Skip to main content
Utah's Foremost Platform for Undergraduate Research Presentation
2015 Abstracts

Retinal Regeneration: Implications of Müller Cell Dedifferentiation

Theo Stoddard-Bennett and Steven Christiansen, Brigham Young University

Engineering

Damage to the human retina is often irreversible and so currently there are no established treatments of diseases such as dry age related macular degeneration (AMD). Dry AMD results in a loss of sight because of cell death in the macula, a centralized part of the retina which contains a high concentration of photoreceptor cells. One possible treatment would be to limit the rate of cell death within the macula, however this is not a comprehensive solution. Rather, regeneration of the photoreceptors within the retina is necessary to restore sight. In current research, Müller glia cells, a major glial component of the retina, can potentially be used as sources for photoreceptor regeneration in order to combat dry AMD due to their homeostatic regulation of retinal injury. Directed reprogramming would occur through a five step process. The Müller glia would need to undergo de-differentiation to Müller glia-derived progenitor cells (MGPCs), proliferation of MGPCs, migration of MGPCs, neuronal differentiation, and integration in order to generate retinal neurons. Müller cells can be isolated and cultured by dissociating retinal tissue in optimal media. Here we present the dissection and dissociation of rat retinal tissue to obtain purified proliferating Müller cell cultures. Our lab has tracked and modelled the rates of proliferation and phenotypically characterized the stages of proliferation. Using immunofluorescence and PCR tests to confirm purity, we will then expect to run a series of assays to identify growth factors, Wnt signals and cytokines to test the effects of retinal extracellular matrix proteins on Müller cell de-differentiation to MGPCs. The focus of our current research is the identification of reprogramming mechanisms that may possess beneficial data leading to both unique strategies for promoting retinal regeneration in mammals and clinical applications for those living with dry AMD.