Skip to main content
Utah's Foremost Platform for Undergraduate Research Presentation

Life Sciences

Comparing the homing ability of siblings in the species Columba livia

January 01, 2014 12:00 AM
Eric Middleton, University of Utah Life Sciences One of the most impressive examples of homing among birds is demonstrated by Columba livia, or the rock pigeon. In racing or carrier breeds, birds can routinely travel over 100 miles and reliably find their way back to their home loft (Pratt, 1954). Bred from feral rock pigeons, these racers and carriers have been selected for their increased ability to home. While much research has been conducted on the mechanisms of homing, the heritability of homing is not very well understood. Furthermore, it is unclear if homing is predominantly learned or innate (Melhorn, Haastert, Rehkamper, 2010). The existence of homing breeds demonstrates that homing is heritable, but the degree to which this is the case or what traits in particular are improved with selective breeding are more uncertain. To attempt to better understand the heritability of homing, we will compare the homing ability of pigeons who are siblings to each other, and to unrelated pigeons. We first captured 90 wild pigeons from areas around Salt Lake City and allowed them to breed freely. We tracked the ancestry of all of the pigeons born from the feral birds and banded each of the birds in order to reliably distinguish which birds were related. We are now in the process of teaching the captive bred birds to home. Once this is completed, we will release the birds at varying distances from the loft. To quantify homing ability, we will measure angle of displacement from the loft when the birds first orient themselves and being homing, the time it takes to home, and which birds successfully make it home to the loft. This data will then be used to compare the homing ability of siblings to unrelated pigeons.

Urban Noise as a Stressor in Side-Blotched Lizards

January 01, 2014 12:00 AM
Marilize Van der Walt, Utah State University Life Sciences Urbanization is accompanied by a lot of changes to the landscape that have the potential to affect the native species inhabiting the area. If animals are chronically exposed to these anthropogenic disturbances and are unable to acclimatize, changes in circulating glucocorticoid hormones may cause adverse effects to the animal’s health, such as an impairment in innate immune activity. One such disturbance is human-induced noise. Using the side-blotched lizard, Uta stansburiana, because of their localized habitat and inability to escape such disturbances within the urban environment, we looked at the field and lab components of noise as a stressor. We first measured decibel levels in urban and rural field sites in their natural habitats in St. George, Utah, and conducted a lab study exposing U. stansburiana to either a synthesized urban sound recording or no sound recording (control) for nine days. We collected blood samples and measured circulating corticosterone and testosterone concentrations and bactericidal ability to determine if there are endocrine and immune alterations in response to increased noise decibels. Our results show that lizards exposed to urban noise experienced increased corticosterone levels indicative of stress. Furthermore, bactericidal ability was indirectly affected by noise through significant correlations between body condition and corticosterone and testosterone concentrations. These results indicate that an increase in ambient decibel levels acts as a stressor to animals in urban areas. By dissecting out an individual component of a complex stressor we can better understand the effects of urbanization as a whole.

Olfactory Processing in the Brain: The Impact of Lateral Glomerular Interactions on Odor Representation

January 01, 2014 12:00 AM
Kyle Hansen, University of Utah Life Sciences Our brain processes physical stimuli from the world around us to shape how we perceive our environment. In the olfactory system, this processing begins with olfactory sensory neurons that relay information about distinct odorants to a region of the brain called the olfactory bulb. Olfactory sensory neurons express the same odorant receptors converge onto structures within the olfactory bulb called glomeruli. Here, we map lateral interactions between glomeruli to better understand how olfactory information from the environment is processed within the olfactory bulb. Using GCaMP6, a fluorescent calcium indicator, in awake mice we can observe optogenetically-evoked patterns of lateral connectivity between glomeruli in the olfactory bulb. The findings from this study will help clarify potential interglomerular connection schemes and provide understanding of how local circuitry in the olfactory bulb transforms the representations of sensory information before it is relayed to higher brain areas.

Pas Kinase Activation by Snf1

January 01, 2014 12:00 AM
Brady Evans, Brigham Young University Life Sciences Nutrient-sensing kinases, such as AMPK and mTOR, play a key role in regulating cellular metabolism. They recognize nutrient levels within the cell and distribute nutrients accordingly. The failure to coordinate metabolic processes can lead to diseases such as diabetes, obesity and cancer. PAS kinase is another member of the nutrient-sensing kinase group that regulates glucose distribution in the cell. Despite its clear importance, little is known about the mechanisms regarding PAS kinase activation and its function. Studies have shown that mice without the PAS kinase gene are resistant to weight gain and maintain insulin sensitivity when placed on a high fat diet. Weight gain and insulin resistance are associated with increased rates of diabetes, cancer and other metabolic diseases. AMPK is currently the key target for the treatment of diabetes and has been found to be a cancer target as well. The yeast homologue, Snf1, is necessary for activation of yeast PAS kinase. Further studies have shown that PAS kinase is activated under the same respiratory conditions as Snf1. The aims of this project is to determine if Snf1 directly phosphorylates PAS kinase and to determine the effects of this phosphorylation. We have found that PAS kinase is activated quickly when cells are placed under Snf1-activating conditions. In addition, Snf1 is necessary and sufficient for this activation. Snf1 also copurifies with PAS kinase suggesting this activation is direct. PAS kinase purified from wild type verses Snf1-deficient cells shows phosphorylation on two key residues, S1020 and S1035. In addition, Snf1 directly phosphorylates PAS kinase in vitro. Together these findings suggest that Snf1 directly phosphorylates PAS kinase in order to regulate cellular glucose homeostasis

Improved Understanding of Non-Pathogenic Biophysical States in a Class of Neurodegenerative-Related Proteins in Hopes of Establishing a Baseline for Protein-Misfolding Disease Characterization

January 01, 2014 12:00 AM
Joe Passman, University of Utah Life Sciences Neurodegenerative disorders and amyloidosis are thought to be a consequence of the misfolding of intrinsically disordered proteins (IDPs). In non-pathogenic states, IDPs are thought to manipulate their configurational ensembles (CEs) – through partially folding and/or forming secondary structure – to create binding sites for the multiple interaction partners necessary for cell-signaling, recognition, and regulation. An obstacle to accurate in vivo understanding of non-pathogenic mechanisms is that little is known about the impact of the crowded cellular environment on the global (i.e. partial folding) and local structural characteristics (i.e. secondary structure) of IDPs. It is difficult to understand why an IDP may misfold if little atomistic structural understanding exists regarding IDP functional mechanisms in non-adherent physiological states.

Suppresion of lymphangiogenesis using vegf-c trap

January 01, 2014 12:00 AM
Ryan Watkins, Univeristy of Utah Life Sciences The lymphatic system is responsible for controlling systemic fluid buildup. Lymphangiogenesis is a dynamic process involving sprouting and maintaining new lymphatic vasculature. Vascular endothelial growth factor C (VEGF-C) is known as a key growth factor through VEGF receptor 2 and 3 (VEGFR2 and VEGFR3). Interestingly, the cornea expresses VEGF-C but is alymphatic. We found that the soluble isoform of VEGFR3, which lacks tyrosine kinase domains, is responsible for the alymphatic nature of the cornea by sequestering endogenous VEGF-C. Although soluble VEGFR3 or soluble VEGFR2 can be useful for inhibition of VEGF-C derived lymphangiogenesis, they also bind VEGF-A. Inhibition of VEGF-A suppresses blood vessel formation, damaging tissue and creating additional side effects. The development of a new anti-lymphangiogenic drug, that only blocks VEGF-C, has many implications: preventing tumor metastasis and reducing rejection rates of tissue and organ transplants. VEGF-C mainly binds to VEGFR3 domain 2 and VEGFR2 domain 3. To develop an anti-lymphangiogenic drug that specifically binds VEGF-C the binding domains were inserted into a vector that produces a recombinant protein (VEGF-C trap) that sequesters VEGF-C, suppressing lymphangiogenesis. Mice in a cornea transplantation model were treated with VEGF-C trap. After 8 weeks, 60% of the treated cornea survived (no rejection) compared to 10% in the empty vector control group. A 60% transplant survival rate is one of the highest rates compared to other single treatment methods. Blood and lymph vessel area was calculated and showed a decrease in lymph vasculature but not blood vessel. Suggesting only VEGF-C activity was affected. In a tumor metastasis model, nude mice will be injected subcutaneously with cultured MCF-7 cells which have been transfected with VEGF-C trap or an empty vector. We expect to see a decrease of lymphatic vasculature in the mice injected with MCF-7 cells containing the VEGF-C trap and ultimately less metastasis.

3D Mapping of Cardiac Nerves for Improved Cardiac Ablation Procedures in the Treatment of Cardiac Arrhythmia

January 01, 2014 12:00 AM
Adam Jorgensen, Brigham Young University Life Sciences Arrhythmia is a serious heart defect that effects 14 million people in the United States. It is characterized by irregular rhythm in the electrical impulses of the heart. Arrhythmia can cause sudden cardiac arrest and stroke. Recent developments in cardiac ablation have helped in the treatment of arrhythmia. Cardiac ablation works by scarring tissue in the heart, thus preventing abnormal electrical signals to travel through the myocardium. The three-dimensional map created in this project will improve the accuracy of cardiac ablation by offering a more dynamic view of the human heart and associated nerve branches. By properly articulating the intricate nerve branching of the heart, surgeons will be able to better target the nerves themselves when scarring heart tissue, thus allowing a less invasive procedure.

Genomic analysis of six Paenibacillus larvae bacteriophages

January 01, 2014 12:00 AM
Bryan D Merrill, Brigham Young University Life Sciences The spore-forming bacteria Paenibacillus larvae causes American Foulbrood (AFB), a highly contagious disease that is lethal in honey bee larvae. P. larvae is the most serious pathogen affecting honey bees. Its increasing antibiotic resistance has led to more research in characterizing bacteriophages which infect and destroy P. larvae. Of the 13 P. larvae phages that have been described in publications, six have been fully sequenced and are currently available for genomic analysis. To understand how P. larvae phages are related to each other and to other phages, the computer program Phamerator was used to analyze more than 100 phage genomes and group phage genes into “phams” based on similarity. Through analysis of grouped phage genes (structural proteins, terminases, recombinases, etc.) we can better understand in vivo replication strategies and evolutionary history of these P. larvae phages.

Biodegradation of Hydrocarbons by Great Salt Lake Microorganisms

January 01, 2014 12:00 AM
Camrin Rivera, Westminster College Life Sciences The Great Salt Lake (GSL) of Utah is home to organisms that are able to survive and reproduce in waters that can have a salt concentration of over 30%. Oil Jetty is located on the saltier north arm of the GSL and is the location of a natural hydrocarbon seep that flows into the lake. Previous work showed that organisms capable of degrading hydrocarbons can be cultured from this area (Ward & Brcok, 1978). It has also been shown that the salt concentration has an inverse relationship with these organisms’ ability to degrade hydrocarbons (Ward & Brock, 1978). This previous study gives insight of the hydrocarbon degrading capabilities of microorganisms in the GSL; however, the identification and characterization of individual hydrocarbon-degrading microorganisms has yet to be completed. The purpose of this study is to identify GSL microorganisms capable of degrading hydrocarbons under high salinities by sequencing of the 16s rRNA gene. Future studies will include the characterization of these microorganisms in order to find isolates whose hydrocarbon degrading abilities could be utilized for bioremediation and biotechnologies.

The effect of anxiolytic mediation administration on interval timing distracters

January 01, 2014 12:00 AM
Chance Christensen, Utah State University Life Sciences Affective disorders such as depression, phobias, schizophrenia, and post-traumatic stress disorder impair the ability to time in the seconds-to-minutes range, i.e., interval timing. According to the Relative Time-Sharing (RTS) model, presentation of task-irrelevant distracters during a timing task results in a delay in responding suggesting a failure to maintain subjective time in working memory, possibly due to attentional and working memory resources being diverted away from timing. Given that some anxiolytic medications have beneficial effects on attention and working memory, e.g., decreasing emotional response to negative events, we hypothesized that they would result in a decreased effect of distracters on the timekeeping abilities. We investigated the effect of acute administration of anxiolytic medication when anxiety-inducing task-irrelevant distracters were presented during an interval timing task, using methods similar to Matthews et. al. (2012) Frontiers in Integrative Neuroscience 6(111): 1-12. Results are discussed in relation to the brain circuits involved in RTS of resources, and the pharmacological management of affective disorders.

Frog Behavior May Protect Against Potentially Lethal Chytriodiomycosis

January 01, 2014 12:00 AM
Hailey Shepherd, Dixie State University Life Sciences Previous studies of canyon tree frogs (Hyla arenicolor) in Zion National Park have shown that some populations test positive for a dangerous fungus in the Chytridiomycosis family. This fungus has been linked to large population losses worldwide in many keystone amphibian species, but appears to have no effect on populations of H. arenicolor. Since Chytrid fungal growth is inhibited at high temperatures, we hypothesized the frogs are able to rid themselves of the fungus because they bask in the sun. During the summer of 2013 we swabbed frogs in multiple slot canyons to test for the presence of the fungus. We also recorded skin temperatures of the frogs we swabbed. Skin temperatures were as high as 38 C°, which is above the previously established lethal threshold of 28 C° for Chytridiomycosis. Our data support the idea that these frogs may be able to rid themselves of infection by allowing skin temperatures to raise enough to become intolerable for this fungus. This is the first known evidence of wild amphibian populations showing a behavior that may clear the infection. If further research supports these findings, it could lead to more effective allocation of limited conservation resources.

Genetic Origins of Mercury Resistance in Great Salt Lake Halophiles

January 01, 2014 12:00 AM
Ashtyn Smith, Westminster College Life Sciences Methylmercury (CH3Hg) is a neurotoxin that accumulates in lakes and streams due to the action of microorganisms, which can produce this biologically relevant organic form from elemental mercury (Hg). Therefore, the activities of microorganisms become key to understanding the balance of Hg and CH3Hg in the movement through the food chain in any ecosystem. Many species of microorganisms are resistant to Hg and can thrive in polluted waters. Recent studies have shown that Hg resistance in microbes can stem from one of two gene pairs, merAB or hgcAB. The merAB system allows the organism to covert CH3Hg into elemental Hg. Conversely, the hgcAB system coverts Hg into CH3Hg. Thus, it is important to determine how the microbial community of Great Salt Lake, Utah is affecting the CH3Hg concentrations in the lake. In order to determine the genotype of the lake’s halophiles, “salt-loving” organisms, microorganisms were collected from the deep brine layer in eight areas of the lake. The microorganisms were then isolated and cultivated on increasing concentrations of HgCl2. Halophiles from these samples have been isolated on 25 ppm HgCl2 at various salinities, demonstrating a robust resistance to Hg. PCR amplification and genetic sequencing will be used to determine the gene mechanism of mercury resistance (merAB or hgcAB) as well as the 16S rRNA gene, which will aid in identification of the species. Should this study identify GSL microorganisms that exhibit the merAB genotype, these organisms could potentially be utilized as bioremediators of the CH3Hg pollution in the lake.

Utah Valley University/Huntsman Cancer Institute Collaborative Breast Cancer Study: High-Frequency Ultrasound for Margin Assessments

January 01, 2014 12:00 AM
J Andrew Chappell, Utah Valley University Life Sciences In a joint effort with Huntsman Cancer Institute at the University of Utah, students from Utah Valley University are using high-frequency (HF) ultrasound to test the pathology of surgical margins from breast cancer conservation surgery. The method, developed by Dr. Timothy E. Doyle, provided significant results in a NIH-funded 2010 feasibility study. The results of the study indicated that peak density, the number of peaks and valleys in the HF ultrasonic spectrum, correlates to breast tissue pathology. This technology would allow surgeons to test – in the operating room – whether a surgical margin was clean or if cancer still remained in the margin. This advancement would decrease the amount of return surgical visits a patient must undergo, reduce costs for patients and hospitals, reduce breast cancer recurrence rates, and ultimately increase the survival rate of patients with breast cancer. During the ultrasonic testing, the students work in a team of four in a room outside of the surgical suite. Specimens are brought in by the surgeons’ team and tested immediately following resection. The margins are approximately 3x20x20 mm in size, and are oriented using a small staple inserted by the surgeon in one corner and a stitch on one side. The margin is tested at specific locations depending on the size of the margin and then sent to pathology for analyses. Pathological results and HF ultrasound results will be compared for correlation at the end of the study, which is expected to last about one year. The study will include approximately 80 patients, 360 tissue samples, 1400 tested locations, and 4,300 data points. The goal of the study is to evaluate the accuracy of the method in determining margin pathology. If successful, the method will be moved into clinical trial.

Standing on the shoulders of Woodrats: Adaptive Evolution in Desert Iguanas

January 01, 2014 12:00 AM
Albert Pope, Utah Valley University Life Sciences Few animals are capable of using the creosote plant, Larrea tridentate, as food because of a high level of toxic secondary compounds. Some exceptions to this rule are Neotoma lepida and Dipsosaurus dorsalis which are both capable of sustaining themselves on this desert bush. In 2013, Magnanou et al helped identify heightened transcription of genes correlated with digestion of creosote in N. lepida. Building upon their findings, we explore whether the genes for digesting creosote are under an elevated evolutionary rate for D. dorsalis. We have obtained transcriptomes from whole blood of four Iguaninae species: Ctenosaura pectinata, D. dorsalis, Sauromalus ater, Cyclura lewisi yielding an average of 4 GB of DNA sequence data (~51,000,000 fragments) each. Using Velvet in Sequencher we assembled these data, recovering greater than 6000 unique RNA transcripts per transcriptome. We search through the contigs to identify genes in Iguaninae transcriptomes that are homologous to those showing differential expression in Lepida. Using BLAST, we retrieve homologous genes from the public NCBI database of Anolis carolinensis and other reptiles. Lastly we construct phylogenetic trees of each gene and investigate the rate of change along each reptile lineage.

The effect of residue 21 on drug resistance of the A/M2 proton channel of the influenza virus

January 01, 2014 12:00 AM
Cameron Haas, Brigham Young University Life Sciences The influenza A virus contains a proton-selective ion channel, A/M2, through which acidification of the cell is induced. A/M2 is a homotetramer (consists of four identical helices) consisting of 97 residues and activated by low pH levels. Mutations in the amino acid sequences may induce resistance to channel inhibiting drugs. It is believed that residues 26, 27, 30, 31, and 34 are the major contributors of drug resistance, but other nearby residues may prove important as well. The A/California/04/2009 version of the influenza virus is sensitive to the drug AK-11, while its M2 channel is not. The A/Udorn/307/1972 with the S31N mutation M2 channel has been shown to have reduced sensitivity to amantadine compared to its wild type. While both contain a D (aspartic acid) at residue 21, A/Puerto Rico/8/1934 has a mutation from D to G (glycine). The A/Puerto Rico/8/1934 virus A/M2 contains mutations S31N and V27T and has shown sensitivity to the AK-11 drug, but the mechanism of inhibition of the A/M2 channel has not been verified. In these experiments we will be identifying sensitivity to AK11 of A/Udorn/307/1972 with the S31N mutation as well as inducing double mutations with S31N at residues 27 and 21 in the A/M2 from the virus and measure sensitivity by electrophysiological recordings in oocytes of Xenopus laevis. By doing so we may identify the role of these residues in drug resistance and the effects of these amino acid mutations, while verifying the A/M2 channel as the mechanism of acidification inhibition and drug sensitivity. We hypothesize that either D21G, V27T or both mutations causes drug sensitivity in M2 S31N, explaining the sensitivity of A/Puerto Rico/8/1934 to AK-11.

Tissue Engineered Vascular Graft for Surgical Implantation

January 01, 2014 12:00 AM
Dusting Day, Brigham Young University Life Science Atherosclerotic vascular disease is the leading cause of morbidity and death in the United States. Approximately 1.4 million surgical procedures are required every year for treatment of vascular disease and its subsequent issues. While saphenous vein and internal mammary artery grafts are most commonly chosen by physicians, many patients who are in need of arterial grafts have vessels that are not ideal for grafting because of damage to the vessels or disease. This introduces the necessity for synthetic blood vessel grafts that function precisely as natural vessels in vivo. Our blood vessel research team has entered the tissue engineering field in its most exciting effort: the scalable rendering of cell-seeded vascular constructs with rapid prototyping machines or 3D printers. We have built and are modifying a 3D printer to deposit living endothelial and smooth muscle cells into vascular structures. Using agar, alginate, or collagen gels as placement media, cells can be arranged in shapes resembling multilayered artery tubules and proliferate to form functional arteries. The endothelial layer and smooth muscle layer of cells interact to secrete a natural extracellular matrix (ECM) between them. We have successfully cultured endothelial cells and are perfecting our technique of harvesting aortic smooth muscle cells for culture. These cells will be encapsulated in a gel we have optimized for cell adhesion and proliferation and will then be printed with our rapid prototyping machine into the shape of a blood vessel. After proper cell growth and secretion of the ECM we will subject our synthetic graft to tensile strength testing, thrombosis tests, and eventually implantation into an animal for observation of any immunogenic effects. Our project’s success would bring an array of new treatment options through biomedical engineering that would save many lives of those who suffer from cardiovascular disease.

Prevention and Disruption of Bacterial Biofilms

January 01, 2014 12:00 AM
Aimee Newsham, Dixie State University Life Sciences Millions of people are infected yearly with resistant pathogens, including MRSA (methicillin-resistant Staphylococcus aureus), a biofilm-forming pathogen that is often transferred to patients from contaminated surfaces. Therefore, improved methods to destroy biofilm-encapsulated pathogens or to prevent their initial formation are required. This research is focused on the development of a safe treatment against biofilms by integrating organic salts, or ionic liquids (ILs), into different surfaces. Textiles were integrated with ILs to prevent formation of biofilms/bacterial growth, and were also treated post-exposure to determine if the biofilms could be destroyed post-contamination. Effectiveness of newly designed ILs were tested via inhibition zone studies on LB agar plates, and post-treatment samples were analyzed via scanning electron microscopy for presence of bacteria. The bacteria tested included Pseudomonas aeruginosa, Staphylococcus epidermidis, and Escherichia coli. These microbes are similar to MRSA in that they form biofilms comprised of extracellular proteins, DNA and polysaccharides. Bacterial colonies encapsulate themselves with biofilms to provide protection from threats, including antibacterial drugs. By integrating ionic liquids into textiles, formation can be prevented by IL solvation and sequestering of the extracellular biofilm components, including the proteins and DNA. This research could have tremendous implications regarding defeating bacteria that are resistant to existing treatments due to biofilm encapsulation. Additionally, the results could lead to new antimicrobial textiles and new approaches to prevent adherence and growth resistant biofilm-encapsulated pathogens.

Intrauterine Growth Restriction Alters Estrogen Serum Levels and Signaling in Rat Adipose Tissue in a Sex Dependent Manner

January 01, 2014 12:00 AM
Danielle Holliday, University of Utah Life Sciences Intrauterine growth restriction (IUGR) induces visceral obesity in adulthood, specifically among males. In male rat offspring, IUGR increases visceral adipose tissue (VAT) over subcutaneous adipose tissue (SAT). VAT and SAT functions are regulated by estrogen signaling, and suppressed estrogen signaling contributes to obesity development. Estrogen signaling is composed of estradiol and estrogen receptor alpha (ERα) and beta (ERβ). Estrogen receptors regulate the expression of several obesity related genes, such as lipoprotein lipase (LPL). However, the effects of IUGR on estrogen serum levels and signaling in the adipose tissue are unknown.

Using breast cancer subtypes as a model for detecting cytoskeletal dysfunction in Alzheimer’s disease

January 01, 2014 12:00 AM
Ashley Calder, Utah Valley University Life Sciences An estimated 50-80% of dementia patients suffer from Alzheimer’s disease (AD). Currently there is no test to diagnose AD except post mortem. Recent papers indicate that AD affects the cytoskeleton and cellular structure through mutations that alter structural proteins, and that dysfunction of the cytoskeleton may play a pivotal role in AD and other neurodegenerative diseases. In particular, specific genetic components of AD affect microtubule and actin filaments that control endocytosis, exocytosis, the shape and size of the neuron, vesicular transport along neurites (dendrites and axons), and fibril formation. The goal of our research is to determine if breast cancer molecular subtypes can be used as a model for AD. Breast cancer is comprised of five molecular subtypes that contain different molecular structures depending on mutations specific to each subtype and the proteins being synthesized. These mutations and their expressed proteins change the characteristics of the cytoskeleton and resulting properties of the cell such as size, shape and stiffness. Both computer simulation and experiment have demonstrated that high-frequency ultrasound in the 10-100 MHz range is sensitive to these properties. For this study, ultrasonic tests were conducted on monolayer cell cultures of breast cancer cell lines of different subtypes. Ultrasonic waveforms were analyzed by transforming them into their corresponding spectra. The positions, widths, and shapes of the spectral peaks were compared and correlated to model results using a pattern recognition algorithm. Preliminary results indicate that cell stiffness and size can be determined from the measurements. Further analyses of these and additional data will determine if ultrasound is sufficiently sensitive to differentiate between the molecular subtypes of breast cancer. Results from these analyses, future studies with neuron cell cultures, and application of the results to the development of a minimally invasive, in vivo method for accurately diagnosing AD will be discussed.

Extraction of Extracellular DNA from Environmental and Biological Media with Novel Surfactants

January 01, 2014 12:00 AM
Derek Harris, Dixie State University Life Sciences The presence of extracellular DNA (eDNA) in various environmental and biological media has become the subject of growing interest in the field of research. In media such as bacterial biofilms, it has been shown to play a vital role in their structure and antimicrobial properties. Existing methods for extraction of pure eDNA from these media are complex and problematic; particularly from biological media where cells containing genomic DNA are also present. Novel surfactants have been developed, whose miscibility and polarity are easily tuned to suit a variety of conditions necessary for eDNA extractions. They can accomplish extraction of pure eDNA through concurrent hydrophilic and hydrophobic interactions in a single step, while remaining unreactive with the surrounding media or lysing cells and exposing genomic DNA. We have shown by spectrophotometric quantification that these surfactants extract measurable amounts of DNA into a water-immiscible solvent layer, which can then be removed from the media. The DNA can then be further amplified and purified for analysis. Further refinement of extraction methods utilizing these surfactants could prove a tremendous asset to research attempting to elucidate the possible genetic content of eDNA and the mechanisms behind its often crucial role in environmental and biological media.

3D printing from MRI data of stroke and Alzheimer’s disease subjects: An educational model of neurologic disease

January 01, 2014 12:00 AM
Brett Gardiner, Brigham Young University Life Sciences Normal human anatomy used in the classroom is not reflective of variations confronted in pathology subjects. Current commercialized models are not products of real data, rather representations of it. While learning complicated medical anatomy, students take an enormous stride from the anatomy lab to situational surgical settings. 3D models can bridge this gap in medical education without patient risk, particularly for the brain where surface regions have strong associations to specific physiological activity. Subject specific models are especially advantageous for comprehending real surface morphology of neurologic diseases. Using rapid prototype technology, we have developed an accessible process to produce physical 3D models from specific MRI data of stroke and Alzheimer’s subjects. The neuroanatomical abnormalities modeled from real data by our 3D printouts will educate students on the anatomical variations encountered in an authentic clinical scenario of neuropathology. Our project consists of three phases: (1) image acquisition, (2) post-processing imaging data with segmentation, and (3) 3D printing. By delineating cortical regions we are providing a unique multidimensional facet of clinically accurate data not before available to the classroom. This powerful and versatile technique can allow students and professionals to visualize the inherently complicated structures as seen in clinical neuropathology. From students in the classroom, lawyers in the courtroom or preoperative surgical explanations, these customizable models will resemble real anatomical information. Through rapid prototyping of specific subject data, unique variations in pathology can be reviewed outside of the clinical setting. Beyond its potential use by teachers, lawyers and doctors can benefit from a 3D production to enhance their explanations of anatomical variations from specific pathological subject data.

Life at the Extremes: Finding Earthly analogs for potential life on Mars

January 01, 2014 12:00 AM
Alysa Fratto, Westminster College Life Sciences Although the idea of life on other planets is mused over by many, the scientific study of the potential for extraterrestrial life did not begin until the mid-1950s (SETI, 2013). Since then, many technological advancements have been made that make the study of life on other planets simpler, however it is inherently difficult to study the potential for life in an environment that one cannot access. To address this issue, scientists look on Earth for extreme environments that mimic those found elsewhere in the universe.

Rapid adaptation of d2 dopamine receptor responses following acute ethanol

January 01, 2014 12:00 AM
Joseph Linzey, Brigham Young University Life Sciences Dopamine (DA) D2 receptor expression parallels DA levels in the brain and these autoreceptors on DA neurons been shown to be modulated by long-term ethanol exposure. We have previously demonstrated that VTA GABA neurons also express D2 receptors, and that DA and D2 receptor agonists markedly enhance the excitability of VTA GABA neurons, opposite to their well-known inhibition of DA neurons. Most importantly, D2 receptor antagonists block ethanol inhibition of VTA GABA neurons and D2 receptor expression in VTA GABA neurons down-regulates with chronic ethanol. This study evaluates short-term D2 receptor adaptation in VTA GABA neurons and in DA release in the nucleus accumbens (NAc) by acute ethanol. In electrophysiology studies in anesthetized rats, periodic iontophoretic application of DA, or the D2 agonist quinpirole, markedly enhanced VTA GABA neuron firing rate, which was initially inhibited by ethanol, but resulted in latent and marked rebound excitation 30-60 min following injection. Using fast scan cyclic voltammetry (FSCV), we evoked DA signals in the core of the NAc by electrical stimulation of the medial forebrain bundle at the level of the lateral hypothalamus (60 Hz, 24 pulses). Intraperitoneal (IP) administration of ethanol (1.0-3.0 g/kg) dose-dependently decreased the amplitude of the MFB-evoked NAc DA signal. IP administration of the D2 antagonist eticlopride (1 mg/kg) markedly increased (250%) the amplitude of the evoked DA signal. When ethanol was administered after eticlopride it increased the amplitude of the DA signal an additional 42%. These findings suggest that ethanol induced decreases in evoked DA release may be due to autoreceptor feedback. Work is in progress to evaluate the short-term expression of D2 receptors in VTA GABA neurons following acute ethanol and to evaluate the effects of ethanol-induced short and long-term adaptations in VTA GABA neuron D2 expression in mediating ethanol effects on DA release in the NAc.

Biological effect of of oils spill dispersant corexit

January 01, 2014 12:00 AM
April Moorer, Weber State University Life Sciences Corexit is a dispersant used in the gulf of Mexico as a reactive measure to counteract the oil spill of April of 2010. Studies reveal that toxicity is produced and has impacted marine life. Research shows that reproductivity is diminished as a consequence. Paralysis, tumor development, and fatalities are also proven to occur. The purpose of this experiment is to study effects on the physiological structure of brine shrimp at various life stages resulting from the exposure to toxicity induced by corexit.

Functional Switch in GABA(A) Receptors on VTA GABA Neurons by Chronic Ethanol

January 01, 2014 12:00 AM
Ashley Nelson, Brigham Young University Life Sciences The motivational effects of opiates and ethanol switch from a dopamine (DA)-independent to a DA-dependent pathway when the animal is in a drug-dependent state. A corresponding change occurs in ventral tegmental area (VTA) GABA(A) receptors in opiate-dependent animals, which switch from a GABA-induced hyperpolarization of VTA GABA neurons to a GABA-induced depolarization. The aim of this study was to evaluate VTA GABA neuron excitability, GABA synaptic transmission to VTA GABA neurons and GABA-mediated DA release in the nucleus accumbens (NAc) under ethanol-naïve and dependent conditions. To accomplish these studies, we used standard whole-cell and attached-cell mode electrophysiological techniques to evaluate acute and chronic ethanol effects on VTA GABA neurons in GAD GFP mice, which enabled the visual identification of GABA neurons in slice preparation. In naïve animals, superfusion of ethanol (IC50 = 30 mM) and GABA(A) receptor agonist muscimol (IC50 = 100 nM) decreased VTA GABA neuron firing rate in a dose-dependent manner. Compared to saline-injected controls, in animals made dependent on ethanol by twice daily injections of 2.0 g/kg ethanol, neither ethanol nor muscimol significantly affected VTA GABA neuron firing rate on average. We and others have found that ethanol decreases DA release at terminals, as measured by fast scan cyclic voltammetry. We have recently reported that ethanol inhibition of DA release at terminals in the NAc of ethanol-naïve animals is mediated by GABA, possibly from VTA GABA neurons that project to the NAc. We evaluated the effects of ethanol on DA release in the same ethanol-dependent animals. Compared to controls, superfusion of ethanol did not significantly affect DA release. Together, these findings suggest that VTA GABA neurons undergo a switch in GABA(A) receptor function with chronic ethanol, which results in a corresponding switch in DA release, perhaps resulting from adaptations in VTA GABA neuron input to the NAc.

Correlation between phantom thickness and peak density in high-frequency ultrasonic spectra

January 01, 2014 12:00 AM
Robyn Kira Omer, Utah Valley University Life Sciences Peak density, which is the number of peaks and valleys in a specified spectral range of high-frequency (HF) ultrasound, correlates to breast pathology in lumpectomy specimens. It has been a question in both previous and current studies, however, whether the thickness of a sample has an independent effect on the peak density. The objective of this study was to discover any correlation, if any, between specimen thickness and peak density in HF ultrasound measurements (10-100 MHz). Phantoms were fabricated from a mixture of water, gelatin, and soluble fiber. Polyethylene microspheres (180-212 micrometer diameter) were embedded into half of the phantom specimens at 0.0003% concentration to simulate tissue heterogeneity. The other phantoms were devoid of microspheres to provide control measurements. Seventy two pitch-catch measurements were acquired in triplicate using 50-MHz transducers, a HF pulser-receiver, and a 1-GHz digital oscilloscope. The waveforms were analyzed to provide spectra and the resulting peak densities were determined. The results indicate that no significant correlation exists between specimen thickness and peak density. The coefficients of correlation for the microsphere and control specimens were 0.366 and 0.652, respectively. The peak density values were most consistent within the control specimens, ranging from 1 to 4. The peak densities for the microsphere phantoms had a greater range of values, varying from 1 to 8. It is believed that the wide variation in peak density for the microsphere phantoms was due to clustering of the microspheres. Future studies will include looking at previous phantom and tissue studies to further investigate the apparent lack of thickness-peak density correlation.

“Killing Me Softly”: The Economic Toll of Forest Fire Repression

January 01, 2013 12:00 AM
Adam Olson, Brigham Young University Plant and Wildlife Sciences Forests systems of the Central Rocky Mountains rely on an intricate balance of natural disturbance cycles in order to develop properly. Forest fires are one such disturbance, however, certain fire characteristics, particularly fire severity, can vary widely across forest landscapes. In our study, we examined the influence of fire severity on aspen regeneration as well as aspen defense against wildlife and livestock browsing. Our results indicate that high or moderate burn severity is more favorable to aspen regeneration and survival. These areas of severe burn result in a higher density of aspen suckers, more vertical and lateral growth, greater chemical defense concentrations, and less browse damage than the neighboring plots of low or no burn. This data suggests that fire severity should be taken into account when considering plant regeneration and susceptibility to browse damage in burned landscapes.

The Effect of Male Dominance on Female Mate Choice in Poecilia gillii

January 01, 2013 12:00 AM
Michael McEntire, Brigham Young University Biology Female mate choice (intersexual selection) and male dominance interactions (intrasexual selection) can each play important roles in sexual selection. These two mechanisms tend to be discussed in isolation. The goal of this study is to explore the interaction between these two forms of sexual selection. To test this idea, we focused on the livebearing tropical fish system Poecilia gillii. We grouped males into similarly sized pairs and observed them for a week to determine which male was dominant. These pairs were then presented to females in mate choice trials to ascertain female preference. We also photo- graphed the males to determine coloration. We found that females were unable to detect dominant males without viewing the physical contest and that carotenoid coloration bore no effect on female preference. Females tended to choose the male to their left, suggesting the preferential use of their right eyes in making decisions on mate choice.

The Role of Timing of Dietary Selenium and Isoflavone Supplementation in the Reduction of Prostate Cancer Risk Factors in TRAMP Mice

January 01, 2013 12:00 AM
Ji Su Park, Brigham Young University Nutrition, Dietetics, and Food Science Selenium (Se) and soy have each been shown to reduce risk for prostate cancer when consumed at high levels. The purpose of this project was to define the molecular mechanisms of prostate cancer chemoprevention by Se and soy, and to describe how timing of dietary treatment modifies those effects. [C57BL/6 X FVB] F1 TRAMP (TRansgenic Adenocarcinoma of Mouse Prostate) male mice were fed stock diets high or low in soy, with or without a supplement of Se (4.0 mg Se/kg BW as Se-meth- ylselenocysteine) by gavage 5 d/wk in a 2 X 2 factorial design. Mice were exposed to different diets starting from conception, 6 weeks, or 12 weeks of age and were sacrificed at 18 weeks. Three-way ANOVA showed that supplemental Se increased serum and liver Se, with significant interactions with both time and soy intake. Selenium dosing decreased BW independent of soy intake and time of dietary intervention. Both Se and soy decreased epididymal fat pad weights, with Se’s effects being more pronounced in mice exposed to diets from conception than from 6 wk. Urogenital tract weights, a measure of prostate proliferation and tumor volume, were significantly reduced by Se supplementation (P<0.001) and soy (p=0.044), independent of time of dietary intervention. Histological examination of mouse prostates is in progress to determine dietary effects on disease progression. These data suggest that, in this model, chemopreventive efficacy of Se and soy does not differ between prenatal and early post-natal introduction.

Characterizing the Role of HspB2 in Cardiac Metabolism and Muscle Structure Using Yeast and Mammalian Cells

January 01, 2013 12:00 AM
Whitney Hoopes, Brigham Young University Microbiology and Molecular Biology HspB2 is one of eleven known small Heat Shock Proteins (sHSP) that is expressed in human heart and skeletal muscle. In response to cellular stress, heat shock proteins play a vital role to help misfolded proteins and proteins susceptible to denaturation maintain their structure. Two members of the sHSP family, CryAB and HspB2, are both required for normal heart function and cardiac muscle integrity. CryAB-deficient mice have defects in cardiac muscle structure whereas HspB2-deficient mice display energy deficits (Rajasekaran et al. 2007). The contrasting phenotypes of CryAB and HspB2 suggest differential roles for these molecular chaperones in the heart. HspB2 has been found to localize with the mitochondria in several different cell lines and overexpression of this sHSP has been shown to support survival of cells against heat stress (Nakagawa, 2001). To understand the role and mechanism of HspB2 in cardiac muscle energy regulation, we have used a yeast two-hybrid (Y2H) system to uncover the novel protein binding partners specific to HspB2. From screening a human heart cDNA library, HspB2 interacted with approximately 10,000 out of 20 million plasmids. We have sequenced more than 1000 of these putative interactors and have identified over 100 unique proteins. Over 40% of these protein partners are involved in mitochondrial energy production and another 25% in cardiac muscle structure maintenance. In addition, we have identified an interaction between HspB2 and the related sHSP CryAB. We then compared this data with mitochondrial HspB2 binding partners identified by mass spectroscopy (MS) through a large-scale bioinformatics analysis and constructed a protein-protein network. Y2H dependency tests were conducted to verify interactions identified by both Y2H and MS. Following yeast verification, a subset of the interactions were confirmed in C9H2 cardiac cells through coimmunopurification. Our research describes the first protein-protein interaction network for any sHSP, supports a role for HspB2 in mitochondrial energy production and suggests a link between mitochondrial energy production/redox stasis and stressed cardiac muscle maintenance.

Impact of Ungulate Browsing on the Development and Resilience of Aspen Forests

January 01, 2013 12:00 AM
Christian Boekweg, Brigham Young University Plant and Wildlife Sciences It has been shown that the population densities of deer and elk in the Rocky Mountains are at an unprecedented high. The heavy browsing of said species (ungulates) on regenerating aspen suckers can be devastating, leading to homogenously aged aspen stands that now have reduced resilience to drought, fire or logging disturbance, and an increased susceptibility to pathogens. Lastly, the extensive, highly selective herbivory of the aspen suckers may cause a shift in forest composition away from the aspen tree to an increase in other, less palatable species. We selected 186 sites across the 3 national forests of Central and Southern Utah, and characterized stand composition using the point quarter method. Stands were defined by successional stages from early to late; aspen, mixed or conifer. We then used pellet counts to estimate animal density and evaluated the effect of animal density and stand type on the regeneration success of aspen suckers. The key result of our study is that high ungulate density is highly correlated with reduced sucker heights (p<0.001). This indicates that high ungulate density impedes aspen regeneration by preventing aspen from recruiting into the overstory. Our study suggests that closer monitoring of the long term effects of herbivory on aspen development and regeneration is necessary to ensure vigorous aspen forests.

Identification of Novel Serum Biomarkers for Alzheimer’s Disease Using an Integrated Serum Proteomics Method

January 01, 2013 12:00 AM
Jesse Cobell, Brigham Young University Biology Alzheimer’s disease (AD) is the sixth major cause of death in the U.S. However, at present, no diagnostically useful serum markers for AD have been identified. Hence, we used a novel serum proteomic approach to interrogate the low molecular weight proteome for serum biomarkers. This allowed for survey of around 5000 low MW species. To reduce ion suppression, an acetonitrile precipitation step was used to remove high abundance serum proteins. Protein-depleted sera from 58 cases and 55 controls were analyzed by cLC-ESI-QTOFMS/MS using reverse phase chromatography. Data were reviewed using Applied Biosystem’s Analyst-QS software to compile spectra. Differentially expressed peptides (cases vs. controls) were analyzed statistically using the Student’s t-test. This led to discovery of 36 candidate biomarkers. Additionally, we compared AD subjects with more severe disease (Clinical Dementia Rating (CDR) =3) with non-demented individuals (CDR=0) and found 23 biomarkers. Furthermore, on comparison of mild and moderate stage AD individuals (CDR = 0.5, 1, 2) with those with severe disease (CDR = 3), we found 24 biomarkers. Some of these biomarkers appeared more prominent in one gender. We then fragmented several of these biomarkers on an LTQ-Orbitrap XL hybrid mass spectrometer and cLC-ESI-QTOF-MS/ MS system using collision-induced dissociation to determine amino acid sequence analysis. We have identified 5 biomarkers and are in the process of identifying the remaining biomarker species. This serum proteomics approach found statistically different peptide abundances in subjects with AD. Additional biostatistical evaluations are underway to determine sensitivity and specificity of individual biomarkers and their combinations. Future studies will assess biomarkers according to disease stage and validate current biomarkers in blinded comparisons of other AD sera. This serum proteomics approach appears promising in locating and identifying clinically useful serum biomarkers of AD.

Genome-Wide Association Study of Visinin-Like Protein Levels, an Endophenotype for Alzheimer’s Disease

January 01, 2013 12:00 AM
Rachel Perry, Brigham Young University Life Sciences Previous studies have indicated that Visinin-like protein (VILIP) may be a powerful tool in predicting disease progression and guiding prognosis of Alzheimer’s disease (AD). Cerebral spinal fluid (CSF) was collected from hundreds of individuals with varying levels of AD. The CSF was then analyzed for levels of VILIP protein using Luminex technology. SNPs were genotyped using the Illumina OmniExpress chip. SNPs found to have a Hardy-Weinberg frequency less than 1×10-4 were not included, assuming that this variance was due to a genotyping error. SNPs and samples missing more than five percent of the data were also not included. Following the cleanup of the data, an association test using linear regression was performed. Covariates used in the analysis included age, gender, and covariates that accounted for population stratification (PC1 and PC2). Over one hundred SNPs were found with a p-value less than 1×10-5. The genomic inflation factor for the generated data was 1. One marker showed significance at the genome-wide level. We have identified a genetic marker that shows significant association with CSF VILIP levels. This finding may provide insight into genetic control of VILIP levels, which may be a useful in understanding the pathological processes involved in AD.

The Effects of Exercise on Synaptic Plasticity in the CA1 Region of the Hippocampus in Mice Who Experience Acute Stress

January 01, 2013 12:00 AM
David Marriott, Brigham Young University Physiology and Developmental Biology Acute stress has been shown to decrease Long-Term Potentiation (LTP) in the CA1 region of the mouse hippocampus. Additionally, stressed animals show signs of anxiety and suffer decreases in spatial memory tasks such as object recognition and maze navigation. Conversely, exercise has been shown to increase spatial memory task performance in mice, attenuate anxiety-like behaviors and enhance neurogenesis and LTP in the dentate gyrus. While the effects of stress and exercise have been examined independently, there is currently a lack of experimental evidence that connects how stress and exercise, when experienced by the same animal, might modulate LTP in the CA1 region of the hippocampus. In our ongoing study, mice have been separated into a control group, a stress group (restraint and tail-shock), and an exercise + stress group where mice have voluntary access to a running wheel (for 30 days) before undergoing the stress protocol. We hypothesize that exercised animals will experience a protective effect against the reductions in CA1 LTP. In the stress only group, preliminary data shows a modest stress effect on LTP, yet we are learning that factors such as controllability of the stressor or the ability to develop coping mechanisms might potentially attenuate

Modified Nucleosomes and the Effect on Positioning

January 01, 2013 12:00 AM
Tara Hammond, Brigham Young University Microbiology and Molecular Biology Genetic diseases, including Alzheimer’s, cystic fibrosis, and many cancers, can be detrimental to individuals and their families. Gene therapy can possibly cure these diseases by inserting a correct copy of the gene into the chromosome, upregulating good genes, or downregulating the harmful gene. When DNA is packaged into a cell, it wraps around histones-an octamer made up of two tetramers, each containing four different subunits to create nucleosomes. Where the nucleosome sits on the DNA sequence determines whether or not a gene can be transcribed. In heterochromatin, nucleosomes are denser and DNA is tightly packed, thus causing genes to not be transcribed. Euchromatin contains looser packed nucleosomes and therefore has higher transcription levels. This project seeks to determine if modified nucleosomes have DNA sequence preferences. We are working with histone H3 to tri-methylate lysine 4, which has been shown to correlate with euchromatin. The modified histone will be used to create octamers. C. elegans DNA will be added to modified histones and to unmodified histones and allowed to create nucleosomes. The wrapped DNA will be sequenced, allowing us to compare the modified and unmodified nucleosome DNA preference. The difference in preference will enhance our ability to know how to move nucleosomes, thus aiding in gene therapy.

APOE e4 Independent Associations in the APOE Gene Region with Cerebrospinal Fluid Levels of Amyloid Beta 42 in Alzheimer’s Disease

January 01, 2013 12:00 AM
Spencer Foutz, Brigham Young University Biology CSF AB42 levels are a biomarker for Alzheimer’s Disease. The APOE e4 allele associates with CSF AB42. Little is known about SNPs in the region independent of apoe e2/e3/e4 isoforms. By adjusting for the effect of these isoforms, statistical analysis uncovered new SNPS associated with CSF AB42. Information was used from 1338 individuals from four datasets, specifically: The WU-ADRC, ADNI, University of Washington, and UPENN. Samples included individuals with and without AD. The 169 SNPs used were extracted from the APOE region and surrounding 50 kb using 1000 Genome Software. Linear regression analysis was performed, adjusting for specific covariates. Adjustments were made for the APOE e2 and e4 alleles before repeating the analysis. Significant SNPs were tested in e3 homozygous individuals. Each series was separately analyzed and combined in a meta-analysis for confirmation. P-values, sample sizes, and effect sizes were used in the meta-analysis. Results from these analyses allowed us to conclude rs769449 is associated with lower levels of CSF AB42 and acts independent of the APOE e4 allele.

Facilitative and Competitive Interactions in Subalpine Aspen-Fir Forests

January 01, 2013 12:00 AM
Jason Bartholomew, Brigham Young University Plant and Wildlife Sciences After disturbances in plant communities (i.e. wildfire), there is a natural succession of plants in which plants colonize the empty area and are gradually replaced by more competitive species. In subalpine forests, the principle colonizers after wildfire are quaking aspen (Populous tremuloides) which are later replaced by subalpine fir (Abies lasiocarpa). It has been shown that aspen facilitate, or enable, the establishment of subalpine fir at their base. This study examines the aspen-subalpine fir interaction in order to better understand the dynamics of the shift from aspen to fir dominance. It is hypothesized that the fir in a facilitated pair eventually exerts a competitive influence on the aspen resulting in a decrease in aspen fitness. The growth rates of the two species were examined in different stand types (aspen, mixed and subalpine fir), as independent trees or in facilitated pairs, and in three separate size classes. Samples were collected by taking a core sample or cross-section from trees within the categories listed above. The age and annual growth rings were measured with a measuring stage. The annual growth rings were used to calculate basal area increase (BAI) which was used to determine growth rates. The results suggest the growth rate of aspen in facilitated pairs decreases as firs mature thereby decreasing fitness within the aspen population due to competitive influences from facilitated firs. This may explain the mechanism for the successional shift that can significantly impact indigenous animal populations and local fire cycles.

Linkage Analysis of Late Onset Alzheimer’s Disease Population in Search of Chromosomal Region Harboring Rare Causal Variants

January 01, 2013 12:00 AM
Kevin Boehme, Brigham Young University Biology Late Onset Alzheimer disease (LOAD) is caused by a complex combination of genetic and environmental factors. While multiple loci have been found associated with an increased risk of LOAD much of the heritability of the disease has yet to be accounted for. The prevailing thought now is that of rare variants playing an important role in LOAD. In this study we will use linkage analysis to identify novel regions of the genome that may harbor rare disease causing variants. Data for these analysis comes from 748 people (503 with LOAD) from the Cache County study on Memory and Aging. This unique population based sample provides great power for linkage as relatedness differs from siblings to distant relatives and complete pedigree information is available for all of the individuals. We will use LD-pruned SNP data from the Illumina Omniexpress BeadChip and pedigree data from the Cache County samples to perform linkage analysis. Quality control and LD-pruning will be con- ducted in PLINK while the Linkage analyses will be conducted using the MERLIN software. Our findings will be reported in the final poster presentation.

Engineering Pathogen Specific High Affinity T-Cell Receptors

January 01, 2013 12:00 AM
Bryce Anderson, Brigham Young University Microbiology and Molecular Biology Antigen presenting cells digest and display peptides from foreign and infected cells on the major histocompatibility complex (MHC) that are recognized by T-cells through their T cell receptor (TCR). The affinity of TCR:peptide-MHC interactions has been shown to be low however, and in order to effectively use a soluble TCR for therapeutics we need to engineer TCRs with increased affinity. To do this, we have designed a single chain TCR (ValphaVbeta) called LLO118 that is specific for a naturally occurring Listeria monocytogenes epitope. Using yeast display, stable mutants that expressed the LLO118 scTCR at higher levels than the wild type on the surface of yeast were isolated and sequenced. In order to improve affinity of LLO118 we are mutating amino acid residues in the complementarity determining regions, sites important for the TCR to bind with the peptide-MHC. We are generating unique libraries of yeast cells with TCRs that have potential affinity mutations and using fluorescently labeled peptide-MHC tetramers to select cells that have TCRs with higher affinity. By repeating this process with the cells that have higher affinity we are working to get a TCR that binds with much higher affinity than the wild type TCR. These high affinity TCRs are promising for further research in connecting them to a cytokine, greatly reducing systemic damage and other complications caused by administration of this cytokine throughout the body. Thus, our goal is to design a high affinity TCR fused to a cytokine that can be tested for therapeutic use in targeting specific cells in the immune response and improving T cell memory.

GPR55 Modulates the Cellular Mechanism Behind Memory Formation, Suggested Alternative Pathways Require Further Investigation

January 01, 2013 12:00 AM
Spencer Bell, Brigham Young University Physiology and Developmental Biology The hippocampus functions as the memory formation center of the brain. As memories are formed, brain cells in this area undergo changes by which connections between them are either strengthened or weakened, processes known as long-term potentiation (LTP) and long-term depression (LTD), respectively. Receptors located on these cells modulate these processes as they are activated by chemical signals known as neurotransmitters. We sought to examine the effects of a receptor known as G protein-coupled receptor 55 (GPR55) on LTP and LTD in the rodent hippocampus by applying agonists of the receptor, or chemicals that artificially activate it, to brain slices preserved in artificial cerebrospinal fluid. O-1602 is a purported synthetic agonist of GPR55. When we applied O-1602 to rat hippocampal slices during electrical induction of LTP, the magnitude of LTP was decreased when compared to controls. When LTD was induced in the rat hippocampus in the presence of O-1602, no significant difference was observed when compared to controls. Further experimentation involved the application of lysophosphatidylinositol (LPI), a naturally occurring GPR55 agonist, to genetically-engineered knock-out mice which lacked expression of GPR55. LPI is generally considered a more reliable agonist of GPR55, but caused enhanced LTP in wild-type mice which expressed GPR55 when compared with knock-out mice. This inconsistency and other inconsistencies in our data while using O-1602, while perhaps due to other physiological differences between rats and mice, may suggest the possibility that O-1602 activates a receptor other than GPR55. Our further research will seek to investigate this possibility.

Baicalein and Light Stimulation as Clinical Therapies for Addiction

January 01, 2013 12:00 AM
Brad Ackerson, Brigham Young University Neuroscience The highjacking by alcohol and drugs of abuse of the mesocortico-limbic system in the brain is responsible for addiction, specifically the ventral tegmental area (VTA) and its projecting dopaminergic neurons to the nucleus accumbens (NAc). Over the course of addiction, a hedonic response is developed from lower than normal levels of dopamine (DA) in which the individual pursues drug-seeking behavior. The current accepted treatment methods for addiction are replacement drug therapies, group therapy, or individual counseling – the prior being associated with additional side-effects and an inability to overcome the hedonic response of the addiction. The aim of this study was to evaluate alternative and natural therapeutics that produce long-term potentiation (LTP) of the neuronal systems involved in order to overcome addiction with minimal to no side-effects. Using fast-scan cyclic voltammetry (FSCV), the effects of baicalein, a flavonoid isolated from the root of Sculletaria Baicalensis, and low-level laser therapy (LLLT) on DA release in the NAc core were evaluated in vitro and in vivo in Wistar rats. Local stimulation evoked in vitro demonstrated that baicalein administration (10, 50, 100 uM) 30 minutes prior to 80 mM ethanol attenuated the DA inhibition of ethanol. DA signals were evoked in vivo in the core of the NAc by electrical stimulation of the medial forebrain bundle (MFB) at the level of the lateral hypothalamus (60 Hz, 60 pulses) in isoflurane anesthetized rats. Both the intraperitoneal (IP) administration of baicalein (1.0 mg/kg) and the administration of LLLT (25 Hz, 630 nm) 30 minutes prior to ethanol (2.0 g/kg) administration IP attenuated the DA inhibition of ethanol. These findings suggest that baicalein and LLLT may prove as effective clinical therapies for addiction.

Characterization of Yeast PAS Kinase Through Random Mutagenesis

January 01, 2013 12:00 AM
Kayla Bevard, Brigham Young University Microbiology and Molecular Biology Metabolic diseases, such as obesity and diabetes, are endemic in American society. Mutations in PAS kinase, a recently discovered sensory protein kinase, have been shown to cause Maturity Onset Diabetes of the Young (MODY) in humans (Semplici et al., 2011). In addition, PAS kinase deficient mice, when placed on a high fat diet, display phenotypes related to diabetes including resistance to weight gain, insulin insensitivity and triglyceride accumulation (Hao et al., 2007). PAS kinase consists of a sensory PAS domain that binds to and inhibits the kinase domain (Amezcua et al., 2002). Our model for PAS kinase activation involves the generation of a small molecule ligand that binds to the PAS domain and relieves this inhibition. We are currently engaged in several yeast genetic screens which will identify regions in the full length PAS kinase protein that are essential for either PAS kinase activation or for binding of its substrates. The first screen is based on the ability of PAS kinase, when overexpressed, to rescue a temperature-sensitive mutation in Tor2, the tor2(ts). We have isolated both point mutations and truncations in PAS kinase which alleviate the tor2(ts). These mutations solidify our model for PAS domain inhibition and will identify novel regions involved in PAS kinase regulation. Our second screen uses the yeast 2-hybrid to select for both point mutations and truncations that increase the affinity of PAS kinase for its substrate, Pbp1. These mutations will help identify key regions of PAS kinase utilized in substrate recognition. Finally, we will compare the regions affected by our mutations with the regions of PAS kinase that we have found to be well-conserved throughout evolution. Analysis of these specific genetic regions will help elucidate the molecular mechanisms involved in the regulation and function of PAS kinase, a key player in the development of metabolic disease.

The Effects of Temperature and Water Availability on the Germination of Bromus Rubens

January 01, 2013 12:00 AM
Rachel Nettles, Brigham Young University Plant and Wildlife Sciences Background/Questions/Methods

Association of the CETP Gene with Cognitive Decline and Dementia in the Cache County Study

January 01, 2013 12:00 AM
Caitlin Munger, Brigham Young University Biology Alzheimer’s is a fatal, non-treatable neurodegenerative disease and the most common cause of dementia. While no one gene has been found to determine the development of Alzheimer’s, past studies have established a strong hereditary influence on Alzheimer’s. So far, only 5 genes have been found which replicably contribute to the genetic risk of developing Alzheimer’s. However, the gene for Chlolesteryl Ester Transfer Protein (CETP) has been identified as a possible new contributor to the genetic risk factor. In order to test this association we obtained data on over 4000 subjects studied in the Cache County Study on Memory, Health and Aging over a 15-year period. This data included DNA samples, cognitive decline rates and incidence of dementia–particularly Alzheimer’s Disease. DNA samples were SNP genotyped using quantitative PCR. The SNP genotypes and corresponding phenotypes for each subject were then analyzed for association usingmixed linear models and for survival, or the amount of time until the disease appeared, using Cox proportional hazard models. We found a correlation between the V405I SNP and a decreased rate of cognitive decline. We found that for each additional G the rate of decline decreased by 0.6 points per year on the MMSE test. The identification of CETP as a player in the genetic risk for Alzheimer’s and dementia will provide much needed information on the genetic factors involved in dementia and allow for possible future therapeutic targets.

Subduing the Flu: New Alternatives to Amantadine

January 01, 2013 12:00 AM
Joseph Moulton, Brigham Young University Physiology and Developmental Biology With the advent of recent mutations in the influenza A viral genome, drugs that previously blocked the proton flux responsible for disassembly of the viral envelope and exposure of viral RNA to the transcriptional machinery of the host cell have become ineffective. Our study of the M2 hydrogen ion channel responsible for this flux has led to a vastly-increased under- standing of the mechanisms behind the conductance activity and potential blockage of these transmembrane tetramers. By embedding M2 proton channel subunits of the S31N mutant strain into liposomal bilayers and suspending these bilayers in the buffers and ionic gradients characteristic of the intracellular environment, we have been able to simulate and observe nor- mal functioning of the influenza A virus. Using these liposomal bilayers, we have developed a series of experimental protocols to test a variety of amantadine- and rimantadine-related drugs for successful blockage of M2 S31N proton conductance. Our research presentation will be centered around the mechanisms of this channel and the favorable results that we have obtained from many of these drugs.

Determination of Microbial Populations in a Synthetic Turf System

January 01, 2013 12:00 AM
Jason Bass, Weber State University Microbiology There is growing concern regarding the contribution of infilled turf fields on increased athlete infections. Abrasions that occur on these fields create a portal of entry for pathogens such as Staphylococcus aureus. This study compares microbial populations on two infilled turf fields (year old vs. 6 year old turf). Infill material from both fields was sampled at three sites for 5 months during the football season (sidelines, middle of the field, and end of the field). Tryptic Soy Agar was used to determine total microbial load, MSA for S. aureus, and EMB Agar for coliforms such as Escherichia coli. Much higher microbial populations were found on the older turf field, a 1E+04 increase over similar locations on the new turf; suggesting microbial populations can accumulate in synthetic turf infill over time. On the older field the sideline has the highest counts with an average of 1.60E+08 CFUs/g of rubber infill. On the new synthetic turf, the area with the highest number of microorganisms was the end of the field rather than the sideline. This is probably due to where practices are held on the new turf field rather than actual game play. A high number of salt-tolerant, mannitol-fermenting bacteria (indicators of S. aureus) were also found (3.25E+02 CFUs/g on the new turf vs. 2.73E+03 CFUs/g on the old turf). Escherichia coli was isolated from the new turf, in an area of high usage. These results indicate that infill material can serve as a source for pathogens among athletes and that organisms accumulate over time posing a greater risk if proper cleaning is not routinely performed.

Isolation of Hydrocarbon Metabolizing Microorganisms in the Great Salt Lake

January 01, 2013 12:00 AM
Natalie Batty, Westminster College Biology Hydrocarbon metabolizing microbes play a critical role in bioremediation and bio-augmentation projects. In 1978, Brock et al. identified microbes in the Great Salt Lake (GSL) capable of metabolizing hydrocarbons, but since then these microbes have gone unstudied. This research has isolated and identified bacterial species capable of hydrocarbon metabolism from GSL. Though capable of survival in the high salt concentration of the Great Salt North Arm, we have demonstrated that these species are also capable of thriving in low salt concentrations. This research will continue with the characterization process to identify what hydrocarbon sources each species is capable of degrading.

The Role of Nup153 in Nuclear Lamina Assembly

January 01, 2013 12:00 AM
Merima Beganovic, Westminster College Molecular Biology Nuclear Pore Complexes (NPC) create aqueous channels embedded in the nuclear envelope and are made from a network of proteins called nucleoporins (nups). The nucleoporin Nup153 has previously been found to be required for proper assembly of the nuclear lamina. In this study, a fragment of Nup153 was overexpressed in order to impede Nup153 function in T-Rex HeLa cells. After inducing the expression of the dominant negative fragment, I examined the localization of lamins A, B1 and B2, as well as SUN1, Emerin, and BiP, three proteins that mark cell membrane compartments. Lamins B1, B2, SUN1, and Emerin were found to mislocalize to the cytoplasm of the cells, and colocalization among the proteins was observed. Lamin A also had an abnormal phenotype unlike that seen with the B lamins, but indicative of a problem with integration of Lamin A into the nuclear lamina. Colocalization of the various lamin isoforms with membrane proteins such as SUN1 and Emerin indicates a problem with membrane assembly. The distinct localization of BiP, however, suggests that there is a “nuclear-like” membrane in the cytoplasm that either does not incorporate normally into the nuclear envelope as it forms or is newly-recruited to mislocalize the lamin proteins.

Survey for Helenalin in Utah Asteraceae Species

January 01, 2013 12:00 AM
Taylor Nelson, Weber State University Botany Arnica is a common form of complementary medicine used to treat bruises and sore muscles. Most arnica preparations are made as an oil or gel by soaking the flowers of Arnica montana (a member of the Asteraceae) in an oil, such as olive oil, to extract helenalin, the presumed active component. Helenalin, a sesquiterpene lactone, has been shown to inhibit transcription factor NF-?B, a factor which controls the expression of dozens of genes involved in inflammation responses (Rungeler et al. 1999). Due to arnica’s popularity, A. montana is becoming scarce in Europe (its native range) and is sometimes substituted commercially with A. chamissonis (Cassells et al. 1999). Therefore, this study focused on finding other sources of helenalin among the Asteraceae. A. chamissonis, A. cordifolia, A. latifolia, A. longifolia, A. mollis and Helianthella uniflora were collected from Alta, UT, and Helenium autumnale from Salt Lake City, UT, at elevations of approximately 10,500 feet and 4,200 feet, respectively. Sesquiterpenes were extracted from the flowers by dipping them in methylene chloride and separated by thin-layer chromatography. Helenalin and possible helenalin derivatives were identified by their reaction with vanillin and comparison to a pure helenalin standard. Flowers from all seven of the species contained helenalin, with Helenium autumnale containing the highest concentration and A. latifolia the lowest. Therefore, all of the species tested in this study have the potential to be used commercially to prepare arnica salves and thus allow the A. montana population to re-establish itself. An additional finding was that A. chamissonis grew the best under greenhouse conditions, which may explain its substitution in some commercial salves.

Research of an Upstream DNA Sequence Gene of Fremyella Diplosiphon Regarding Regulation of Gfp Gene Expression in Response to Light Intensity

January 01, 2013 12:00 AM
David Tregaskis, Utah Valley University Biology Little is known about the details regarding gene expression which accounts for the light harvesting pigments in bacteria; specifically in the cyanobacteria Fremyella diplosiphon. The purpose of our experiment is to identify the upstream sequence that controls the expression of the scytonemin light harvesting pigment in Fremyella diplosiphon. This experiment will help us better understand the regulation and expression of genes that control light absorption. To test our hypothesis, that there is a regulating upstream promoter sequence for light sensitivity in Fremyella diplosiphon, we will culture the bacteria and extract its DNA. PCR will be performed to isolate the upstream sequence of the gene from Fremyella. Each plasmid was designed by adding restriction sites that will allow the proper cloning of the PCR fragment. This sequence will be introduced into the pSUN 199 and pSUN202 plasmids. These plasmids contain the GFP gene that will be activated by the promoter. The plasmids will be transformed onto Fremyella and analysis of gene expression will be done under different light conditions. This experiment will be able to identify the upstream regulatory sequence of the Scytonemin gene in Fremyella.