Skip to main content
Utah's Foremost Platform for Undergraduate Research Presentation

2013 Abstracts

Gas Chromatography Analysis of Fatty Acid Methyl Esters from Chlorella vulgaris Algae

January 01, 2013 12:00 AM
Justin Nybo, Weber State University Chemistry Finding a source of energy to supply the demands of energy consumption globally is one of the biggest problems facing society today. With fuel for transportation, heating, and manufacturing representing 70% of energy demands, an efficient fuel source must be used to supply the world’s energy needs (Gouveia and Oliveira, 2009). Algae represent an abundant source of biomass that could be used as a source to make biodiesel. Over the past several years, microalgae have become a logical potential candidate for producing biofuel in large masses. This is mainly due to the fact that they are more efficient at photosynthetic processes than traditional crops grown on the land (Vasudevan, 2008). Another feature of algae that make it suitable as a source for biodiesel is the fact that it can survive in harsh environments, such as salty water or compromised water where crops would not be able to grow (Mata et al., 2010). For my project, I researched and tested the effect of varying light frequency and intensity on the lipid production of Chlorella vulgaris algae. I along with Dr. Herzog and Abram Bernard, set up an array involving 40 flasks that were split into 8 rows and 5 columns. Each row had a unique frequency of light that came from a combination of red, green or blue LEDs. Each column varied the light intensity by changing the distance of the flask from the light source. The goal of our research was to show that algae of the species Chlorella vulgaris could be grown in this system and that algae growth rates were dependent on light frequency and intensity. This was accomplished by converting the lipids produced by the algae into fatty acid methyl esters (FAME) and then analyzing the FAMEs using a gas chromatograph (GC). In order for this analysis to be effective in terms of accuracy and precision, a quantitative method was developed and verified to quantify the lipid production of the algae under different light conditions. The light intensity and the number of photons of light emitted in each column were monitored by Chandler Greenwell, a fellow Chemistry student. The correlation between light intensity and the quantity of algae was noted during this project.

Effects of Wavelength on Algae Fatty Acid Production

January 01, 2013 12:00 AM
Abram Bernard, Weber State University Chemistry Alternative energy sources are becoming more important in today’s society. Algae provide a potential source of fuel that can is currently under study by many in the scientific community. The fats that algae can produce can be used as biofuel. Algae is a good candidate as a biofuel source because it can be grown in many conditions that crops, such as corn, cannot. Certain algae have very high percentages of fat that can be used for biofuel and it can be grown in large quantities. To add to the knowledge of algae and its potential as a fuel source, we have researched the effects of varying light conditions on the algae’s fat production. Working with faculty in the chemistry and microbiology departments at Weber State University, we set up an experiment to discover the effects of different wavelengths of light on fat production in algae. 40 samples of Chlorella Vulgaris were grown in different light environments. Our apparatus separated the algae into 8 different colored lights at 5 different. The intensity of light was quantified to allow us to map the changes. We extracted the fat from these samples using a transesterification method previously used on meat and analyzed them using a gas chromatography method we developed. Currently we are analyzing the correlations between the quantified light data, the mass of algae grown, and the amount of fats present in these samples. We hope to be able to draw conclusions from this data about the effects of varying light wavelengths and intensities on the fat production of algae. From these conclusions, we would be able to contribute to the research of algae as a source of biofuel. We have also approached this project as a way of developing interdisciplinary research here at Weber State University. Our work has not only provided us with data on this project but has also been involved in developing methods for future research by other undergraduates.

Identifying High-Risk Flood Scenarios in the Bhutanese Himalayas

January 01, 2013 12:00 AM
Ryan Smith, Brigham Young University Geological Sciences Bhutan, a remote country in the Himalayas, has an underdeveloped economy that relies heavily on hydro-electric power and agriculture. Glacial lake outburst floods, or GLOFs, threaten both of these sectors of their economy. More importantly, they threaten human lives. In this study, I will estimate the increase in volume of the most rapidly growing glacial lakes in the Bhutanese Himalayas and investigate potential causes of their growth. In addition, I will develop a simple model to simulate the flooding effects of a GLOF on downstream cropland and villages.

Search For Shrodinger Type Structuring In Keplerian System

January 01, 2013 12:00 AM
Samuel Leventhal, University of Utah Physics The uncertainty existing within the scientific community as to why quantum mechanics (QM) behaves as it does comes from the fact there exists no mathematically sound approach for deriving the postulates of QM. It is the purpose of our research to present a derivation for the postulates of QM through the theory of Scale Relativity (SR), followed by a search for physical signatures of SR in the mechanics of celestial bodies. The construction of SR is based on an extension of the relativity principle to scale transformations coupled with a loss of differentiability. Our first paper presents the derivation of QM through scale relativity. During the SR derivation we also show fundamental qualities of QM, such as the presence of complex numbers in state functions. Lastly, the seemingly unrelated behaviors between relativity and quantum phenomena are shown a single mathematical formulation, only to change form due to scale. The new resolution variable within the adapted Schrodinger equation allows it to become applicable to macroscopic scales allowing us to look at large scale mechanics for signs of SR. Gravitation being scale invariant leads it to be a perfect candidate for experimental purposes. Our second paper investigates whether or not celestial bodies, formed by chaotic gravitational structuring, obey the properties of a Schrodinger equation dependent on the Keplerian potential. If so SR implies solar systems would form along probability distributions predicted by the square magnitude of the Schrodinger-Keplerian wave equation. In theory a planets probability distribution would depend on discrete variables, denoted orbital rank, n=n. In search for SR it is sufficient to see if planets tend to have orbital ranks near integer values. We start by calculating the orbital ranks within various solar systems, followed by testing whether the accumulation of planets’ rank near integer values is a probable event. To test this we take the squared difference between the calculated rank and the nearest integer. As a result we are able to test how likely orbital structuring will be discrete. Our results show a strong certainty that orbital rank is likely to accumulate near integer values.

Raman Spectroscopy Methods to Detect Monomolecular Layers on Oxide Surfaces

January 01, 2013 12:00 AM
Natascha Knowlton, University of Utah Chemistry The chemical derivatization of oxide surfaces (silica, alumina, glass) is critical to the development of separation media, sensing surfaces, or biocompatible interfaces. Presently, there are few analytical methods that allow the detection and characterization of functionalized monolayers on these surfaces. Raman scattering spectroscopy can provide useful structural information in the form of vibrational spectra of molecules of interest, and it is compatible with oxide substrates. Raman scattering, however, is a very weak effect so that its application to detecting monolayers is challenging. In this work, two approaches to detecting and characterizing molecular layers on oxide surfaces with Raman spectroscopy are compared. First, gold colloidal nanoparticles are deposited onto the surface of interest, which enhance the Raman scattering near the gold surface by surface-plasmon resonance. This technique is suitable for ex situ analysis of monolayers on planar surfaces. Secondly, monomolecular layers can also be detected by Raman scattering on porous oxide supports such as alumina or silica without any optical enhancement due to the very high surface area of these materials. Detection in porous particles is compatible with in situ monitoring of surface derivatization reactions. These two methods are compared for monitoring of reactions of silane-coupling agents and their subsequent functional group transformations on glass and silica surfaces.

Examination and Characterization of Coal Creek Runoff as well as the Impact of Cedar City, Utah

January 01, 2013 12:00 AM
Alyssa Brown, Southern Utah University Physical Science Coal Creek is a perennial stream that runs through Cedar City, Utah and drains into Rush Lake. The basin is a closed basin, meaning that most of the surface water will eventually become ground water, the main source of drinking water for Cedar City. Because of the increase of urbanization of this region in par- ticular, there is a higher probability of pollutants entering the water source and greatly affecting the quality of the drinking water. Most pollutants are characterized as nonpoint source pollution, which is defined by the Environmental Protection Agency (EPA) as, “land runoff, precipitation, atmospheric deposition, drainage, seepage or hydrologic modification” and is the leading cause of water quality problems (Environmental Protection Agency, 2012). Common sources of land runoff, as defined by the EPA, include septic waste, lawn and garden fertilizers, improperly disposed chemicals, automobile fluids, vehicle emissions, and road deicers (Environmental Protection Agency, 2012). In order to characterize the pollutants found in samples and determine the concentration of ions of interest, ion chromatography was used. By determining the identity and concentrations of particular ions, the presence of nonpoint pollution, and the source, may be determined. This study may lead to better indications of where major sources of drinking water pollutants are originating, illustrating the effect that urbanization and rapid population growth have on the quality of both surface and ground water. This will allow better characterization of pollutants and pollution sources in the future.

Assessing the Accuracy and Validity of Early Astronomer Sketches of the Satellites of Jupiter

January 01, 2013 12:00 AM
Alyssa Brown, Southern Utah University Physical Science It has been long debated whether early astronomers could truly see any detail during their first observation and rough sketches of the satellites of Jupiter. Many have argued against the accuracy and validity of such drawings, claiming the lack of technological advance led to rough hewn and mediocre drawings with little evidence of these individuals having truly seen these satellites. Through our research, we hope to prove validity in those early sketches based on current knowledge. By converting the dates and times each early sketch was created into Julian Calendar days, then using the date obtained to calculate the position of each individual satellite of Jupiter, as well as the face that was approximately facing Earth at the time the sketch was made, we can compare current images to those previously obtained sketches. By analyzing the sketches for determining features as well as the relative location of those features in relation to their approximate location on the satellite face the astronomer was most likely observing, we can either validate or disclaim these early sketches. This experiment will provide beneficial insight into the accuracy of primitive sketches made centuries before more detailed information was discovered about the celestial bodies that continue to fascinate us. The information gained from this experiment may even lend a greater knowledge and understanding of how to study these celestial bodies, since if the information presented by these early sketches were accurate, we could potentially reevaluate the manner in which we currently conduct our present observation.

The Role of Lysine Acetylation in the Tumor Cell Response to Stress

January 01, 2013 12:00 AM
Lisa Heppler, Brigham Young University Chemistry and Biochemistry Solid breast tumors contain heterogenous microenvironments where tumor cells are often exposed to metabolic stress (e.g., hypoxia due to poor blood supply). Such environments select for tumor cells that can adapt metabolically to survive, while other cells fail to adapt and undergo cell death. The survival of cells through periods of hypoxia can promote chemoresistance and metastasis (1). Thus, it is critical that we develop therapeutic strategies to enhance metabolic-stress-induced tumor cell death. One promising strategy is the modulation of lysine acetylation pathways by HDAC inhibitors that potently pro- mote cell death in response to various stimuli, including hypoxia/glucose withdrawal. Given the relatively non-specific nature of chemical HDAC inhibitors, the precise acetylation-regulating enzymes and pathways that govern cell death in these settings have yet to be fully elucidated. Our goal is to identify the cellular factors that link acetylation to cell death in response to hypoxia and other metabolic stresses, with the hope that such factors could be exploited therapeutically in cancer. Previous studies have implicated protein lysine acetylation in the coordination of cellular metabolism to the available nutrient supply (2). In line with this idea, our preliminary data suggest that lysine acetylation pathways dictate whether breast tumor cells survive (through metabolic adaptation) or die in response to hypoxia and glucose deprivation. Moreover, we have observed that general increases in protein lysine acetylation precede the activation of pro-apoptotic caspases in response to these stresses. In addition, our proteomics efforts have shown that breast tumors that are sensitive to hypoxia/glucose withdrawal exhibit significant increases in acetylation across the proteome, whereas resistant cells show very little change. Together, our data suggest that lysine acetylation pathways play a role in metabolic adaption and survival under conditions of hypoxia/glucose withdrawal. We are currently using an RNAi approach to target all known deacetylases, acetyl-transferases, and metabolic enzymes that modulate acetylation (e.g., acetyl-CoA synthetase) in order to identify the specific acetylation-regulating factors that govern tumor cell susceptibility to metabolic stress.

Equivalent Circuit Modeling and Vibrometry Analysis of the Udu Utar Nigerian Drum

January 01, 2013 12:00 AM
Beau Hilton, Brigham Young University Physics/Acoustics The Udu drum, sometimes called the water pot drum, is a traditional Nigerian instrument. Musicians who play the Udu exploit its aerophone and idiophone resonances. This paper will discuss an electrical equivalent circuit model for the Udu Utar, a specific type of Udu, to predict the low frequency aerophone resonances and scanning laser vibrometer measurements to determine the mode shapes of the dominant idiophone resonances. These analyses not only provide an understanding of the unique sound of the Udu instrument but may also be used by instrument designers to create instruments with resonance frequencies at traditional musical intervals for the various tones produced and to create musical harmonic ratios.

Search and Validation for New Biomarkers Characterizing Endometriosis

January 01, 2013 12:00 AM
Paul Chidsey, Brigham Young University Chemistry and Biochemistry It has been reported that an estimated 11% of women in the population have undiagnosed endometriosis, emphasizing the need for early detection tests and treatment options. Diagnosis is typically determined through an analysis of symptoms, including painful menstrual cycles, pain in the lower abdomen, and prolonged menstrual cramping. Diagnosis is further confirmed through invasive procedures such as transvaginal ultrasound and pelvic laparoscopy. Serum proteomic studies in which small biomolecules and peptides are analyzed for biological significance in endometriosis cases and controls can lead to the discovery of novel methods whereby the disease is detected and eventually treated earlier in development without the need of invasive procedures. Comparative analysis of cases and controls through mass spectroscopy has led to the discovery of novel biomarkers capable of correctly identifying individuals with endometriosis. Further pursuing this study will allow for a greater understanding of the genesis of the disease, eventually uncovering the mechanism whereby endometriosis develops.

Phosducin-Like Protein (PhLP1) as a Co-Chaperone of G Beta Gamma

January 01, 2013 12:00 AM
Devon Blake, Brigham Young University Chemistry and Biochemistry G proteins play a vital role in cellular signaling. It has recently been shown that the nascent G polypeptide requires the assistance of phosducin-like protein 1 (PhLP1) for proper folding and formation of the G beta gamma dimer. This mechanism is derived from cell culture experiments and structural data, but until now had yet to be tested in vivo. We tested PhLP1 function in vivo using retinal rod photoreceptor-specific PhLP1 conditional knockout mice. Electroretinogram analyses of these mice showed a dramatic decrease in light sensitivity of rod photoreceptors. Consistent with this finding, the expression of all subunits of the photoreceptor G protein was reduced by 80%. This decrease was reflected in a similar decrease in the amount of G beta gamma dimers. All of these in vivo results are consistent with the hypothesis that PhLP1 is required for G beta gamma assembly and G protein signaling.

Isomorphic Tests Using Invariants,Isopectral Graphs,and Adjacency Matrix Reordering

January 01, 2013 12:00 AM
Eric McKinney, Weber State University Mathematics We consider a list of properties of isomorphic simple graphs and the use of these properties as quick tests to show nonisomorphic relationships. We compare advantages of tests, and list these in order of efficiency. We consider a nonisomorphic test using cospectral graphs with its drawbacks. And lastly, we observe an algorithmic approach showing two graphs are isomorphic through efficient adjacency matrix reordering techniques.

Nano-optical Imaging using Scattering Scanning Near-field Optical Microscopy

January 01, 2013 12:00 AM
Fehmi Yasin, Westminster College Physics It has long been a goal to achieve higher spatial resolution in optical imaging and spectroscopy. Recently, a concept emerged that merges optical microscopy with scanning probe microscopy, increasing the spatial resolution of optical imaging beyond the diffraction limit. The scanning probe tip’s optical antenna properties and the local near-field coupling between its apex and the sample allows for few nanometer optical spatial resolution (Atkin, Berweger, Jones, and Raschke 2012). We investigate a nano-imaging technique, known as scattering scanning near-field optical microscopy (s-SNOM) and image several different materials using said technique. We report our data and provide potential paths for future work.

Neural Correlates of Gender Differences in Distinguishing Malware Warnings and Legitimate Websites: A NeurolS

January 01, 2013 12:00 AM
Dixon Brown, Brigham Young University Information Systems Despite being a problem for more than two decades, malicious software (or malware) remains a serious threat to the information security of organizations. Increasingly, attackers target the computers of end users to gain a beachhead from which the network of a user’s organization can be surveilled and exploited. Given the growing threat of malware to end users and their or- ganizations, there is a need to understand how malware warnings can be made more effective to alert end users of potential threats. We address this need by performing a NeuroIS study to examine whether men and women process malware warnings in the brain differently (or whether men process them at all?). We conducted a laboratory study that employed electroencephalography (EEG), a proven method of measuring neurological activity in temporally sensitive tasks. We found that the amplitude of the P300, an ERP event-related potentialcomponent indicative of decision making ability, was higher for all participants when viewing malware warning screenshots relative to legitimate website shots. Additionally, we found that the P300 was greater for women than for men, indicating that women exhibit higher brain activity than men when viewing malware warnings. Our results demonstrate the value of applying NeuroIS methods to the domain of information security and point to several promising avenues for future research.

Differential Equations for the Construction of Novel Kernels in Machine Learning

January 01, 2013 12:00 AM
Alexandra Pasi, Brigham Young University Mathematics Significant research in Machine Learning has been directed at the application and implementation of kernel-based learning methods. However, few studies have focused on the problem of kernel construction. This paper introduces a novel method for generating new kernels by solving differential equations for kernel functions. We examine specific kernels generated using this method. These kernels are applied to various data sets and compared against state-of-the-art kernels.

Strategy Analysis of the Colonel Blotto Game and Variations

January 01, 2013 12:00 AM
Sean Groathouse, Westminster College Mathematics Strategies for the Colonel Blotto game common in human play are generalized and compared through computer simulation. Furthermore, a variation on the game where the opponent’s resources are unknown is introduced, and differences between the variation and the classic game are explored with simulations on the common human strategies. Another variation on the scoring of the game is introduced and analyzed through simulations and a partial solution to the Nash equilibria in the two-front case.

Computing for a Cure: Why Mammogram Rates in Utah are Lower than the National Average

January 01, 2013 12:00 AM
Computer Science and Information Systems Breast cancer is the leading cancer killer among women in the state of Utah. According to the Center for Disease Control (CDC’s) Behavioral Risk Factor Surveillance System (BRFSS), Utah has the second lowest mammogram rate in the nation. Mammograms reduce breast cancer mortality rates by increasing early detection of the disease when it is still curable. A quick binary logistic regression of the data completed for this presentation suggests that there at least three factors that are statistically significant for not receiving a mammogram: lack of a health plan, infrequent dentist visits, and age. Some counties including Millard, Summit, Tooele, Sanpete, and Uintah appear to be statistically significant factors. Other counties have low mammography rates, but too little data to be statistically significant including Beaver, Wayne Garfield, Paiute, Daggett, and Rich. By identifying patterns and analyzing correlations between variables, we may begin to understand why Utah women are not taking advantage of early detection in the form of mammography screenings. Our research has the potential to improve the attitude with which the topic of mammography is approached, and in doing so, save lives.

Impact of Ungulate Browsing on the Development and Resilience of Aspen Forests

January 01, 2013 12:00 AM
Christian Boekweg, Brigham Young University Plant and Wildlife Sciences It has been shown that the population densities of deer and elk in the Rocky Mountains are at an unprecedented high. The heavy browsing of said species (ungulates) on regenerating aspen suckers can be devastating, leading to homogenously aged aspen stands that now have reduced resilience to drought, fire or logging disturbance, and an increased susceptibility to pathogens. Lastly, the extensive, highly selective herbivory of the aspen suckers may cause a shift in forest composition away from the aspen tree to an increase in other, less palatable species. We selected 186 sites across the 3 national forests of Central and Southern Utah, and characterized stand composition using the point quarter method. Stands were defined by successional stages from early to late; aspen, mixed or conifer. We then used pellet counts to estimate animal density and evaluated the effect of animal density and stand type on the regeneration success of aspen suckers. The key result of our study is that high ungulate density is highly correlated with reduced sucker heights (p<0.001). This indicates that high ungulate density impedes aspen regeneration by preventing aspen from recruiting into the overstory. Our study suggests that closer monitoring of the long term effects of herbivory on aspen development and regeneration is necessary to ensure vigorous aspen forests.

Identification of Novel Serum Biomarkers for Alzheimer’s Disease Using an Integrated Serum Proteomics Method

January 01, 2013 12:00 AM
Jesse Cobell, Brigham Young University Biology Alzheimer’s disease (AD) is the sixth major cause of death in the U.S. However, at present, no diagnostically useful serum markers for AD have been identified. Hence, we used a novel serum proteomic approach to interrogate the low molecular weight proteome for serum biomarkers. This allowed for survey of around 5000 low MW species. To reduce ion suppression, an acetonitrile precipitation step was used to remove high abundance serum proteins. Protein-depleted sera from 58 cases and 55 controls were analyzed by cLC-ESI-QTOFMS/MS using reverse phase chromatography. Data were reviewed using Applied Biosystem’s Analyst-QS software to compile spectra. Differentially expressed peptides (cases vs. controls) were analyzed statistically using the Student’s t-test. This led to discovery of 36 candidate biomarkers. Additionally, we compared AD subjects with more severe disease (Clinical Dementia Rating (CDR) =3) with non-demented individuals (CDR=0) and found 23 biomarkers. Furthermore, on comparison of mild and moderate stage AD individuals (CDR = 0.5, 1, 2) with those with severe disease (CDR = 3), we found 24 biomarkers. Some of these biomarkers appeared more prominent in one gender. We then fragmented several of these biomarkers on an LTQ-Orbitrap XL hybrid mass spectrometer and cLC-ESI-QTOF-MS/ MS system using collision-induced dissociation to determine amino acid sequence analysis. We have identified 5 biomarkers and are in the process of identifying the remaining biomarker species. This serum proteomics approach found statistically different peptide abundances in subjects with AD. Additional biostatistical evaluations are underway to determine sensitivity and specificity of individual biomarkers and their combinations. Future studies will assess biomarkers according to disease stage and validate current biomarkers in blinded comparisons of other AD sera. This serum proteomics approach appears promising in locating and identifying clinically useful serum biomarkers of AD.

APOE e4 Independent Associations in the APOE Gene Region with Cerebrospinal Fluid Levels of Amyloid Beta 42 in Alzheimer’s Disease

January 01, 2013 12:00 AM
Spencer Foutz, Brigham Young University Biology CSF AB42 levels are a biomarker for Alzheimer’s Disease. The APOE e4 allele associates with CSF AB42. Little is known about SNPs in the region independent of apoe e2/e3/e4 isoforms. By adjusting for the effect of these isoforms, statistical analysis uncovered new SNPS associated with CSF AB42. Information was used from 1338 individuals from four datasets, specifically: The WU-ADRC, ADNI, University of Washington, and UPENN. Samples included individuals with and without AD. The 169 SNPs used were extracted from the APOE region and surrounding 50 kb using 1000 Genome Software. Linear regression analysis was performed, adjusting for specific covariates. Adjustments were made for the APOE e2 and e4 alleles before repeating the analysis. Significant SNPs were tested in e3 homozygous individuals. Each series was separately analyzed and combined in a meta-analysis for confirmation. P-values, sample sizes, and effect sizes were used in the meta-analysis. Results from these analyses allowed us to conclude rs769449 is associated with lower levels of CSF AB42 and acts independent of the APOE e4 allele.

Facilitative and Competitive Interactions in Subalpine Aspen-Fir Forests

January 01, 2013 12:00 AM
Jason Bartholomew, Brigham Young University Plant and Wildlife Sciences After disturbances in plant communities (i.e. wildfire), there is a natural succession of plants in which plants colonize the empty area and are gradually replaced by more competitive species. In subalpine forests, the principle colonizers after wildfire are quaking aspen (Populous tremuloides) which are later replaced by subalpine fir (Abies lasiocarpa). It has been shown that aspen facilitate, or enable, the establishment of subalpine fir at their base. This study examines the aspen-subalpine fir interaction in order to better understand the dynamics of the shift from aspen to fir dominance. It is hypothesized that the fir in a facilitated pair eventually exerts a competitive influence on the aspen resulting in a decrease in aspen fitness. The growth rates of the two species were examined in different stand types (aspen, mixed and subalpine fir), as independent trees or in facilitated pairs, and in three separate size classes. Samples were collected by taking a core sample or cross-section from trees within the categories listed above. The age and annual growth rings were measured with a measuring stage. The annual growth rings were used to calculate basal area increase (BAI) which was used to determine growth rates. The results suggest the growth rate of aspen in facilitated pairs decreases as firs mature thereby decreasing fitness within the aspen population due to competitive influences from facilitated firs. This may explain the mechanism for the successional shift that can significantly impact indigenous animal populations and local fire cycles.

Linkage Analysis of Late Onset Alzheimer’s Disease Population in Search of Chromosomal Region Harboring Rare Causal Variants

January 01, 2013 12:00 AM
Kevin Boehme, Brigham Young University Biology Late Onset Alzheimer disease (LOAD) is caused by a complex combination of genetic and environmental factors. While multiple loci have been found associated with an increased risk of LOAD much of the heritability of the disease has yet to be accounted for. The prevailing thought now is that of rare variants playing an important role in LOAD. In this study we will use linkage analysis to identify novel regions of the genome that may harbor rare disease causing variants. Data for these analysis comes from 748 people (503 with LOAD) from the Cache County study on Memory and Aging. This unique population based sample provides great power for linkage as relatedness differs from siblings to distant relatives and complete pedigree information is available for all of the individuals. We will use LD-pruned SNP data from the Illumina Omniexpress BeadChip and pedigree data from the Cache County samples to perform linkage analysis. Quality control and LD-pruning will be con- ducted in PLINK while the Linkage analyses will be conducted using the MERLIN software. Our findings will be reported in the final poster presentation.

Engineering Pathogen Specific High Affinity T-Cell Receptors

January 01, 2013 12:00 AM
Bryce Anderson, Brigham Young University Microbiology and Molecular Biology Antigen presenting cells digest and display peptides from foreign and infected cells on the major histocompatibility complex (MHC) that are recognized by T-cells through their T cell receptor (TCR). The affinity of TCR:peptide-MHC interactions has been shown to be low however, and in order to effectively use a soluble TCR for therapeutics we need to engineer TCRs with increased affinity. To do this, we have designed a single chain TCR (ValphaVbeta) called LLO118 that is specific for a naturally occurring Listeria monocytogenes epitope. Using yeast display, stable mutants that expressed the LLO118 scTCR at higher levels than the wild type on the surface of yeast were isolated and sequenced. In order to improve affinity of LLO118 we are mutating amino acid residues in the complementarity determining regions, sites important for the TCR to bind with the peptide-MHC. We are generating unique libraries of yeast cells with TCRs that have potential affinity mutations and using fluorescently labeled peptide-MHC tetramers to select cells that have TCRs with higher affinity. By repeating this process with the cells that have higher affinity we are working to get a TCR that binds with much higher affinity than the wild type TCR. These high affinity TCRs are promising for further research in connecting them to a cytokine, greatly reducing systemic damage and other complications caused by administration of this cytokine throughout the body. Thus, our goal is to design a high affinity TCR fused to a cytokine that can be tested for therapeutic use in targeting specific cells in the immune response and improving T cell memory.

GPR55 Modulates the Cellular Mechanism Behind Memory Formation, Suggested Alternative Pathways Require Further Investigation

January 01, 2013 12:00 AM
Spencer Bell, Brigham Young University Physiology and Developmental Biology The hippocampus functions as the memory formation center of the brain. As memories are formed, brain cells in this area undergo changes by which connections between them are either strengthened or weakened, processes known as long-term potentiation (LTP) and long-term depression (LTD), respectively. Receptors located on these cells modulate these processes as they are activated by chemical signals known as neurotransmitters. We sought to examine the effects of a receptor known as G protein-coupled receptor 55 (GPR55) on LTP and LTD in the rodent hippocampus by applying agonists of the receptor, or chemicals that artificially activate it, to brain slices preserved in artificial cerebrospinal fluid. O-1602 is a purported synthetic agonist of GPR55. When we applied O-1602 to rat hippocampal slices during electrical induction of LTP, the magnitude of LTP was decreased when compared to controls. When LTD was induced in the rat hippocampus in the presence of O-1602, no significant difference was observed when compared to controls. Further experimentation involved the application of lysophosphatidylinositol (LPI), a naturally occurring GPR55 agonist, to genetically-engineered knock-out mice which lacked expression of GPR55. LPI is generally considered a more reliable agonist of GPR55, but caused enhanced LTP in wild-type mice which expressed GPR55 when compared with knock-out mice. This inconsistency and other inconsistencies in our data while using O-1602, while perhaps due to other physiological differences between rats and mice, may suggest the possibility that O-1602 activates a receptor other than GPR55. Our further research will seek to investigate this possibility.

Baicalein and Light Stimulation as Clinical Therapies for Addiction

January 01, 2013 12:00 AM
Brad Ackerson, Brigham Young University Neuroscience The highjacking by alcohol and drugs of abuse of the mesocortico-limbic system in the brain is responsible for addiction, specifically the ventral tegmental area (VTA) and its projecting dopaminergic neurons to the nucleus accumbens (NAc). Over the course of addiction, a hedonic response is developed from lower than normal levels of dopamine (DA) in which the individual pursues drug-seeking behavior. The current accepted treatment methods for addiction are replacement drug therapies, group therapy, or individual counseling – the prior being associated with additional side-effects and an inability to overcome the hedonic response of the addiction. The aim of this study was to evaluate alternative and natural therapeutics that produce long-term potentiation (LTP) of the neuronal systems involved in order to overcome addiction with minimal to no side-effects. Using fast-scan cyclic voltammetry (FSCV), the effects of baicalein, a flavonoid isolated from the root of Sculletaria Baicalensis, and low-level laser therapy (LLLT) on DA release in the NAc core were evaluated in vitro and in vivo in Wistar rats. Local stimulation evoked in vitro demonstrated that baicalein administration (10, 50, 100 uM) 30 minutes prior to 80 mM ethanol attenuated the DA inhibition of ethanol. DA signals were evoked in vivo in the core of the NAc by electrical stimulation of the medial forebrain bundle (MFB) at the level of the lateral hypothalamus (60 Hz, 60 pulses) in isoflurane anesthetized rats. Both the intraperitoneal (IP) administration of baicalein (1.0 mg/kg) and the administration of LLLT (25 Hz, 630 nm) 30 minutes prior to ethanol (2.0 g/kg) administration IP attenuated the DA inhibition of ethanol. These findings suggest that baicalein and LLLT may prove as effective clinical therapies for addiction.

Characterization of Yeast PAS Kinase Through Random Mutagenesis

January 01, 2013 12:00 AM
Kayla Bevard, Brigham Young University Microbiology and Molecular Biology Metabolic diseases, such as obesity and diabetes, are endemic in American society. Mutations in PAS kinase, a recently discovered sensory protein kinase, have been shown to cause Maturity Onset Diabetes of the Young (MODY) in humans (Semplici et al., 2011). In addition, PAS kinase deficient mice, when placed on a high fat diet, display phenotypes related to diabetes including resistance to weight gain, insulin insensitivity and triglyceride accumulation (Hao et al., 2007). PAS kinase consists of a sensory PAS domain that binds to and inhibits the kinase domain (Amezcua et al., 2002). Our model for PAS kinase activation involves the generation of a small molecule ligand that binds to the PAS domain and relieves this inhibition. We are currently engaged in several yeast genetic screens which will identify regions in the full length PAS kinase protein that are essential for either PAS kinase activation or for binding of its substrates. The first screen is based on the ability of PAS kinase, when overexpressed, to rescue a temperature-sensitive mutation in Tor2, the tor2(ts). We have isolated both point mutations and truncations in PAS kinase which alleviate the tor2(ts). These mutations solidify our model for PAS domain inhibition and will identify novel regions involved in PAS kinase regulation. Our second screen uses the yeast 2-hybrid to select for both point mutations and truncations that increase the affinity of PAS kinase for its substrate, Pbp1. These mutations will help identify key regions of PAS kinase utilized in substrate recognition. Finally, we will compare the regions affected by our mutations with the regions of PAS kinase that we have found to be well-conserved throughout evolution. Analysis of these specific genetic regions will help elucidate the molecular mechanisms involved in the regulation and function of PAS kinase, a key player in the development of metabolic disease.

“Killing Me Softly”: The Economic Toll of Forest Fire Repression

January 01, 2013 12:00 AM
Adam Olson, Brigham Young University Plant and Wildlife Sciences Forests systems of the Central Rocky Mountains rely on an intricate balance of natural disturbance cycles in order to develop properly. Forest fires are one such disturbance, however, certain fire characteristics, particularly fire severity, can vary widely across forest landscapes. In our study, we examined the influence of fire severity on aspen regeneration as well as aspen defense against wildlife and livestock browsing. Our results indicate that high or moderate burn severity is more favorable to aspen regeneration and survival. These areas of severe burn result in a higher density of aspen suckers, more vertical and lateral growth, greater chemical defense concentrations, and less browse damage than the neighboring plots of low or no burn. This data suggests that fire severity should be taken into account when considering plant regeneration and susceptibility to browse damage in burned landscapes.

Sirt1-Mediated Suprression of Cell Death in Breast Cancer

January 01, 2013 12:00 AM
Matthew Whited, Brigham Young University Biochemistry Several lines of evidence suggest that protein lysine acetylation pathways are deregulated in cancer (1). Moreover, deacetylase inhibitors are emerging as important anti-tumor therapeutics, suggesting that the forced reprogramming of protein-lysine acetylation is toxic to tumor cells. In this study we show that Sirt1, an NAD+-dependent Sirtuin deacetylase that promotes cancer cell survival, is aberrantly mislocalized to the cytoplasm of breast tumor cells. Moreover, the depletion of cytosolic Sirt1 by siRNA sensitizes breast tumor cells to paclitaxel-induced death. Previously, we developed a biotin-switch proteomics approach to identify cytosolic Sirt1 substrates (2). This approach yielded a variety of substrates with roles in metabolism, survival, and oxidative stress signaling. Our current work focuses on three of the proteins identified as Sirt1 substrates: SOD1, DJ-1, and 14-3-3z. SOD1 and DJ-1 both suppress oxidative stress-induced death, and high levels of 14-3-3z expression suppress chemotherapy-induced apoptosis and correlate with negative patient outcomes in breast cancer. Our preliminary results suggest that acetylation of DJ-1 and SOD1 suppress their anti-oxidant functions, while acetylation of 14-3-3z disrupts its binding to pro-survival proteins. Taken together, our data support a model in which cytosolic Sirt1 activates multiple pathways that work together to promote tumor cell survival.

Tissue Specific Isolation of Nucleosomes in Caenorhabditis elegans

January 01, 2013 12:00 AM
Hyrum Shumway, Brigham Young University Microbiology and Molecular Biology Epigenetics is the study of factors of gene regulation that do not stem from the primary DNA sequence. One such example of epigenetic gene regulation is where DNA wraps around histone proteins to form nucleosomes. The positioning of nucleosomes is the first order of control for genic transcription. Wrapped DNA is less accessible for transcription compared to DNA that is nucleosome free. Model organisms for human epigenetics such as the nematode Caenorhabditis elegans are invaluable because of their ease in manipulation and because the components of nucleosomes (histone proteins and DNA) are highly conserved across phylogeny. The purpose of my particular research is to develop and validate a new protocol for tissue-specific isolation of nucleosomes through immunoprecipitation in young adult C. elegans. This protocol leverages green fluorescent protein fused to histones to research nucleosome positioning in the germ-line cells of C. elegans nematodes. When successful in our animal model, this procedure is the first step in allowing analysis of chromatin architecture of any tissue at any developmental or disease state including human cells. The widespread prevalence and implications of human disease is staggering in magnitude. Research is ongoing to decrease morbidity, increase prevention, and fight infection. With epigenetic tools, this vital research is benefitted and supplemented.

The Effect of Male Dominance on Female Mate Choice in Poecilia gillii

January 01, 2013 12:00 AM
Michael McEntire, Brigham Young University Biology Female mate choice (intersexual selection) and male dominance interactions (intrasexual selection) can each play important roles in sexual selection. These two mechanisms tend to be discussed in isolation. The goal of this study is to explore the interaction between these two forms of sexual selection. To test this idea, we focused on the livebearing tropical fish system Poecilia gillii. We grouped males into similarly sized pairs and observed them for a week to determine which male was dominant. These pairs were then presented to females in mate choice trials to ascertain female preference. We also photo- graphed the males to determine coloration. We found that females were unable to detect dominant males without viewing the physical contest and that carotenoid coloration bore no effect on female preference. Females tended to choose the male to their left, suggesting the preferential use of their right eyes in making decisions on mate choice.

The Role of Timing of Dietary Selenium and Isoflavone Supplementation in the Reduction of Prostate Cancer Risk Factors in TRAMP Mice

January 01, 2013 12:00 AM
Ji Su Park, Brigham Young University Nutrition, Dietetics, and Food Science Selenium (Se) and soy have each been shown to reduce risk for prostate cancer when consumed at high levels. The purpose of this project was to define the molecular mechanisms of prostate cancer chemoprevention by Se and soy, and to describe how timing of dietary treatment modifies those effects. [C57BL/6 X FVB] F1 TRAMP (TRansgenic Adenocarcinoma of Mouse Prostate) male mice were fed stock diets high or low in soy, with or without a supplement of Se (4.0 mg Se/kg BW as Se-meth- ylselenocysteine) by gavage 5 d/wk in a 2 X 2 factorial design. Mice were exposed to different diets starting from conception, 6 weeks, or 12 weeks of age and were sacrificed at 18 weeks. Three-way ANOVA showed that supplemental Se increased serum and liver Se, with significant interactions with both time and soy intake. Selenium dosing decreased BW independent of soy intake and time of dietary intervention. Both Se and soy decreased epididymal fat pad weights, with Se’s effects being more pronounced in mice exposed to diets from conception than from 6 wk. Urogenital tract weights, a measure of prostate proliferation and tumor volume, were significantly reduced by Se supplementation (P<0.001) and soy (p=0.044), independent of time of dietary intervention. Histological examination of mouse prostates is in progress to determine dietary effects on disease progression. These data suggest that, in this model, chemopreventive efficacy of Se and soy does not differ between prenatal and early post-natal introduction.

The Effects of DNA Methylation on Nucleosome Positioning

January 01, 2013 12:00 AM
Marcus Vranes, Brigham Young University Molecular Biology Recent studies have attempted to discover the correlation that exists between DNA methylation and nucleosome positioning, but none have explored the direct effect of DNA methylation on nucleosome formation and positioning. This proposed research will directly test the effects DNA methylation has on nucleosome positioning and whether the histone octamer has preferred sequences to which it binds, which will in turn add our understanding of gene expression and regulation. A better understanding of these concepts will help to aid efforts in gene therapy to better the quality of life of many who suffer from various genetic conditions.

Characterizing the Role of HspB2 in Cardiac Metabolism and Muscle Structure Using Yeast and Mammalian Cells

January 01, 2013 12:00 AM
Whitney Hoopes, Brigham Young University Microbiology and Molecular Biology HspB2 is one of eleven known small Heat Shock Proteins (sHSP) that is expressed in human heart and skeletal muscle. In response to cellular stress, heat shock proteins play a vital role to help misfolded proteins and proteins susceptible to denaturation maintain their structure. Two members of the sHSP family, CryAB and HspB2, are both required for normal heart function and cardiac muscle integrity. CryAB-deficient mice have defects in cardiac muscle structure whereas HspB2-deficient mice display energy deficits (Rajasekaran et al. 2007). The contrasting phenotypes of CryAB and HspB2 suggest differential roles for these molecular chaperones in the heart. HspB2 has been found to localize with the mitochondria in several different cell lines and overexpression of this sHSP has been shown to support survival of cells against heat stress (Nakagawa, 2001). To understand the role and mechanism of HspB2 in cardiac muscle energy regulation, we have used a yeast two-hybrid (Y2H) system to uncover the novel protein binding partners specific to HspB2. From screening a human heart cDNA library, HspB2 interacted with approximately 10,000 out of 20 million plasmids. We have sequenced more than 1000 of these putative interactors and have identified over 100 unique proteins. Over 40% of these protein partners are involved in mitochondrial energy production and another 25% in cardiac muscle structure maintenance. In addition, we have identified an interaction between HspB2 and the related sHSP CryAB. We then compared this data with mitochondrial HspB2 binding partners identified by mass spectroscopy (MS) through a large-scale bioinformatics analysis and constructed a protein-protein network. Y2H dependency tests were conducted to verify interactions identified by both Y2H and MS. Following yeast verification, a subset of the interactions were confirmed in C9H2 cardiac cells through coimmunopurification. Our research describes the first protein-protein interaction network for any sHSP, supports a role for HspB2 in mitochondrial energy production and suggests a link between mitochondrial energy production/redox stasis and stressed cardiac muscle maintenance.

Early Parental Death, Genetic Variants and Risk for Alzheimer’s Disease: Building a Risk Profile from the Cache County Study on Memory, Health, and Aging

January 01, 2013 12:00 AM
Michael Peterson, Brigham Young University Biology A person’s predisposition to Alzheimer’s Disease is known to be influenced by both genetic factors as well as environmental factors. One know environmental factor is that known to affect risk for disease is early parental death. The purpose of this research is to better understand the complex factors that influence the disease by analyzing the relationship between the environmental factor of early parental death with genetic variants known to influence the disease. We used extant data from the CCSMHA, an ongoing aging study including 89.7% (5092 of 5677) of all of the eligible residents of Cache County, Utah. This data includes information about environmental and psychosocial stressor of the subjects as well as information about physical examinations, metal screenings, and individuals’ genotypes at many loci that are known to be related to Alzheimers Disease. We used multivariate logistic regression to determine the effect of early parental death by SNP interactions on risk for AD. For the analysis we cleaned the data by removing SNPs less than a minor allele frequency of 0.01, a Hardy-Weinberg equilibrium value of 110-6, and a maximum missing snp call of 0.2. Individuals were also removed if genotyping rate was less than 0.2. After filtering we had 262 cases, 239 controls and 0 missing Final Results will be presented at the Conference.

Genome-Wide Association Study of Visinin-Like Protein Levels, an Endophenotype for Alzheimer’s Disease

January 01, 2013 12:00 AM
Rachel Perry, Brigham Young University Life Sciences Previous studies have indicated that Visinin-like protein (VILIP) may be a powerful tool in predicting disease progression and guiding prognosis of Alzheimer’s disease (AD). Cerebral spinal fluid (CSF) was collected from hundreds of individuals with varying levels of AD. The CSF was then analyzed for levels of VILIP protein using Luminex technology. SNPs were genotyped using the Illumina OmniExpress chip. SNPs found to have a Hardy-Weinberg frequency less than 1×10-4 were not included, assuming that this variance was due to a genotyping error. SNPs and samples missing more than five percent of the data were also not included. Following the cleanup of the data, an association test using linear regression was performed. Covariates used in the analysis included age, gender, and covariates that accounted for population stratification (PC1 and PC2). Over one hundred SNPs were found with a p-value less than 1×10-5. The genomic inflation factor for the generated data was 1. One marker showed significance at the genome-wide level. We have identified a genetic marker that shows significant association with CSF VILIP levels. This finding may provide insight into genetic control of VILIP levels, which may be a useful in understanding the pathological processes involved in AD.

The Association Between Pattern Separation and Depression

January 01, 2013 12:00 AM
Matthew Schneider, Brigham Young University Physiology and Developmental Biology Alzheimer’s disease, the most common form of dementia, affects millions of people per year. Research has shown that Alzheimer’s affects the hippocampus brain region, which is involved in learning and memory. Understanding learning and memory functions is imperative to comprehending both healthy brain functions and Alzheimer’s disease. Many researchers seek to understand both the causes and treatments of the disease, but tangible information remains elusive. Studies thus far have shown that to encode memories, the brain must change neural synapses to either strengthen or weaken those pathways, a process known as synaptic plasticity. Using electrophysiology techniques on mouse hippocampal slices, this project will provide further insight on memory formation and regulation by imitating synaptic plasticity mechanisms. I will look at a specific cellular pathway involving the protein receptor GPR55, which has recently been shown to induce synaptic plasticity. By understanding how the GPR55 pathway functions, this research will contribute to the understanding and treatments of Alzheimer’s and other neurodegenerative diseases.

The Effects of Exercise on Synaptic Plasticity in the CA1 Region of the Hippocampus in Mice Who Experience Acute Stress

January 01, 2013 12:00 AM
David Marriott, Brigham Young University Physiology and Developmental Biology Acute stress has been shown to decrease Long-Term Potentiation (LTP) in the CA1 region of the mouse hippocampus. Additionally, stressed animals show signs of anxiety and suffer decreases in spatial memory tasks such as object recognition and maze navigation. Conversely, exercise has been shown to increase spatial memory task performance in mice, attenuate anxiety-like behaviors and enhance neurogenesis and LTP in the dentate gyrus. While the effects of stress and exercise have been examined independently, there is currently a lack of experimental evidence that connects how stress and exercise, when experienced by the same animal, might modulate LTP in the CA1 region of the hippocampus. In our ongoing study, mice have been separated into a control group, a stress group (restraint and tail-shock), and an exercise + stress group where mice have voluntary access to a running wheel (for 30 days) before undergoing the stress protocol. We hypothesize that exercised animals will experience a protective effect against the reductions in CA1 LTP. In the stress only group, preliminary data shows a modest stress effect on LTP, yet we are learning that factors such as controllability of the stressor or the ability to develop coping mechanisms might potentially attenuate

Modified Nucleosomes and the Effect on Positioning

January 01, 2013 12:00 AM
Tara Hammond, Brigham Young University Microbiology and Molecular Biology Genetic diseases, including Alzheimer’s, cystic fibrosis, and many cancers, can be detrimental to individuals and their families. Gene therapy can possibly cure these diseases by inserting a correct copy of the gene into the chromosome, upregulating good genes, or downregulating the harmful gene. When DNA is packaged into a cell, it wraps around histones-an octamer made up of two tetramers, each containing four different subunits to create nucleosomes. Where the nucleosome sits on the DNA sequence determines whether or not a gene can be transcribed. In heterochromatin, nucleosomes are denser and DNA is tightly packed, thus causing genes to not be transcribed. Euchromatin contains looser packed nucleosomes and therefore has higher transcription levels. This project seeks to determine if modified nucleosomes have DNA sequence preferences. We are working with histone H3 to tri-methylate lysine 4, which has been shown to correlate with euchromatin. The modified histone will be used to create octamers. C. elegans DNA will be added to modified histones and to unmodified histones and allowed to create nucleosomes. The wrapped DNA will be sequenced, allowing us to compare the modified and unmodified nucleosome DNA preference. The difference in preference will enhance our ability to know how to move nucleosomes, thus aiding in gene therapy.

Adaptation of Staphylococcus Aureus to UV-C Light

January 01, 2013 12:00 AM
Kristian Johnson, Dixie State University Biology Antimicrobial methods, such antibiotics and Ultraviolet (UV) irradiation, have been a means of suppressing prokaryote proliferation for nearly a century. Over the last several years, scientists have found that numerous strains of prokaryotes have developed resistance to antibiotics. Concurrently, the process of bacterial irradiation using UV-C is common practice in a variety of sterilization applications. As revealed in the seminal work by Chang et al. inactivation curves for Microorganisms such as Staphylococcus aureus (Staph) were established in 1985. Their values indicate survival rates based on Intensity, which is defined as the time of UV irradiance per unit area. Similar to the evolutionary evidence of antibiotic resistance, we are interested in the selective pressure UV-C has on Staph. By recapitulating Chang’s experiment nearly 30 years later, our preliminary results indicate an increased resistance to UV-C in Staph. In this experiment, we determine a current UV-C dose-dependent kill rate function for Staph.

Chytridiomycosis-resistant Frog Populations in Southern Utah

January 01, 2013 12:00 AM
Chancen Hall and Nichkolas Hadley, Dixie State University Biological Sciences Batrachochytrium dendrobatidis (chytrid fungus) is prevalent worldwide, and the resulting chytridiomycosis has contributed to at least 168 amphibian species extinctions. In 2010, B. dendrobatidis was discovered in the greater Zion National Park area of southwestern Utah. Because few populations have shown resistance to chytridiomycosis, we decided to explore the effects of this disease on populations of Hyla arenicolor (canyon tree frog). We tracked the spread of B. dendrobatidis by testing skin samples taken annually from several different canyons and monitored population sizes. During the three years of our study, infected populations did not show subsequent population declines. This suggests that H. arenicolor population size in this region is unaffected by B. dendrobatidis. In the future, testing hypothesized explanations for surviving infection could help us identify populations not at risk and thus allocate conservation resources more efficiently.

GPR55: A Potential Enhancer of Learning and Memory in the Hippocampus

January 01, 2013 12:00 AM
Rachel Schneider, Brigham Young University Neuroscience The ability to create distinct memories for very similar stimuli and events is called pattern separation. Pattern separation is thought to be dependent on neurogenesis (the birth of new neurons) in the dentate gyrus, a subregion of the hippocampus. Neurogenesis is reduced in depression, as is overall memory performance. It has been proposed that depression negatively impacts pattern separation abilities, however a link between depression and performance in pattern separation memory tasks has yet to be identified. Accordingly, we designed a study to investigate the relationship between pattern separation performance and level of depression. Eighty-two participants completed a pattern separation memory test and a set of questionnaires to gauge their level of depression. During the task, participants were presented with 600 images one at a time on a computer screen in a continuous recognition paradigm. Participants were asked to determine whether each image was new, old, or similar. Images seen for the first time during the task qualified as “new”, images that were repeated following a variable delay qualified as “old”, and images that were similar to previously presented stimuli, but not exactly the same, qualified as “similar”. A pattern separation score was calculated based on the proportion of correctly identified similar stimuli. We found a negative correlation between depression scores and pattern separation scores (r(82) = – 0.301, p < 0.01). This relationship held constant even when we controlled for other factors known to affect neurogenesis, such as exercise and anxiety levels. These results provide support for the theory that depression is negatively related to pattern separation performance, possibly due to a decrease in neurogenesis in the hippocampus.

Endocannabinoid Biosynthesizing Enzyme Expression in Hippocampal Stratum Oriens Neurons

January 01, 2013 12:00 AM
Ryan Williamson, Brigham Young University Physiology and Developmental Biology The hippocampus is thought to mediate learning and memory by altering the strength of synapses within its circuitry. In many cases, this synaptic plasticity can be induced by intracellular signaling molecules. Lipid-based intracellular signaling molecules called endocannabinoids have been shown to modulate or mediate synaptic plasticity among hippocampal pyramidal cells and stratum radiatum interneurons; however, the role of endocannabinoids in mediating synaptic plasticity among interneurons in the stratum oriens is still unclear. Our goal was to determine whether stratum oriens interneurons have the machinery necessary for endocannabinoid production and, if so, whether this machinery is expressed in a sub-type specific manner. To do this, we used patch clamp electrodes to extract single cells from rat hippocampal slices and analyzed the expression of endocannabinoid biosynthetic enzyme mRNA using quantitative real-time PCR. In this analysis, we examined cellular expression of two interneuron markers, GAD65 and GAD67, as well as several calcium-binding proteins and neuropeptides to determine interneuron subtype. We also analyzed cellular expression of several endocannabinoid biosynthetic enzymes, including N-acyl phosphatidylethanolamine phospholipase D, diacylglycerol lipase alpha, and 12-lipoxygenase, as well as type I metabotropic glutamate receptors. Preliminary data suggests that stratum oriens interneurons express mRNA necessary for endocannabinoid biosynthetic enzymes. Additionally, we identified interneurons that coexpress mRNA for somatostatin and diacylglycerol lipase, suggesting that O-LM cells or another somatostatin-positive interneuron subtype may possess the enzymes necessary to produce the endocannabinoid 2-arachidonoylglycerol. Further work will allow us to examine how endocannabinoid biosynthetic enzyme expression correlates with other interneuron subtypes in the stratum oriens.

Validation of Cache County Genotype Data

January 01, 2013 12:00 AM
Aaron Sharp, Brigham Young University Biology The Cache County study on memory, health, and aging has played a significant role in several studies. However, there is some potential skepticism in the scientific community about its sample. The population in Cache County is derived from a diverse group of founders, but it is perceived by some to be an isolated population. If so, conclusions discovered there might not apply to other populations. Our objective is to compare the Cache County data to a panel of genetic data—provided by the International HapMap Project and the Alzheimer’s Disease Neuroimaging initiative—that is known to be representative of typical European-American populations. Doing so will indicate whether the genetic diversity in the Cache County sample is characteristic of an isolate or not. Analysis will be done using the open source “Plink” analysis toolset, including the –cluster and –mds-plot computational algorithms. Using –cluster groups individuals according to identity by state distances. The –mds-plot algorithm creates a scatter-plot of the individuals in 2-dimensional space, identifying any systematic difference between the Cache County data and the general population. We expect that the Cache County data will be representative of general European-American populations, because of its diverse group of founders.

The Effects of Temperature and Water Availability on the Germination of Bromus Rubens

January 01, 2013 12:00 AM
Rachel Nettles, Brigham Young University Plant and Wildlife Sciences Background/Questions/Methods

Association of the CETP Gene with Cognitive Decline and Dementia in the Cache County Study

January 01, 2013 12:00 AM
Caitlin Munger, Brigham Young University Biology Alzheimer’s is a fatal, non-treatable neurodegenerative disease and the most common cause of dementia. While no one gene has been found to determine the development of Alzheimer’s, past studies have established a strong hereditary influence on Alzheimer’s. So far, only 5 genes have been found which replicably contribute to the genetic risk of developing Alzheimer’s. However, the gene for Chlolesteryl Ester Transfer Protein (CETP) has been identified as a possible new contributor to the genetic risk factor. In order to test this association we obtained data on over 4000 subjects studied in the Cache County Study on Memory, Health and Aging over a 15-year period. This data included DNA samples, cognitive decline rates and incidence of dementia–particularly Alzheimer’s Disease. DNA samples were SNP genotyped using quantitative PCR. The SNP genotypes and corresponding phenotypes for each subject were then analyzed for association usingmixed linear models and for survival, or the amount of time until the disease appeared, using Cox proportional hazard models. We found a correlation between the V405I SNP and a decreased rate of cognitive decline. We found that for each additional G the rate of decline decreased by 0.6 points per year on the MMSE test. The identification of CETP as a player in the genetic risk for Alzheimer’s and dementia will provide much needed information on the genetic factors involved in dementia and allow for possible future therapeutic targets.

Subduing the Flu: New Alternatives to Amantadine

January 01, 2013 12:00 AM
Joseph Moulton, Brigham Young University Physiology and Developmental Biology With the advent of recent mutations in the influenza A viral genome, drugs that previously blocked the proton flux responsible for disassembly of the viral envelope and exposure of viral RNA to the transcriptional machinery of the host cell have become ineffective. Our study of the M2 hydrogen ion channel responsible for this flux has led to a vastly-increased under- standing of the mechanisms behind the conductance activity and potential blockage of these transmembrane tetramers. By embedding M2 proton channel subunits of the S31N mutant strain into liposomal bilayers and suspending these bilayers in the buffers and ionic gradients characteristic of the intracellular environment, we have been able to simulate and observe nor- mal functioning of the influenza A virus. Using these liposomal bilayers, we have developed a series of experimental protocols to test a variety of amantadine- and rimantadine-related drugs for successful blockage of M2 S31N proton conductance. Our research presentation will be centered around the mechanisms of this channel and the favorable results that we have obtained from many of these drugs.

Isolation of Hydrocarbon Metabolizing Microorganisms in the Great Salt Lake

January 01, 2013 12:00 AM
Natalie Batty, Westminster College Biology Hydrocarbon metabolizing microbes play a critical role in bioremediation and bio-augmentation projects. In 1978, Brock et al. identified microbes in the Great Salt Lake (GSL) capable of metabolizing hydrocarbons, but since then these microbes have gone unstudied. This research has isolated and identified bacterial species capable of hydrocarbon metabolism from GSL. Though capable of survival in the high salt concentration of the Great Salt North Arm, we have demonstrated that these species are also capable of thriving in low salt concentrations. This research will continue with the characterization process to identify what hydrocarbon sources each species is capable of degrading.

The Role of Nup153 in Nuclear Lamina Assembly

January 01, 2013 12:00 AM
Merima Beganovic, Westminster College Molecular Biology Nuclear Pore Complexes (NPC) create aqueous channels embedded in the nuclear envelope and are made from a network of proteins called nucleoporins (nups). The nucleoporin Nup153 has previously been found to be required for proper assembly of the nuclear lamina. In this study, a fragment of Nup153 was overexpressed in order to impede Nup153 function in T-Rex HeLa cells. After inducing the expression of the dominant negative fragment, I examined the localization of lamins A, B1 and B2, as well as SUN1, Emerin, and BiP, three proteins that mark cell membrane compartments. Lamins B1, B2, SUN1, and Emerin were found to mislocalize to the cytoplasm of the cells, and colocalization among the proteins was observed. Lamin A also had an abnormal phenotype unlike that seen with the B lamins, but indicative of a problem with integration of Lamin A into the nuclear lamina. Colocalization of the various lamin isoforms with membrane proteins such as SUN1 and Emerin indicates a problem with membrane assembly. The distinct localization of BiP, however, suggests that there is a “nuclear-like” membrane in the cytoplasm that either does not incorporate normally into the nuclear envelope as it forms or is newly-recruited to mislocalize the lamin proteins.

A Preliminary Assessment of Mercury Concentrations in a Terrestrial Songbird on Antelope Island

January 01, 2013 12:00 AM
Heather Reynolds, Westminster College Biology The presence of mercury in a food chain can have harmful effects, including altering behavior, on organisms. Mercury is typically found in aquatic ecosystems, however recently is also recognized as a potential problem in terrestrial ecosystems. High levels of mercury have been found in the Great Salt Lake in a form able to bioaccumulate up the food chain. If the aquatic ecosystem is linked to the terrestrial ecosystem, then some of the highest predators included in this food chain may be songbirds that eat spiders. We quantified mercury in the blood of the Loggerhead Shrike, Lanius ludoviciaus, on Antelope Island. Upon being caught, the birds were measured, color banded, and a blood and feather sample taken from each of the 15 shrikes to be tested for mercury. Mercury concentrations ranged from 0.96 to 4.00 ppm, with a mean 1.14+/0.31 ppm. Sub-lethal effects in songbirds from another study were seen with concentrations ranging from 2.0-3.5 ppm. Two shrikes we tested exceeded that range. There was high variability in concentrations of mercury, which might be related to distance from shore. These preliminary data demonstrate that some mercury from the aquatic ecosystem is bioaccumulating in the terrestrial ecosystem on Antelope Island, and there may be harmful levels in the birds which could lead to change in behavior, and eventually decline in population. Future studies will investigate the costs of mercury contamination.

Identification of Novel Invertebrate Neurokinin Receptor Gene Sequence

January 01, 2013 12:00 AM
Chelsie Thomas, Weber State University Zoology The invertebrate ribbon worm, Paranemertes peregrina, serves as a unique model in that it thrives in an environment exposed to drastic fluctuations in salinity during tidal interchange. Its ability to sustain homeostatic integrity is not well understood. With an aim to clarify this phenomenon, total RNA was isolated, and reverse transcription with polymerase chain reaction allowed us to serendipitously clone and elucidate a 488 base pair region of a gene coding for a Tachykinin Receptor (TKR), a subtype of G-protein coupled receptor (GPCR). This region shows 79% homology to the mouse TKR-2 mRNA sequence, and 44% homology to human Neuromedin-K receptor’s amino acid sequence. Specifically, we have isolated a portion containing a cytosolic carboxy-terminus that has classically been associated with palmitoylation or otherwise hydrophibicity-enhancing interactions. This process facilitates the docking of cytosolic subunits to the membrane in the assembly of GPCRs, acting as a regulatory component. In vertebrate models, much of these proteins are conserved. Given that only a few of these genes have been reported for invertebrates, this suggests a critical need for investigation of the evolution of TKRs as they relate to stress response. Additionally, this receptor poses questions about its potential role in pain, with the prospect of revealing insight about the long-elusive pain perception in invertebrates.