Skip to main content
Utah's Foremost Platform for Undergraduate Research Presentation
2015 Abstracts

Modeling Shale Oil Pyrolysis: Semi-empirical Approach

Dan Barfuss, Brigham Young University

Engineering

Shale oil has long been seen as a source of energy that can be incorporated into existing infrastructure. It consists of kerogen (or organic matrix) bound to inorganic rock. This kerogen can be released as an oil-like substance by heating it up to high temperatures without the presence of oxygen (i.e., pyrolysis). Due to advances in NMR (Nuclear Magnetic Resonance) we were able to make an accurate structural based model that can predict the relative tar and light gas yields[1]. We modified the Chemical Percolation Devolatilization Model (CPD) of coal to fit with the more aliphatic nature of oil shale. The CPD model describes the aromatic regions as clusters and aliphatic regions as bridges. As these bridges are broken the model releases groups of clusters that will form tar. In coal the bridge breaking gives off light gases, whereas in shale oil the bridges are much heavier and mostly form tar. We built two models that accounted for this. We also used the composition of the tar and the gas found by Fletcher et. al. [2] to predict what elements would be left and the aromaticity of the carbons. We found that throughout the reaction new aromatic regions were formed. With information from this model,- we are able to better predict the products of oil shale pyrolysis, and describe what happens chemically.