 12:00 AM
Adam Herron, Jared Thomas, Shawn Coleman, Douglas Spearot, and Eric Homer, Brigham Young University Engineering For many years, x-ray diffraction and electron diffraction have served as effective means to understand and classify the molecular structure of many materials. Diffraction, as a physical phenomenon, is well known and theoretical diffraction simulation is relatively simple for perfect crystalline structures of known orientation. Prior methods of diffraction simulation, however, are insufficient to predict experimental diffraction patterns of unknown crystal structures or of crystal structures with high defect density. Recent advancements in computing capability and development of atomistic simulation software have greatly enhanced our ability to predict material properties and behaviors under various conditions. Atomistic simulation has become an extremely useful tool in the analysis of dynamic chemical and mechanical systems. It can only be truly effective, however, when it models a real-world application, can be interpreted coherently, and can accurately predict future conditions. Thus, we are developing new tools that bridge the gap between electron diffraction through real materials and simulated diffraction through atomistic simulations. We present a method of generating Kikuchi Diffraction Patterns from atomistic simulation data with no a priori knowledge of the crystal structure or crystallographic orientation. Our research was inspired by the recent work of Coleman et. al. 2013 and builds on their methods of calculating diffraction intensity at discrete locations in the reciprocal domain. We improve on their method by introducing an integration of the structure factor to ensure complete capture of diffraction intensity peaks while maintaining a relatively low density of sample points. This allows us to significantly reduce the required computation time on the analysis of atomistic simulation data. We use this diffraction data to generate simulated Kikuchi Diffraction Patterns.

In Vitro Cell-Free Synthetic Biology Techniques for Optimizing Protein Yields

January 01, 2015 12:00 AM
Conner Earl, Brigham Young University Engineering The emerging field of Cell-free protein synthesis enables the efficient production of complex proteins for a number of exciting applications such as medicines that better interact with the body, vaccines, antibodies, and renewable, sustainable biocatalysts. However, progress is hampered by high costs and low yields of necessary proteins. This project is designed to improve protein yields and drive down costs by studying techniques of optimization of protein yields in Cell-Free protein synthesis. Our main area of focus is the inhibition of naturally occurring ribonucleases (RNAses) which are enzymes that degrade essential elements for protein synthesis- specifically, the mRNA used to transcribe protien. One of the techniques we intend to use for inhibition of these RNAses is by complexing the RNAse with an appropriate RNAse inhibitor protein thus limiting or eliminating its function of degrading mRNA. The aims of this research project is to: (1) Identify appropriate RNAse inhibitors (2) Design and synthesize inhibitor genes (3) Express, purify and assay RNAse inhibitors (4) Improve Cell-free protein synthesis yields utilizing RNAse inhibitors for analysis of activity and effectiveness as well as the enhancement of cell-free protein synthesis yields. Accomplishing these goals will result in more efficient systems and more accurate analysis that may lead to cheaper, more readily available vaccines and pharmaceuticals produced through Cell-free protein synthesis.

Purification of Air Using Molecular Modeling and Photocatalytic Nano-Materials

January 01, 2015 12:00 AM
Nandini Deo, University of Utah Engineering Air quality in the United States has come under scrutiny in recent years. Many pollutants are trapped in the air we breathe in the form of photochemical smog. The aim of this research is to aid the breakdown of these pollutants. Peroxyacetyl Nitrate (PAN) is a predominant smog species; the research conducted aims to decompose this molecule and capture the resulting particles using the photocatalytic properties of Titanium Dioxide Nano tubes. The research conducted thus far has focused on the following questions:What molecules does the thermal decomposition of PAN produce? Is there a metal substrate to attach to TiO2 Nano-materials that aids the breakdown of PAN and its decomposition products? Can a sustainable process/device be identified to functionalize these materials? Literature research shows that PAN thermally decomposes into CO_2, NO_2, methyl nitrate, and formaldehyde. Methyl Nitrate and CO_2 may be eliminated using specific experimental conditions. Hence, it can be determined that the substrate attached to TiO2 must decompose PAN, NO_2 and formaldehyde. Using the molecular modeling programs Avogadro and MOPAC, 50 metals were optimized in relation to Formaldehyde, NO_2, and PAN. To find each metal’s reactivity to each target compound, HOMO/LUMO (Highest Occupied Molecular Orbital/Lowest Occupied Molecular Orbital) energies were calculated and used to find the common reactive metals between the target compounds: Cobalt, Silver, Iridium, and Niobium. To test whether the most complex product of the PAN decomposition (Formaldehyde) will break down, a device was created using a 3-D printer and Cobalt functionalized nanotubes. Pure formaldehyde, a blank sample (no tubes), and a sample with functionalized tubes were run through the device in the form of vapor, in front of a solar simulator. The captured vapor’s GC/MS results show an almost complete breakdown of Formaldehyde with the use of the device containing the functionalized tubes.

Automated Kinematic Analysis of Prepulse Inhibition Behavior in Larval Zebrafish

January 01, 2015 12:00 AM
Scott Anjewierden, James Newton and Joshua Barrios, University of Utah Engineering Organisms in their natural environment are constantly presented with sensory stimuli. These stimuli must be filtered by the brain to select an appropriate behavioral response. A significant example of this filtering process is audiomotor prepulse inhibition (PPI). In PPI, the startle response to a loud noise is suppressed by a preceding stimulus of lower intensity. This ability to optimize behavior in response to environmental context is an essential brain function. Defects in PPI are associated with neurological disorders such as obsessive- compulsive disorder, Tourette syndrome, and schizophrenia. This project demonstrates the development of new software to analyze swim kinematics in a restrained, larval zebrafish model of PPI. Our programs automatically extract several kinematic parameters from image sequences of behaving animals and use them to classify behavior into one of three, stereotyped categories. Correct classification is reported in 96.32% of trials (n = 162). This automated analysis will now permit a more robust study of PPI in these animals, where the brain’s experimental accessibility will allow us to discover the cellular bases of sensory filtering.

Expanding the Genetic Code Through Simultaneous Insertion of Unnatural Amino Acids

January 01, 2015 12:00 AM
Steven Stanley, Brigham Young University Engineering The genetic code has long been restricted to a set of 20 fundamental building blocks called amino acids. Recent research has expanded the genetic code through unnatural amino acids (uAA), thus adding enormous possibilities to the potential chemistries of proteins. Because nature is highly selective in the protein translation process, it has proven extremely difficult to successfully insert multiple uAAs simultaneously. The incorporation of an uAA with in vitro methods typically relies on the use of the amber stop codon as a mutated insertion site. A stop codon placed at the middle of a gene can code for either the uAA or termination, thus, protein synthesis may often terminate prematurely instead of inserting the desired uAA. This inefficiency inhibits the possibility of inserting multiple uAAs simultaneously. We propose a novel method that will allow for multiple uAAs to be inserted simultaneously. Our method involves isolating a minimal set of tRNA for in vitro protein synthesis, allowing for uAA insertion to occur at codons other than the amber stop codon. My work has focused on the production of 4 versions of uAA-tRNA synthetase, a protein that charges tRNA with the uAA. We are currently growing these 4 different proteins in bulk and testing their activity. We will test them for compatibility, confirming that they do not interfere with one another and other synthetases native to our in vitro protein synthesis system. These uAA-tRNA synthetases, in conjunction with specialized tRNA, will provide the basis to efficiently incorporate multiple uAA simultaneously. The success of this project will have many practical applications ranging from new therapeutics to new methods of medical diagnosis.

Characterization of the Role of Oxytocin in Larval Zebrafish Behavior

January 01, 2015 12:00 AM
James Newton, Scott Anjewierden, and Sasha Luks-Morgan, University of Utah Engineering Oxytocin (OXT), a neuromodulatory peptide produced by the hypothalamus, is involved in a variety of physiological and behavioral phenomena. Exogenous OXT and drugs that mimic OXT signaling are potential treatments of a number of neurological disorders. The canonical mechanisms of OXT function are neuroendocrine in nature, as the peptide is released into circulation through the neurohypophysis. However, OXT has also been shown to exert some of its effects through direct synaptic release within the central nervous system. Using the larval zebrafish as a model, we seek to identify targets of these directly projecting OXT neurons and study what role they play in the modulation of behavior. Critical to this analysis are computer programs which enable precise quantification of anxiety, social behavior, and reward learning. Our custom-written software automatically identifies and tracks free- swimming fish, using measured positions over time to evaluate behavior in a variety of paradigms. In combination with molecular, cellular, and optogenetic manipulation of OXT networks, this project will allow a fuller understanding of the relationship between these neurons and behavior.

Mobile Technologies For People With Disabilities And Impairments

January 01, 2014 12:00 AM
Varvara Jones, Utah Valley University Engineering Mobile devices are promising tools today to people’s life thanks to lower-cost hardware, steep subsidies from wireless carriers and the popularity of mobile apps. Equipping with touchscreen is the point of fulfillment for all that a mobile device promises to deliver to normal users. However, few mobile devices today have been built that address accessibility and usability of the touchscreen for a wide range of physical capabilities and challenges. In this research, we investigate human capabilities, environmental factors and hardware ergonomics that can improve the usability when people with impairment disabilities use a touchscreen-equipped mobile device.

Laser-Triggered Drug Release from Liposomes

January 01, 2014 12:00 AM
Benjamin Lindsay, Brigham Young University Engineering Current treatments for cancer and diseased tissue often cause severe side effects due to drug interactions with healthy cells. In order to minimize these effects, we are developing a nano-scale near-infrared (NIR) light-responsive drug delivery system based on liposome-encapsulated perfluoropentane (PFC5) emulsions with gold nanorods in the PFC5 phase. The nanorods efficiently convert NIR light to heat, vaporizing the liquid PFC5 emulsions, which have boiling points near body temperature. Emulsion vaporization increases the volume inside the liposome enough to burst the phospholipid bilayer and release encapsulated cargo. This system will allow continuous therapeutic drug release localized at the site of NIR laser irradiation with a low-power, portable NIR laser diode. To date, we have successfully loaded PFC5 emulsions with gold nanorods and have loaded liposomes with PFC5 emulsions. Previous work in our lab has shown that a release to the cytosol of cells can be induced by ultrasound using similar liposomes. Experiments designed to demonstrate NIR laser-induced cargo release are currently in progress. We will continue to improve upon this system over the coming months to increase release and decrease the required laser power.

Restoration of continence via electrical stimulation following surgically induced incontinence in felines

January 01, 2014 12:00 AM
Shana Black, University of Utah Engineering Goals: The pudendal nerve (PN) was targeted in attempt to create controlled micturition via intrafascicular electrical stimulation (IES) following the onset of surgically induced incontinence. We investigated both the effectiveness of unilateral and bilateral transection of the PN in creating a model of urinary incontinence and the ability of IES of efferent fibers to excite the external urethral sphincter (EUS) in order to restore a controlled voiding pattern. High Density Utah Electrode Arrays (HD-USEAs) were used to provide IES in these studies.

Foot-and-Mouth Disease Vaccine: Technical and Political Challenges to Vaccine-based Eradication

January 01, 2014 12:00 AM
Anthony Bennett, Brigham Young University Engineering Foot Mouth Disease is considered to be the greatest hindrance to livestock trade in the world. The disease is extremely contagious and can transmit via aerosol, food scraps, and through blood, and tears among other transmission routes [1]. Currently, technological challenges hinder eradication efforts due to a wide variety of FMD strains, high vaccine production costs, as well as limited efficacy of vaccines across strains [2]. The countries most affected by the disease also face economic, social, and political challenges to disease eradication. Based upon historical evidence disease eradication has proven to be possible as shown in the US, the UK, and other countries [3]. In this presentation, we highlight these challenges and propose various routes to eradication in order to open up economic opportunities to developing countries as well as eliminating the threat of a disease outbreak in countries currently free of the disease. Morgan, E.R., et al., Assessing risks of disease transmission between wildlife and livestock: The Saiga antelope as a case study. Biological Conservation, 2006. 131(2): p. 244-254. Parida, S., Vaccination against foot-and-mouth disease virus: strategies and effectiveness. 2009. Perry, B. and K. Sones, Poverty reduction through animal health. Science, 2007. 315.

Benefits of Using RA and SQL Together in an Educational Environment

January 01, 2014 12:00 AM
Bryce Ostler, Utah Valley University Engineering Much of SQL’s power derives from SQL’s declarative rather than procedural nature: a programmer describes the result desired rather than how to produce the result. Systems using SQL must translate SQL’s declarative language into a procedural language in order to execute queries. Relational Algebra (RA) is a procedural language that SQL can be transformed into and executed on a computer using a RA engine. Optimizations are applied to RA code to improve the performance of a translated query. The author of this abstract will present a simple RA engine written in Python and how it has been used as part of a Database Theory course.

Immobilizing Biocatalysts onto Surfaces

January 01, 2014 12:00 AM
Christopher Hutchings, Brigham Young University Engineering The biocatalysis industry has been rapidly expanding due to the fact that there has been a greater demand for ecologically friendly manufacturing processes. The benefit of biocatalytic systems is that it enables stereo-, chemo-, and regio- specificity in chemical manufacturing. This in turn reduces wasteful byproducts from chemical manufacturing. This is especially valuable in industries where removal of chemically similar but physically harmful waste products is essential. The problem with the traditional biocatalytic processes is that they are hindered from limitations in areas such as enzyme stability, leaching, recoverability, and reusability. These limitations significantly impede the cost-effectiveness of biocatalysis for industrial applications. The processes of enzyme immobilization like adsorption, entrapment, and other such forms of immobilizations provide improvements such as stability, recoverability, and reusability. Though they provide improvements they also go through enzyme leaching, complicated or even toxic conjugation procedures and have a lack of specificity to attachment location from. This ends in being counterintuitive and defeats the purpose of enzyme immobilization. It is here we start to build upon the recent advancements in unnatural amino acid and incorporating them into enzymes to demonstrate a biocompatible and covalent enzyme immobilization process that improves protein stability and enables attachment orientation control. This system we refer to as the Protein Residue-Explicit Covalent Immobilization for Stability Enhancement or PRECISE system, and it permits the covalent attachment of enzymes at potentially any location on the enzyme onto a surface. Using this process, we create reusable enzymes that are more stable and more resistant to harsh conditions. We have also concluded from this process that there is no leaching and increased stability from immobilization with the enzyme with satisfactory results in enzyme activity.

Exploring Compliant Haptic Devices

January 01, 2014 12:00 AM
Neil Hinckley, Brigham Young University Engineering Due to the increasing interest in combining the physical and digital world devices which allow users to naturally interact with digital systems are becoming much more important and prevalent. In order to improve upon standard haptic controllers and interfaces we explored compliant haptic devices, which us a compliant member to provide tunable force feedback to users. We were able to produce a prototype device and demonstrate some of the capabilities and advantages of compliant haptic devices.

Instrumentation of a Force Measurement System for On-Ice Figure Skating Jumps

January 01, 2014 12:00 AM
Daniel Smith, Brigham Young University Engineering Although it is known as a graceful sport, figure skating can take a serious toll on skaters’ bodies. Considering that figure skaters commonly train five days per week, with 50-100 jumps per day, it is not surprising that repetitive stress injuries are a serious issue in figure skating. Because the forces associated with these jumps are poorly understood (including their magnitudes, loading rate, and when they occur) training plans designed to prevent injury are incapable of preparing athletes to best avoid their negative effects.

3D Immersive Visualization Systems: The Vuepod

January 01, 2014 12:00 AM
Josephine Bastian, Brigham Young University Engineering 3D immersive visualization systems, or CAVEs™, have found wide adoption for use in geosciences, planetary science, medical research, and computer science. However, much of the potential for such systems in practical civil and environmental engineering settings has been severely limited due to 1) extreme costs in both hardware and software; 2) immobility due to calibration and darkroom requirements; and 3) extensive and expensive manpower requirements for both operation and maintenance. This project presents the development and testing of a new mobile low-cost immersive stereo visualization system – the “VuePod” – that attempts to address these challenges through the use of commercial-off-the-shelf technologies, open source software, consumer-grade passive 3-D television monitors, an active tracking system, and a modular construction approach. The VuePod capitalizes on recent functional advancements and cost decreases in both hardware and software and is demonstrated herein as a viable alternative to projector-based walk-in CAVEs and their limitations. A description of the hardware and its assembly, software and its configuration, and the modular structural system is presented as well as results from several benchmark computation and visualization tests.

Ideal Combustion Efficiency of a Survival Biomass Cookstove

January 01, 2014 12:00 AM
Cameron Bell, Brigham Young University Engineering 72-hour emergency kits are often inadequately equipped; they lack means to treat water or cook food, compromising chances of survival in an extended critical situation. Dr. Jones and I aim to develop a foldable, lightweight biomass cookstove to solve this problem.

A High-throughput Linear Expression Template System for Analyzing Protein Activity and Stability

January 01, 2014 12:00 AM
Mark Lindsay, Brigham Young University Engineering The protein production industry which creates vaccines, cancer drugs, and enzymes for chemical manufacturing and biocatalysis has revenue of over $160 billion a year. However, there are several significant protein production obstacles: high production costs exacerbated by difficulties with protein purification, retention, and stability. By better understanding protein structure and function we can resolve these issues. However, traditional methods of studying protein structure and function are costly and time consuming, taking several days to even a week to study one or a few sites. We have developed a process to study up to potentially hundreds of sites simultaneously in a matter of hours.

Optimization of Decellularization Processes for Renal Structures

January 01, 2014 12:00 AM
Jeffery Nielson, Brigham Young University Engineering Annually, 500,000 US inhabitants suffer from end-stage renal disease (ESRD). Allogeneic transplantation struggles with few donors and the high risk of organ rejection. Decellularized kidneys reseeded with autologous cells present a promising solution. Proposed decellularization methods require long times or high flow rates that may damage extracellular matrices’ (ECMs’) native architecture and lead to implantation thrombosis. We aim to optimize decellularization to preserve ECM integrity for subsequent recellularization and reimplantation.

Cryogenic Motion in Nickel Σ3 Grain Boundaries

January 01, 2014 12:00 AM
Cameron Rogers, Brigham Young University Engineering The mechanical properties of materials are greatly influenced by their microstructure. Grain boundaries, part of the microstructure, effect mechanical properties and the manufacturing of crystalline solids. Grain boundaries in nickel have been shone to be more mobile at temperatures approaching the melting temperature (Olmsted, Holm, and Foiles, 2009). However, little is know about their behavior at low temperatures, and the notion that mobility decreases with decreasing temperature may be incomplete. Using the molecular dynamic simulator LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simulator) we are simulating the mobility of 41 Σ3 boundaries in nickel, a face centered cubic (FCC) metal, at various cryogenic temperatures. We have begun to see that these boundaries defy the previously stated notion and move faster with decreasing temperature. Using these molecular simulations we are also investigating the underlying mechanisms for this phenomenon, which could lead to further investigation.

Developing a Kinetic Model and Identifying Additional Factors for Müller Cell-Mediated Retinal Regeneration

January 01, 2014 12:00 AM
Christopher Burns, Brigham Young University Engineering People around the world suffer from degenerative diseases of the retina that can eventually lead to blindness, including age-related macular degeneration. The human retina does not regenerate spontaneously, increasing the severity and long-term effects of these diseases. Currently, a highly-successful treatment for degenerative diseases of the retina doesn’t exist. Some attempts at retinal regeneration have slowed or stopped degeneration (Lanza). However, restoration of sight to its pre-diseased state requires regeneration of retinal tissue, not simply impedance of degeneration.

The effect of sugar on cobalt Fischer-Tropsch catalysts

January 01, 2014 12:00 AM
Brad Hancock, Brigham Young University Engineering Fischer-Tropsch (FT) synthesis is a reaction used to convert carbon monoxide and hydrogen into high-quality liquid fuels. The reaction takes place in the presence of a cobalt- or iron-based catalyst. An important factor in how well a catalyst works is how highly it is dispersed on a given support. Sugar can be used to increase the viscosity of the impregnation solution to change the dispersion of the cobalt on the alumina support. The present study will determine the effect of adding sugar to the impregnating solution and dispersion of cobalt on the alumina support.

Secretion and purification of recombinantly expressed synthetic spider silk protein in Escherichia coli

January 01, 2014 12:00 AM
Ryan Putman, Utah State University Engineering Spider silk possesses superior mechanical properties to most other biological or man-made materials. In particular, research has demonstrated that spider silk is as strong as Kevlar, yet much more elastic. The unique feature of both strength and elasticity naturally piques interest in numerous scientific fields (e.g. medical sutures, automobile seat belts, or athletic performance wear). However, the limiting factors in using spider silk on a commercial scale are the production of sufficient protein product and the ability to do so in a cost-effective manner. An additional challenge is due to the territorial and cannibalistic nature of spiders, which makes harvesting their silk from large “spider farms” an infeasible task. To overcome these limitations, an approach using synthetic biological engineering principles has been employed. This emerging field of study provides a powerful tool, the use of standard biological parts called BioBricks. Using these standard DNA parts, a genetic circuit with the necessary regulatory components was engineered to recombinantly produce a synthetic spider silk protein in the microorganism Escherichia coli, which will provide a more consistent and sustainable source of spider silk than by harvesting directly from spiders. Expression of this recombinant protein has been verified through SDS-PAGE protein gels and subsequent protein immunoblot. The next step is to create a genetic circuit that will be used to secrete the spider silk protein outside of the E. coli bacterium. This could greatly reduce the downstream processing costs associated with protein purification as well as potentially increase overall yield. Therefore, a genetic tag that targets products for secretion has been fused to the spider silk coding regions. Further testing is required to determine the difference in overall protein yield from secreting as opposed to non-secreting strains of the engineered bacteria. Once these values are determined, the production can be optimized and scaled-up.

The Chess Process

January 01, 2014 12:00 AM
Todd Davis, Brigham Young University Engineering Oil shale is a sedimentary rock containing about 10% oil hydrocarbons. The United States has about 4 trillion barrels of oil in large regions of Colorado, Utah, and Wyoming. The hydrocarbons can be extracted by heating the shale to about 1000 F. This requires excessive amounts of energy, making it difficult to extract more energy than is consumed. We are researching a method to reuse or recycle the thermal energy of the heated shale back into the whole process, increasing the efficiency. This method is analogous to co-current or counter-flow heat exchangers in fluid flow. We are currently researching counter-current flow. To accomplish this we designed our retort (high heat kiln) to move the oil shale through a series of baffles. As it flows, the shale is heated and the oil is extracted as it becomes a vapor. A vacuum pump extracts this energy rich vapor out of the retort where it is condensed into a liquid oil. Meanwhile, the heated inert rock of the shale is returned adjacent to the incoming cold shale (counter-current heat exchange). This proximity of heated shale to cold shale allows the thermal energy to be transferred. 80% of the sensible heat has been recovered in our research. As stated above, the whole mechanism for this process is a rotating retort (kiln). The retort is about a 1 meter in length and ½ a meter in diameter. The kiln, on its small scale, can process about 5 tons oil shale/day. This comes to be about 85 gal Oil/day or 1.5 barrels/day.

Vapor-phase Deposition and Silane Functionality to Address Issues in Silane Capping of ZnO Nanoparticles for Use in Neurological Disorder Treatment

January 01, 2014 12:00 AM
Sean Bedingfield, Utah State University Engineering The delivery of zinc ions using ZnO nanoparticles within the body has been shown to cause the destruction of tumor cells and may also treat neurodegenerative disorders. The silane capping of ZnO nanoparticles is employed as a post-synthesis method to protect them from dissolution in polar solvents. Preliminary research demonstrates standard methods of silane capping result in aggregation of nanoparticles. Aggregation produces particles significantly larger than the original diameter of the nanoparticles, making them too large for some medical applications.

MOS Current-Gain Characterization in Weak and Moderate Inversion Regions

January 01, 2014 12:00 AM
Michael Borgholthaus, Brigham State University Engineering This paper seeks to demonstrate the simulated gain characterization of MOS transistors in different regions of channel inversion on silicon. In the weak region of MOSFET inversion a constant value of gain is observed. When current is increased and the device determined to be strongly inverted the gain falls off with the square of k/L from this constant gain. Between the weak and strong inversion regions is the moderate inversion region. In the moderate inversion region the gain rises above the constant weak inversion value before falling off as the channel becomes strongly inverted. If biased to low or moderate inversion, amplifying circuits can achieve higher gain performance at low currents than could be achieved in the typical strong inversion region.

Investigating Linear DNA Expression Templates

January 01, 2014 12:00 AM
Christopher Werner, Brigham Young University Engineering Preparation of DNA linear expression templates (LET) via Polymerase Chain Reaction (PCR) is significantly faster than procurement of DNA via cell growth and plasmid purification. Unfortunately, linear templates have not consistently achieved protein yields comparable to plasmids in cell-free protein synthesis (CFPS). Possible reasons for lower LET yields were investigated by producing a number of different extracts. Extracts were differentiated by varying harvest time after induction and modifying the extract preparation procedure. These extracts were tested with py71 sfGFP plasmid (producing a reporter protein) and LET’s created through PCR from the same plasmid. Protein yields obtained by fluorescence measurement were plotted against combined tRNA and rRNA amounts obtained through DNA electrophoreses and densitometry. A correlation was seen between tRNA and rRNA amounts and a normalized LET yield (LET yield divided by the plasmid yield under identical conditions). We considered two reasons for this correlation. First, the increased tRNA and rRNA indicated and increase in the concentration of cell translation machinery present, which increased the kinetics of the reaction, allowing LET’s to produce protein quicker before degradation by Deoxyribonucleases (DNAse). Second, the increased tRNA and rRNA amounts acted as a shield for mRNA from Ribonucleases, allowing more of the mRNA to be translated before LET’s were degraded by DNAse’s. Further work must be done to verify the accuracy of this correlation, as well as to determine the cause for increased LET yields in extracts with higher tRNA and rRNA amounts.

Characterizing Electric Fields within an Ion Trap Using Optical Fiber Based Sensors

January 01, 2014 12:00 AM
LeGrand Shumway, Brigham Young University Engineering Ion traps are widely used in the field of mass spectrometry. These devices use high electric fields to mass-selectively trap, eject, and count the particles of a material, producing a mass spectrum of the given substance. Because of the usefulness of these devices, technology pushes for smaller, more portable ion traps for field use.

A Solid-State Ion Detector for Use in Mass Spectrometry

January 01, 2014 12:00 AM
David Lindell, Brigham Young University Engineering Current ion detector technologies require low pressures and temperatures to achieve high sensitivity. These extra constraints result in bulky or expensive ion detection units and make a highly-portable mass spectrometer difficult or impractical to produce. A new ion detector technology that is unhampered by such constraints would allow the construction of miniaturized mass spectrometers. Such devices would have a myriad of potential applications, including use in space probes, on-site chemical weapon analyses, and in-field forensics. This research has produced solid-state ion detection devices with detection levels in the hundreds-of-ions range. The detectors are produced on a printed circuit board, are inexpensive, and are functional at room temperature and pressure. Solid-state detection capabilities were realized by adopting concepts from modern non-volatile (flash) memory and using custom-made low capacitance MOSFETs. Detection occurs as ions impact a Faraday cup and charge the gate of a MOSFET, yielding a voltage change in the circuit. In addition to refinements made by incorporating low-capacitance MOSFETs, commercial MEMS switches (which have only recently become available) are used to produce ion counts at rates up to 30 kHz. Amplification and filtering circuitry has also been added to further increase sensitivity levels. Results of this research show that ion detectors can be reduced in size and complexity, making a portable mass spectrometer more viable.

Urban Rainwater Harvesting Implementation: Institutional and Human-Related Opportunities and Constraints

January 01, 2014 12:00 AM
Stephanie Mitts, Weber State University Engineering The recent development of rainwater harvesting (RWH) as a local government and individual property owner solution to stormwater management and water supply has led to a wide array of individual program implementations across the country. RWH involves collecting stormwater runoff, storing it and applying it for beneficial reuse or release at a controlled rate. Decreased need of freshwater withdrawals reduces hydrology based energy consumption and protects ecosystems, potentially making RWH a more sustainable and efficient practice than centralized water supply. The goal of this research project was to compile and analyze the national trends for local government urban rainwater harvesting program policy. A survey was created and administered to RWH managers across the country to collect U.S. policy information. This report contains information to be used as a guide for local governments and other institutions considering implementing a program to promote RWH.

Non-Intrusive High Voltage Measurement Using Slab Coupled Optical Sensors

January 01, 2014 12:00 AM
Rex King, Brigham Young University Engineering The purpose of this research is to use slab coupled optical sensors (SCOS) to take high voltage measurements at high frequencies. Voltage dividers are currently used to take high voltage measurements. However, these voltage measurements are limited to bandwidths up to the range of 1MHz. SCOS sensors are electric field detectors developed by the BYU optics lab which couple light from a D-shaped fiber into a lithium-niobate slab wave guide. This light couples at certain frequencies and the frequencies at which these resonances occur will shift in proportion to the applied electric field. The electric field measurement can be used to measure voltage.

Improving Loading of the Novel Drug Carrier eLipodox

January 01, 2014 12:00 AM
Erika Handly, Brigham Young University Engineering The development of an effective treatment for cancer is one of the most important goals for research today. One method of treatment is a targeted delivery mechanism using encapsulating drug carriers paired with a release mechanism. The Pitt laboratory has developed a potent chemotherapeutic called eLipoDox that uses a liposomal delivery construct combined with ultrasound release. eLipodox is composed of a liposome that encases an emulsion and the drug Doxorubicin. The emulsion droplet is a perflourocarbon stabilized by a lipid bilayer that contains a high vapor pressure solvent that will expand and burst the liposome upon sonication. The liposome is an artificially made lipid bilayer membrane that effectively encases the drug and does not allow the drug to diffuse freely through the body. Doxorubicin works through intercalating DNA, or distorting the structure of DNA, which is effective in treating tumors. However, it can cause heart failure and thus can have deathly effects for human patients. Encapsulating Doxorubicin minimizes the effects of Doxorubicin to other parts of the body while increasing the efficiency of the drug. Currently, the efficiency of loading the chemotherapeutic drug into the liposome is only around 34 to 38 percent, which is not ideal due to how expensive the drug is and the labor required to make the carrier. Thus, the purpose of this research was to systematically examine loading parameters and test the optimized carrier on a human cancer cell line. Higher temperature, greater sonication rounds, and lower concentration of drug on the exterior all correlated to greater loading efficiency. Cell death was also demonstrated with the optimized construct.

X-table Generation for the RapidSCAT Scatterometer aboard the International Space Station

January 01, 2014 12:00 AM
Nathan Madsen, Brigham Young University Engineering A scatterometer is a type of radar used to measure the backscatter of the earth’s surface. In 2014, NASA will launch a new scatterometer, RapidSCAT, and mount it on the International Space Station (ISS). An integral part of the processing code for RapidSCAT is the X-table. X relates the power received by the scatterometer to the backscatter of the surface. It depends on the antenna, processor, and frequency of the sensor, as well as the sensor’s position, velocity, and attitude. The ISS’s comparatively unstable orbit renders previous methods of X-table generation inaccurate. By incorporating position, velocity, and attitude data from a revolution of the ISS, a table that is accurate for that revolution has been produced. This table can be made accurate for up to 8 revolutions of the ISS, by parametrizing variations in X with another variable. Different methods of estimating the relationship between these variables are attempted. Because the table will have to be recalculated repeatedly through the mission life of the sensor, tradeoffs between accuracy and processing time are explored.

Space Shooter Game Implemented in Verilog on Spartan-3E FPGA

January 01, 2014 12:00 AM
Jason Ellers, Utah Valley University Engineering Field Programmable Gate Array (FPGA) technology is becoming more popular among Application Specific Integrated Circuit (ASIC) developers. The ease of development and the maintainability makes FPGAs a very attractive option in many performance and efficiency critical applications. The purpose behind this project was to implement an arcade style game on top of a VGA driver. The project was developed on a Xilinx Spartan-3E Starter board using Verilog, a hardware descriptive language.

Bioartificial Organs

January 01, 2014 12:00 AM
Arthur Castleton, Brigham Young University Engineering More than one in three people die because of organ failures such as congestive heart failure. The major issues of heart transplants include a scarcity of donors, immunorejection and blood clot formation. Over the last decade bioartificial organs have emerged as a potential alternative to traditional transplantation because they eliminate the need for immunosuppressants, DNA testing, and the use of another human’s organs. In this study an economic, effective, and rapid decellularization process that produces minimal damage to a cardiac extracellular matrix (cECM) is described. In addition, a static blood thrombosis assay was used to verify the effect of exposed cECM on clotting. Also an aorta was recellularized and analyzed.

Regenerative Measures for Neurosurgical Interventions

January 01, 2014 12:00 AM
Mitchel Faulkner, Brigham Young University Engineering Introduction