Life Sciences
High-frequency ultrasound of breast tissue phantoms with histology-mimicking microstructures
Audrey Butler, Utah Valley University Life Sciences High-frequency (HF) ultrasound has been shown to be sensitive to a range of breast pathologies, and is being explored for the intra-operative assessment of lumpectomy margins. This sensitivity is believed to arise from microstructure-dependent interactions of ultrasound in the tissue. The objectives of this study were to develop breast tissue phantoms with microstructures that accurately mimic the histology of normal and malignant tissue, and to determine the effects of these microstructures on HF ultrasonic spectra (10-100 MHz). Phantoms were created from a mixture of water, gelatin, and soluble fiber. To simulate various breast tissue histologies, polyethylene beads, polyethylene fibers, and nylon fibers with a range of diameters were embedded into phantoms. Microstructures ranging from randomly dispersed beads to bead-fiber constructs resembling terminal ductal lobular units (TDLUs) were modeled and tested. Pitch-catch and pulse-echo measurements were acquired using 50-MHz transducers, a HF pulser-receiver, and a 1-GHz digital oscilloscope. Spectra were derived from the data and peak densities were determined from the spectra. Peak density, which is the number of peaks and valleys in a specified spectral range, has been shown to correlate with tissue complexity. Preliminary results from dispersed beads (58-925 µm diameter) of constant volume concentration (0.8%) indicated that the smaller beads produced higher peak densities than the larger beads with a consistent and statistically significant trend. These results substantially improve upon previous phantom studies and upon results from original breast cancer studies, demonstrating the strength of the HF ultrasound response to tissue microstructure. The higher peak densities can be attributed to either the higher number of scatterers for small beads or the size of scatterer in relation to the ultrasonic wavelength. These and other results from more advanced histologically accurate microstructures modeling TDLUs will be discussed.
Discovering Dermapteran Relations: Phylogeny of earwigs based on molecular evidence
Michael Naegle, Brigham Young University Life Sciences Dermaptera is a comparatively small order of insects with approximately 1800 species placed in three suborders. While the majority of earwig species are placed within the suborder Forficulina and are free-living with forceps-like appendages, two dermapteran lineages have a very unusual morphologies and life histories. The viviparous Hemimerina live epizoically on giant rats in tropical Africa where they feed on fungi growing on the rats’ skin. Hemimerina lack eyes and wings and the cerci are filiform. The viviparous Arixenina are associated with bats in Malaysia and the Phillippines, and they feed on bat skin gland secretions. They have reduced eyes, are wingless, and possess straight cerci. The phylogenetic position of the suborders Arixenina and Hemimerina relative to Forficulina have previously been unclear; however preliminary analysis suggest the phylogenetic position of the suborders Arixenina and Hemimerina are nested within Forficulina, with ectoparasitism evolving multiple times within this order. We generated DNA sequence data from three nuclear (18S, 28S and H3) and two mitochondrial (COI and TUBA) genes for representatives of all three suborders and outgroups. A phylogeny was reconstructed to address the following questions: (1) Does Hemimerina + Arixenina form a monophyletic group and support a single origin of parasitism or are there multiple origins of parasitism? (2) Is Forficulina monophyletic with respect to these parasitic lineages? (3) Are morphological similarities shared by the ectoparasitic forms synapomorphic or homoplasious characters?
Predicting species distribution of Agave utahensis through environmental niche modeling
Austin Pearce, Brigham Young University Life Sciences Agave utahensis acts as a keystone species across its native range in the Mojave Desert and Colorado Plateau (Gentry, 1982). As a keystone species, Utah agave contributes to soil formation along barren mountain ridges, and has provided starch-rich sustenance to Native American tribes. Furthermore, taxonomists consider each of the two subspecies, kaibabensis and utahensis, to have considerable morphological variation (Gentry, 1982) within their own unique ecological niches. Given the importance of Utah agave, the high degree of variation, and its unique ecological niches, there is surprisingly little information published regarding its physiological ecology. In fact, no effort has been made to determine the population densities of Utah agave due to the remoteness of the region and its difficult terrain (e.g., the Grand Canyon). Therefore, geospatial analysis tools specific to environmental niche modeling provide a powerful means through which these issues and knowledge gaps can be effectively addressed. My goal is to develop a species distribution model by joining known locations of Utah agave with climatic and environmental data in MaxEnt and ArcGIS software. Such a model can be used by others for further ecological field studies of Utah agave and its subspecies. Additionally, the approach I employ can be used as a pattern for mapping distributions of other important plant species in remote and difficult-to-access regions of the world.
3D Mapping of Cardiac Nerves for Improved Cardiac Ablation Procedures in the Treatment of Cardiac Arrhythmia
Adam Jorgensen, Brigham Young University Life Sciences Arrhythmia is a serious heart defect that effects 14 million people in the United States. It is characterized by irregular rhythm in the electrical impulses of the heart. Arrhythmia can cause sudden cardiac arrest and stroke. Recent developments in cardiac ablation have helped in the treatment of arrhythmia. Cardiac ablation works by scarring tissue in the heart, thus preventing abnormal electrical signals to travel through the myocardium. The three-dimensional map created in this project will improve the accuracy of cardiac ablation by offering a more dynamic view of the human heart and associated nerve branches. By properly articulating the intricate nerve branching of the heart, surgeons will be able to better target the nerves themselves when scarring heart tissue, thus allowing a less invasive procedure.
Rapid adaptation of d2 dopamine receptor responses following acute ethanol
Joseph Linzey, Brigham Young University Life Sciences Dopamine (DA) D2 receptor expression parallels DA levels in the brain and these autoreceptors on DA neurons been shown to be modulated by long-term ethanol exposure. We have previously demonstrated that VTA GABA neurons also express D2 receptors, and that DA and D2 receptor agonists markedly enhance the excitability of VTA GABA neurons, opposite to their well-known inhibition of DA neurons. Most importantly, D2 receptor antagonists block ethanol inhibition of VTA GABA neurons and D2 receptor expression in VTA GABA neurons down-regulates with chronic ethanol. This study evaluates short-term D2 receptor adaptation in VTA GABA neurons and in DA release in the nucleus accumbens (NAc) by acute ethanol. In electrophysiology studies in anesthetized rats, periodic iontophoretic application of DA, or the D2 agonist quinpirole, markedly enhanced VTA GABA neuron firing rate, which was initially inhibited by ethanol, but resulted in latent and marked rebound excitation 30-60 min following injection. Using fast scan cyclic voltammetry (FSCV), we evoked DA signals in the core of the NAc by electrical stimulation of the medial forebrain bundle at the level of the lateral hypothalamus (60 Hz, 24 pulses). Intraperitoneal (IP) administration of ethanol (1.0-3.0 g/kg) dose-dependently decreased the amplitude of the MFB-evoked NAc DA signal. IP administration of the D2 antagonist eticlopride (1 mg/kg) markedly increased (250%) the amplitude of the evoked DA signal. When ethanol was administered after eticlopride it increased the amplitude of the DA signal an additional 42%. These findings suggest that ethanol induced decreases in evoked DA release may be due to autoreceptor feedback. Work is in progress to evaluate the short-term expression of D2 receptors in VTA GABA neurons following acute ethanol and to evaluate the effects of ethanol-induced short and long-term adaptations in VTA GABA neuron D2 expression in mediating ethanol effects on DA release in the NAc.
Life at the Extremes: Finding Earthly analogs for potential life on Mars
Alysa Fratto, Westminster College Life Sciences Although the idea of life on other planets is mused over by many, the scientific study of the potential for extraterrestrial life did not begin until the mid-1950s (SETI, 2013). Since then, many technological advancements have been made that make the study of life on other planets simpler, however it is inherently difficult to study the potential for life in an environment that one cannot access. To address this issue, scientists look on Earth for extreme environments that mimic those found elsewhere in the universe.
Nucleosome positioning preferences of octamer containing H2A variants Htas1 and Htz1 in C. elegans
Sharisa Nay, Brigham Young University Life Sciences Gene therapy is a growing field of science with the potential to improve thousands of lives. With an eye toward improving the effectiveness and longevity of gene therapies, my project examines the preferential binding tendencies of the histone protein variants Htz1 and Htas1. Htz1 is the Ceanorhabditis elegans homolog of H2AZ, an important variant of the H2A histone. This protein has been shown as necessary for survival and as playing a role in the prevention of ectopic heterochromatin spread. Htas1 is another variant of H2A that plays a role in the increased transcription of sperm-producing genes. The preferred positioning of these variants on naked DNA is not yet known. Through a DNA extraction, nucleosome reconstitution, and DNA digest and sequencing, we will take these variants and examine where they are prone to localize within the N2 Bristol strain of c. elegans. This will allow us to include DNA sequences on our gene insertions possessing a high binding-affinity for these transcription-promoting histones. Thus, if we can identify the locations at which these variants will localize within DNA, we will be able to insert these preferred constructs into the genes used for gene therapy and thereby increase the effectiveness of gene therapies.
Multimechanistic combination enhances selenium’s antiproliferative effect in prostate cancer cells
Merrill Christensen, Brigham Young University Life Sciences Selenium (Se) has established chemopreventive efficacy against prostate cancer, the second leading cause of cancer death among men in the US. Currently, most studies only employ one single chemical form of Se, even though different forms of Se act through varied mechanisms to achieve their anticancer effects. In this study, we propose that systematically combining multiple forms of Se will produce an optimal combination of Se compounds to inhibit in vitro prostate cancer cell growth. As proof of principle, we (1) synthesized Se nanoparticles (nano Se), (2) determined the IC50s of methylseleninic acid (MSA), sodium selenite, and nano Se in PC-3 cells, (3) utilized mixture designs and response surface methodology to direct our combination experiments with these three compounds, (4) tested the fifteen combinations determined in the previous step, and (5) constructed a polynomial model to derive the optimum combination of MSA, sodium selenite, and nano Se to inhibit PC-3 cell growth. Our results showed that combining different forms of Se compounds enhanced its chemopreventive effect. Future studies will expand the use of three Se-containing compounds to four and demonstrate similar effects in xenograft mice.
Leech Population Genetics in Southern Utah
Kevin Nay, Southern Utah University Life Sciences Leech taxonomy has traditionally been based on morphological characters, but with new developments in DNA technology many taxonomists are starting to use genetic information in descriptions of new species. Leeches in southern Utah are poorly inventoried with respect to many other aquatic animals. There have been few morphological inventories of leeches and even fewer descriptions of the genetic diversity within leeches. Landscape genetics is a powerful tool used to understand geographic patterns of genetic diversity. Southern Utah has many naturally isolated bodies of water due to the climate and the dramatic changes in elevation in this part of the country. The landscape genetic study of leeches in southern Utah will provide us with a better understanding of genetic differentiation within southern Utah leeches. The mitochondrial DNA (CO I region) will be used to estimate genetic diversity and examine the relationships among individuals in two populations of leeches. I hypothesize that leeches in southern Utah will have greater genetic diversity then historically recognized from morphological studies suggesting a new species of leech. The study will lead to better understanding of the taxonomy and identification of southern Utah leeches.
Development of a Resin-Free Protein Purification Technique Utilizing Unique Biochemical Properties of the E. coli SSB Protein
Mark Soffe, Utah State University Life Sciences SSBs are DNA binding proteins that are essential components of cells and play key roles in DNA replication, repair, and recombination. Here we utilize two biochemical properties associated with the E. coli SSB protein to develop a novel procedure to purify proteins using a resin-free strategy. 1. E. coli SSB binds to single stranded DNA (ssDNA) with extremely high affinity (K = 1013 M-1), indicating very tight binding. 2. It is also a unique protein with respect to its purification – it is possible to obtain greater than 95% pure SSB from the total cell lysate without using any sort of column or resin, utilizing polyethyleneimine (PEI) and ammonium sulfate precipitation. Our design uses SSB as an affinity/solubility tag to enhance the solubility and expression of difficult-to-purify proteins, and allows for the simple, resin-free purification using PEI and ammonium sulfate precipitation. There also may be a possibility to co-express protein dimers and possibly tetramers using this method. Constructs have been made that include the SSB gene, along with the ability to fuse any gene of interest, as well as a TEV Protease cleavage sequence allowing for proteolytic cleavage after gene expression. Two genes of interest have been cloned in thus far—TEV protease and Rad51. In this proposal I outline experiments to develop this strategy further and test our proof of principle concept and its application to a broader set of target proteins.
Copper Resistant Phenotype in MDM35-deletion Saccharomyces cerevisiae
Jacob Bassett, Utah Valley University Life Sciences Many discoveries regarding the complex interplay between biological pathways within a cell begin with attempts to link new observations to scrupulously studied cellular mechanisms. Our lab is studying the soluble inter-mitochondrial space protein mdm35, which has been observed to facilitate the function of ups1 & 2 proteins, as they in turn regulate the mitochondria’s phosphatidic acid metabolism. In addition to this phenotype, our lab has observed a copper resistance at 0.17% on YPD plate and 0.14% in liquid cultures of S. cerevisiae lacking the mdm35 protein, when compared to the Wild Type strain. Our investigation measures the levels of expression in the cup1 and ctr1 promoters in an attempt to link this observation to a potential mechanism contributing to this resistance.
The Genetic Architecture of Pelvic Reduction in Ninespine Sticklebacks
Sara Fauver, University of Utah Life Sciences We know that novel genetic variants have driven evolution for millions of years and that natural selection favors phenotypes most suited for survival, leading to the enormous diversity of life we see today. However, what remains unclear, are the patterns of mutations that lead to large phenotypic changes. For example, do mutations in a single gene of large effect lead to morphological changes more often than numerous mutations in genes of smaller effect? Also, do these mutations occur more often in protein coding regions or regulatory regions of DNA? Finally, are the same genes or gene pathways used repeatedly across lineages when parallel phenotypes evolve?
Concentrations of Trace Pharmaceuticals Found in Hobble Creek
Janweb Lagazo, Brigham Young University Life Sciences The scientific community and the general public have long been interested in the effects of water pollution. Most studies on water pollution have focused solely on industrial pollution, but have failed to consider the potential impact of pharmaceuticals that unintentionally accumulate in aquatic ecosystems via wastewater treatment effluents. The purpose of this study is to advance our understanding on how these wastewater effluents affect aquatic ecosystems in Utah. We quantified the concentration of select pharmaceuticals in Hobble Creek using mass spectrometry. Then we sampled above the treatment plant, at the effluent outlet, and downstream of the effluent to determine pre-effluent and post-effluent drug concentrations. We are currently using this preliminary data to investigate how common endocrine disrupting, anti-inflammatory, analgesic, and anti-anxiety drugs may potentially affect the aquatic ecosystem of the endangered Chasmistes liorus, commonly known as June sucker.
Design and Synthesis of (E)-2, 4-bis(p-hydroxyphenyl)-2-butenal analogues as IKKb Inhibitors
Benjamin Gann, Utah Valley University Life Sciences (E)-2,4-bis(p-hydroxyphenyl)-2-butenal (2-Butenal) was shown to inhibit various inflammatory responses by inhibiting NF-kB pathway. A pull-down assay proved 2-butenal to bind to IKKb and was proposed as an active site kinase inhibitor through molecular docking experiment. However, 2-butanal has a highly conjugated aldehyde group that makes it very unstable. Therefore, we have designed more stable 2-butenal analogues and prepared them using Heck reaction. Molecular docking experiment shows that many of them have a greater affinity to IKKb.
Phylogeny of Heptageniidae Through Molecular Analysis
Jeffrey Leavitt, Utah Valley University Life Sciences Central Research Question: Heptageniidae is a large family within the order Ephemeroptera (mayflies). This family consists of over 500 described species. Recently a study was done across 200 of the species to break them up into subfamilies, and genera. The studied concluded that there are 29 genera and three subfamilies Ecdyonurinae, Heptageniinae, and Rhithrogeninae (Wang, 2004). Furthermore, Ogden et al. (2009) proposed that the families Arthropleidae and Pseudironidae were derived heptageniid lineages. The phylogenetic relationships of Heptageniidae, Arthropleidae, Pseudironidae, to other closely related families are inconclusive. We propose to study these three families and the three subfamilies of Heptageniidae in detail via molecular systematics.
Periphyton as an Indicator of Urban Stream Health
Clair Bidez, Westminster College Life Sciences Changes to stream ecosystems due to urbanization are known to degrade riparian ecosystems through multiple stressors including increased erosion and sedimentation, expansion of impervious surface leading to altered flow regimes, degradation of riparian vegetation and habitat, and nutrient contamination. Ultimately, such degradation can inhibit ecosystem services such as contaminant filtration and nutrient cycling. This study examined the effects of urbanization on the function of riparian communities in three streams in the Salt Lake Valley watershed. We attempted to characterize these changes through monthly monitoring in urban and non-urban reaches of the same streams. Specifically, we measured periphyton biomass (as measured by chlorophyll-a) as a known indicator of nutrient pollution and a proxy of riparian health. In addition, we monitored water quality parameters including temperature, dissolved oxygen, and dissolved nitrate concentration. The urban reaches of the streams contained 3.6 to 9.3 times the dissolved nitrate concentration as their non-urban counterparts. Mean stream periphyton biomass was positively correlated with mean stream nitrate concentration for each reach. These findings point to urbanization as a potential source of ecosystem degradation in the Salt Lake Valley. They suggest that long-term monitoring is warranted, along with an in-depth investigation into the ultimate mechanisms responsible for the degradation.
Dna Based Identification and Prevalence of Cestode Parasites in the Brine Shrimp (Artemia franciscana) from Great Salt Lake, Utah
Ethel Tackie-Yarboi, Westminster College Life Sciences The brine shrimp, Artemia franciscana are an important source of nutrients for many of the over 15 million migratory birds that visit Great Salt Lake (GSL) in Utah each year. As well as being a source of food, the brine shrimp are an intermediate host to cestode parasites that infect many of the bird species. Although the effects of cestode infection in brine shrimp and the contribution of brine shrimp to cestode circulation in birds have been studied, little research has yet addressed the rate of cestode infection or molecular phylogeny of these cestodes. We collected brine shrimp from three sites in GSL and tested individuals for cestode infection using previously identified and newly designed cestode specific PCR primers that amplify the 18S ribosomal RNA gene. Our preliminary results showed that the Spiral Jetty site from the North arm of GSL had a 2% infection rate, the Antelope Island site from the South arm had a 45% infection rate, and the shrimp collected at the Black Rock site, also in the South arm, had a 32% infection rate using our cestode specific PCR assays. We also have preliminary DNA sequencing results that demonstrate that we are amplifying cestode DNA, which is most closely related to members of the genus Hymenolepis. Our data suggest that there may be a higher prevalence of cestode infection in the shrimp in the South arm than those from the North arm of the Great Salt Lake. Our goal is to extend our study in order to better identify the species of cestodes that infect brine shrimp using further DNA sequencing and to expand our infection rate samples to better estimate the percentage of the brine shrimp population that is infected by the cestode parasites, as well as test samples from several years.
The Role of Endocannabinoid Receptor GPR55 on Learning and Memory
Bradley Prince, Brigham Young University Life Sciences Learning and memory occur due to adaptive brain changes in response to our environment. These changes are mediated by synaptic plasticity, particularly within the hippocampus, where spatial and declarative memories occur. Plasticity can either strengthen or weaken synapses, known as long-term potentiation (LTP) or long-term depression respectively. While many forms of synaptic plasticity are N-methyl-D-Aspartate receptor-dependent, recently endocannabinoids were identified to mediate several new forms of hippocampal synaptic plasticity. Endocannabinoids bind to receptors such as cannabinoid receptor 1 (CB1) and transient receptor potential vanilloid 1 (TRPV1), and mediate several forms of plasticity, including in the hippocampus. However, new research has demonstrated a non-CB1/TRPV1-dependent endocannabinoid synaptic plasticity in the hippocampus. While the receptor(s) involved is currently unknown, several potential candidate receptors that bind the endocannabinoid anandamide have been identified. These are orphan G-protein coupled receptors (GPRs) whose distribution in the brain and/or function is unknown. GPR55 is of particular interest as it activates second message systems, including increasing intracellular calcium. Using quantitative RT-PCR, electrophysiological and memory behavioral tasks we examined hippocampal GPR55 expression and function. GPR55 is indeed expressed in hippocampus of both rats and mice. Cellular expression is currently being examined and appears to be rare in interneurons and more likely expressed by pyramidal cells. Interestingly, application of the GPR55 agonist LPI (2 µM) to wild-type mice demonstrates a decrease of LTD in brain slices. This LPI effect was not noted in GPR55 knock-out mice in the presence of LPI. This data suggest GPR55 is physiologically relevant in the hippocampus. This is the first direct evidence we are aware of that a novel endocannabinoid receptor directly effects hippocampal LTD. Because neurodegeneration that affects memory is typically associated with an increase in LTD, this provides a potential target to slow the advance of diseases such as Alzheimer’s.
Prevention and Disruption of Bacterial Biofilms
Aimee Newsham, Dixie State University Life Sciences Millions of people are infected yearly with resistant pathogens, including MRSA (methicillin-resistant Staphylococcus aureus), a biofilm-forming pathogen that is often transferred to patients from contaminated surfaces. Therefore, improved methods to destroy biofilm-encapsulated pathogens or to prevent their initial formation are required. This research is focused on the development of a safe treatment against biofilms by integrating organic salts, or ionic liquids (ILs), into different surfaces. Textiles were integrated with ILs to prevent formation of biofilms/bacterial growth, and were also treated post-exposure to determine if the biofilms could be destroyed post-contamination. Effectiveness of newly designed ILs were tested via inhibition zone studies on LB agar plates, and post-treatment samples were analyzed via scanning electron microscopy for presence of bacteria. The bacteria tested included Pseudomonas aeruginosa, Staphylococcus epidermidis, and Escherichia coli. These microbes are similar to MRSA in that they form biofilms comprised of extracellular proteins, DNA and polysaccharides. Bacterial colonies encapsulate themselves with biofilms to provide protection from threats, including antibacterial drugs. By integrating ionic liquids into textiles, formation can be prevented by IL solvation and sequestering of the extracellular biofilm components, including the proteins and DNA. This research could have tremendous implications regarding defeating bacteria that are resistant to existing treatments due to biofilm encapsulation. Additionally, the results could lead to new antimicrobial textiles and new approaches to prevent adherence and growth resistant biofilm-encapsulated pathogens.
Correlation between phantom thickness and peak density in high-frequency ultrasonic spectra
Robyn Kira Omer, Utah Valley University Life Sciences Peak density, which is the number of peaks and valleys in a specified spectral range of high-frequency (HF) ultrasound, correlates to breast pathology in lumpectomy specimens. It has been a question in both previous and current studies, however, whether the thickness of a sample has an independent effect on the peak density. The objective of this study was to discover any correlation, if any, between specimen thickness and peak density in HF ultrasound measurements (10-100 MHz). Phantoms were fabricated from a mixture of water, gelatin, and soluble fiber. Polyethylene microspheres (180-212 micrometer diameter) were embedded into half of the phantom specimens at 0.0003% concentration to simulate tissue heterogeneity. The other phantoms were devoid of microspheres to provide control measurements. Seventy two pitch-catch measurements were acquired in triplicate using 50-MHz transducers, a HF pulser-receiver, and a 1-GHz digital oscilloscope. The waveforms were analyzed to provide spectra and the resulting peak densities were determined. The results indicate that no significant correlation exists between specimen thickness and peak density. The coefficients of correlation for the microsphere and control specimens were 0.366 and 0.652, respectively. The peak density values were most consistent within the control specimens, ranging from 1 to 4. The peak densities for the microsphere phantoms had a greater range of values, varying from 1 to 8. It is believed that the wide variation in peak density for the microsphere phantoms was due to clustering of the microspheres. Future studies will include looking at previous phantom and tissue studies to further investigate the apparent lack of thickness-peak density correlation.
Standing on the shoulders of Woodrats: Adaptive Evolution in Desert Iguanas
Albert Pope, Utah Valley University Life Sciences Few animals are capable of using the creosote plant, Larrea tridentate, as food because of a high level of toxic secondary compounds. Some exceptions to this rule are Neotoma lepida and Dipsosaurus dorsalis which are both capable of sustaining themselves on this desert bush. In 2013, Magnanou et al helped identify heightened transcription of genes correlated with digestion of creosote in N. lepida. Building upon their findings, we explore whether the genes for digesting creosote are under an elevated evolutionary rate for D. dorsalis. We have obtained transcriptomes from whole blood of four Iguaninae species: Ctenosaura pectinata, D. dorsalis, Sauromalus ater, Cyclura lewisi yielding an average of 4 GB of DNA sequence data (~51,000,000 fragments) each. Using Velvet in Sequencher we assembled these data, recovering greater than 6000 unique RNA transcripts per transcriptome. We search through the contigs to identify genes in Iguaninae transcriptomes that are homologous to those showing differential expression in Lepida. Using BLAST, we retrieve homologous genes from the public NCBI database of Anolis carolinensis and other reptiles. Lastly we construct phylogenetic trees of each gene and investigate the rate of change along each reptile lineage.
Long-term evaluation of Leafy Spurge biological control in Richmond, Utah
Jacob Anderson, Utah Sate University Life Sciences Leafy spurge (LS) is an aggressive Eurasian forb that has been successfully reduced in many areas in western North America through the biological control releases of flea beetles. Long term studies of this phenomenon are sparse. Three flea beetle species were released in the mid-1990s at a site dominated by LS in Richmond, Utah. This study assessed the long term effects of LS biocontrol on an ecological community at this site by addressing five questions: (1) Is LS abundance significantly lower now than in the 1990s? (2) What plant species are replacing LS and are they native or non-native? (3) Have the flea beetle populations persisted since their initial release? (4) What part does soil type play in which flea beetle species now dominate at the site? (5) In response to their unexpected presence, what role may long-horned beetles contribute to the long-term reduction of LS? It was found that LS abundance has significantly decreased from the 1990s; the dominant plant species are those of non-native grasses; flea beetles have persisted in significantly smaller numbers, with Aphthona lacertosa being the most abundant; and long-horned beetles appear to play a significant role in the reduction of sexual success of LS. The results of this project have implications for land managers when considering the vegetative response to LS biological control and the importance of long-horned beetles for long-term in managed, LS-reduced habitats.
Human Breast Cancer Response to Telomere Loss
Teressa Paulsen, University of Utah Life Sciences Breast cancer is still the most common cancer among women regardless of race or ethnicity. The focus of our research is to uncover the mechanism breast cancer cells use to escape the inherent limitations of the telomere and obtain immortality. The protective end of a chromosome, the telomere, degrades with each cellular division. The cellular response to telomere dysfunction is to activate programmed cell death. Therefore, this type of damage normally limits the proliferative potential of the cell and subsequently carcinogenesis.
Cultural, Economic, and Educational Factors Related to Diabetes Mellitus Type 2 in Tongans
April McMurray, Brigham Young University Life Sciences Diabetes Mellitus Type 2 (DMT2) is a lifestyle-related disease where the body does not produce enough insulin or the cells are unreceptive to it, and it is now the most common form of diabetes. Individuals who do not control the disease can suffer serious complications such as limb amputation, damage to the eyes, kidneys, nerves, heart, and it can be very costly. This problem is particularly serious in Tonga; the prevalence is almost twice as high as that in the United States. The purpose of this research project was to determine to what extent the cultural, economic, and educational factors contribute to such high prevalence. In May I traveled to Tonga with the nursing students from Brigham Young University to conduct my research. I distributed surveys to patients and medical staff in the diabetes clinic in the Vaiola hospital in Nuku’alofa, Tonga. The surveys had questions related to their socioeconomic status, understanding and attitudes of diabetes, as well as patient management practices. While I was there, I also kept extensive field notes on observations related to my research, which provided supplemental information regarding the Tongan lifestyle that was difficult to gather from the surveys. Preliminary analysis indicates that there has been a very small, positive shift in understanding and attitudes towards DMT2, but economic- and culture-based habits still impede Tongans from managing the disease effectively. There were several limitations to this study: small sample numbers, lack of resources, some resistance from Tongan medical personnel, and particularly cultural barriers made it difficult to gather enough information to come to significant conclusions. However, the research does give insight concerning potential future studies and interventions to help the people of Tonga treat this disease.
American avocet (recurvirostra americana) incubation constancy throughout the nesting cycle on the great salt lake
Josh Hall, Weber State University Life Sciences Reproduction in birds is extremely conservative with the vast majority of the birds adopting bird-egg contact incubation to maintain an appropriate microclimate for embryonic development (Deeming, 2004). The Great Salt Lake is a vital nesting site for American Avocets (Recurvirostra Americana) that shows extreme temperatures and hostile environments where nest success can be as low as 1 -14% (Cavitt, 2008). Constancy of incubation, i.e. the time that the eggs are in contact with an adult, is a major indicator of nest success and environmental conditions. Our goals were to examine some of the costs natural selection places on embryos and parents to maintain a constant embryo temperature. We hypothesized that incubation attentiveness would increase across the nesting cycle. Over 200 AMAV nests were surveyed. Thermal probes were used to record various nest microclimates at every minute. A pseudonest with painted chicken eggs was also created and a thermal probe was placed to measure the ambient temperature without any adult incubation. A motion sensitive camera was placed over nests to examine differences in parental care. Nests will be divided into three phases: early, mid, and late incubation. Thermal data will be analyzed using descriptive statistics and mean variance values to calculate how incubation constancy varied throughout these phases. We expect this data to tell us more on how natural selection is working on these populations and some possible theories of how this developed.
Macrophage polarization by necrotic and apoptotic cancer cells
Kurt Williams, Brigham Young University Life Sciences Macrophages play an important role in innate and adaptive immune responses, inflammation, and tissue repair and are characterized by two distinct phenotypes: classically-activated (M1) and alternatively-activated (M2) macrophages. M1 macrophages are characterized by a pro-inflammatory phenotype and are involved in production of pro-inflammatory cytokines and aggressive engulfment, whereas M2 macrophages are characterized by an anti-inflammatory phenotype and are involved in production of anti-inflammatory cytokines (e.g. IL-10) and tissue repair. Macrophage engulfment of apoptotic cells leads to polarization toward the M2 phenotype and is thus “immunologically silent”. Additionally, there is evidence that tumor-associated macrophages (TAMs) tend toward an M2 phenotype and as a result offer protection from an immune response in the tumor microenvironment. To further investigate the role of necrotic and apoptotic cells in regulating macrophage polarization, we cultured human macrophages with necrotic, apoptotic, or standard viable Raji cells and fluorescent beads and performed an engulfment assay. In a preliminary study we found that macrophages cultured with apoptotic cells showed a decrease in engulfment levels compared to macrophages cultured with necrotic cells. Macrophages cultured with standard viable Raji cells had the lowest levels of engulfment compared to macrophages cultured with apoptotic cells or necrotic cells. Thus, in our initial experiments macrophages cultured with necrotic cells appear to have a more “M1” phenotype, whereas macrophages cultured with apoptotic cells appear to have a more “M2” phenotype. Further experiments are necessary to validate this preliminary data and further characterize the capabilities of necrotic and apoptotic cells to differentially polarize macrophages. If these observations are replicated, it has potential applications in cancer biology and therapeutics, atherosclerosis, diabetes, autoimmunity, and other diseases with an inflammatory component.
Frequency Characteristics of Urban House Finch Songs
Dakota Hawkins, Westminster College Arts and Sciences Abstract. Previous studies have documented effects of urbanization on the behavior, reproduction and survival of wildlife. Specifically, noise pollution in urban areas has been known to mask communication among several avian species. In a previous study in Mexico City, House Finches increased the frequency (pitch) of their songs to help mitigate the effects of low frequency urban noise. To document the average minimum frequency of House Finch song in Utah, we recorded House Finches singing from May 2012 to August 2012. Three sample sites with 1 km radii were established in Salt Lake City, Utah while a fourth site was sampled in Logan, Utah. Ambient sound was recorded at locations where songs were recorded to measure urban noise. Average minimum song frequencies and ambient noise were calculated for three sites. Frequency measurements were not significantly different among the three urban populations. Future studies will compare the minimum frequency of these urban populations to nonurban populations and investigate syllable structure and use.
Exploring the Population Genetics of Artemia Franciscana in the Great Salt Lake
Graham Doherty, Westminster College Biology The Great Salt Lake is home to Artemia Franciscana, a species otherwise known as brine shrimp. These halophiles are able to live in extreme environments that have higher than average salt concentrations. Brine shrimp live their entire life cycles in the Great Salt Lake and can be found in both the north and south arm of the lake. Currently, the genetic information regarding the brine shrimp populations at different locations in the lake is underdeveloped. The Artemia populations live in different microenvironments throughout the lake with different physical characteristics and barriers between one another. The physical environment also affects the salt concentration in each microenvironment. Other studies have shown that the increased salinity of an environment accelerates the rate of change in the mitochondrial genome. We feel that different salinity levels in each microenvironment will create different amounts of genetic variation. Our goal is to determine if the distribution of genetic variation is different at different sites in the Great Salt Lake Artemia population.
Isolation of Hydrocarbon Metabolizing Microorganisms in the Great Salt Lake
Natalie Batty, Westminster College Biology Hydrocarbon metabolizing microbes play a critical role in bioremediation and bio-augmentation projects. In 1978, Brock et al. identified microbes in the Great Salt Lake (GSL) capable of metabolizing hydrocarbons, but since then these microbes have gone unstudied. This research has isolated and identified bacterial species capable of hydrocarbon metabolism from GSL. Though capable of survival in the high salt concentration of the Great Salt North Arm, we have demonstrated that these species are also capable of thriving in low salt concentrations. This research will continue with the characterization process to identify what hydrocarbon sources each species is capable of degrading.
Antimicobial Properties of Phytochemicals Against Multi-Drug Resistant Bacterial Pathogens
Alisha Ryan, Weber State University Microbiology One of the major challenges facing U.S. military caregivers is the presence of multidrug resistant organisms in extremity wounds. The most frequently identified drug resistant strains of bacteria found in these wounds are Acinetobacter baumanni, Pseudomonas aeruginosa, Escherichia coli, Klebsiella pneumoniae, and Staphylococcus aureus. Due to these organisms rapid increase in resistance to the commonly used drugs, it is crucial to discover and establish alternative methods for treating these microbial infections. Antibiotics are currently the most common treatment for infections by these pathogens, and there is little data on the evaluation of phytochemicals as potential chemotherapeutic agents that could take their place. We have screened 24 individual compounds from 9 major compound families to determine if plant-based phytochemicals could be explored further for use in treating bacterial infections in patients with military wounds. All compounds were tested to determine the minimum inhibitory concentration (MIC) and minimum lethal concentration (MLC). Of the 24 compounds tested, 21 (87.5%) inhibited at least one strain used in this study, with only 1 of the 24 (4.2%) inhibiting all strains. There were 10 (41.7%) of the compounds that displayed MIC values less than 100 _g/ml. For compounds displaying MLCs, they ranged from 2.5 mg/ml to 78.13 g/ml. While there is much more research that needs to be done with each of these compounds, this work is a crucial first step in the drug discovery process. We believe that several of these may serve as potential novel inhibitors of these drug-resistant bacteria.
Isolation and Characterization of a Novel Bacteriophage from the Great Salt Lake that Infects Halomonas
Lauren Johnson, Weber State University Microbiology Bacteriophages in aquatic environments play a significant role in bacteria population control, as well as recycling nutrients. The bacterial genus Halomonas is commonly found in the Great Salt Lake (GSL), but very little is known concerning its population dynamics. This euryhalophilic genus is highly versatile concerning its ability to grow in a wide range of substrates and environmental conditions including salt concentration. To better understand GSL microbial ecology, seven strains of Halomonas were isolated from the GSL and identified using 16S rRNA. Samples of South Arm GSL water were filtered twice through a 0.2 m filter, and tested against these Halomonas strains using soft agar overlays to detect Halomonas phage. Three strains exhibited plaque formation indicating the presence of phage. Halomonas phage isolates produced very small plaques, sometimes barely visible. Individual phages were isolated by vortexing agar plugs taken from single plaques in sterile saline then filtering through a 0.2 m filter. From host range streak plates, a single phage isolate (LJ17) appears to infect 4 closely related Halomonas strains. Electron micrographs of LJ17 phage indicate it has a small icosahedral head and perhaps a very short tail. There also appears to be a satellite phage that may be associated with LJ17. There are no reports of Halomonas phage isolated from the Great Salt Lake (GSL), although there are phages found for marine Halomonas strains. Successful isolation and characterization of novel GSL Halomonas phage, besides being critical for development of host/phage models, will also allow studies of GSL microbial ecology.
Molecular Phylogeny of the Fused-back Mayflies (Pannota: Mayflies)
Robert Putnam, Utah Valley University Biology Pannota, the fused back mayflies, is divided into two main lineages: Ephemerelloidea and Caenoidea. Most of the pannote families are relatively small, in terms of number of genera, with the exception of the larger family Ephemerellidae with 32 genera. Our objective was to 1) test the monophyly of the superfamilies; 2) investigate the relationships within the families of the Pannota as a whole. We combined DNA sequence data with newly generated data (total of ~6 genes) for around 50 taxa. We used standard PCR and DNA sequencing protocols to generate the data. The molecular data were aligned in Muscle and subsequently phylogenetic trees were reconstructed under Parsimony, Maximum Likelihood, and Bayesian frameworks. The results strongly supported the monophyly of the superfamilies, while the relationships of the families within Ephemerelloidea were not resolved.
Correlation between Heart Rate, Estimated Heart Rate, and Rating of Perceived Exertion (RPE) During Running
Emily Matis, Utah Valley University Exercise Science Introduction:
Characterization of Self-assembled Soft Material Composed of Waxes and Oils
Chin Yiap Tan, Utah State University Nutrition and Food Sciences The long term objective of this research is to explore oil-based materials that can be used to replace trans-fats in the food industry. Vegetable oils such as olive (OO), corn (CO), soybean (SBO), sunflower (SFO), safflower (SAFO) and canola (CAO) were mixed with sunflower wax (SFW), paraffin wax (PW), and beeswax (BW) at different concentration levels (0.1%-100%). Crystal Morphology, oil stability, thermal behavior and viscoelastic properties were studied in this research. Results in our laboratory showed that the crystallization occurred sooner when the concentration of waxes increased. For example, crystallization in 0.1% of SFW in SFO occurred after 24 hours of incubation at 25°C, but when concentration increased to 0.25% the crystallization was observed at the first 15 minutes of measurement. In addition, a change in the thermal behavior of wax/oil soft materials was observed when the concentration of waxes increased. For example, the enthalpy change (H) in SFW/ SFO materials increased from 0.87 J/g at 1% of SFW to 21J/g at 10% of SFW. This increase in enthalpy indicated that the amount of crystal increased when the concentration increased. Overall, the crystallization behavior in wax/oil materials was affected by wax concentration and chemical compositions of oils and waxes.
Real-Time Pathology with High-Frequency Ultrasound: A Feasibility Study using Bovine Tissues
Monica Cervantes, Utah Valley University The central research question of this project was to determine if high-frequency ultrasound is sensitive to tissue pathology at the microscopic level. Previous studies on surgical specimens have shown that high-frequency ultrasound may be sensitive to a range of breast pathologies including fibroadenomas, atypical ductal hyperplasia, fibrocystic changes, and carcinomas. The ultrasonic parameters that were sensitive to pathology were the number of peaks (the peak density) of the first-order spectra of the waveforms (one forward Fourier transform), and the slope of the second-order spectra of the waveforms (two consecutive forward Fourier transforms). The ability to determine pathology rapidly and with minimal specimen preparation would make high-frequency ultrasound particularly well-suited for real-time use during cancer surgery to ensure all of the malignant tissue has been removed. The purpose of this research was to determine the sensitivity of the peak density and spectral slope to tissue microstructures other than those found in breast cancer. The results of this study would not only support the results from the breast cancer studies, but also extend those results to the detection of cancer and other diseases in a range of organs and tissues. The research methodology included the following steps. (1) Freshly excised bovine organs were obtained from a meat packaging facility, including the heart, liver, and kidney. (2) Specimens approximately 3x3x1 cm in size were dissected from the organs and tested immediately with ultrasound. (3) Both pitch-catch and pulse-echo waveforms were acquired from the samples. (4) The data were analyzed by determining the peak densities and spectral slopes. The results showed that the more heterogeneous tissues of the heart, the vascular structures (aorta, vena cava, etc.), displayed significantly higher peak densities than the muscle tissues. Similarly, the ureter, which has greater heterogeneities in its structure (larger and more varied), displayed significantly higher peak densities than the cortex and medulla tissues. No significant trends were observed for the liver tissue, or for the spectral slopes except for kidney medulla tissue. Heterogeneity and peak density in high-frequency ultrasonic spectra that may be useful for performing real-time pathology during cancer surgery.
Copy Number Analysis to Determine Genetic Alterations in Paired Primary
Sam Hawkins, Utah State University Biological Engineering Colorectal cancer (CRC) is one of the most frequently diagnosed cancers in women and men. It is often treatable if caught early. However, tumors may metastasize which can result in a poor prognosis. A better understanding of the tumorigenesis and evolution of metastatic tumors in CRC patients could lead to earlier diagnosis, pre-emptive screening, and a better outcome. Copy number analysis of primary tumor tissue has revealed genes associated with colon cancers, but a comparison between primary and metastatic tumors has never been done. Normal tissue, primary tumor tissue, and metastatic tumor tissue was collected from twentyfive individuals. Copy number alterations were determined by microarray data generated from Molecular Inversion Probe (MIP) technology (Affymetrix, Inc.) for copy number analysis using Nexus software (BioDiscovery, Inc.). Metastatic tumor samples show a greater rate of copy number alterations (CNAs) from the primary tumors and even more alterations from normal tissue samples. Certain regions of the metastatic genome show high rates of CNAs whereas the primary tumor genome does not. These areas are key regions for potential understanding into the molecular origins of metastatic tumors. Understanding specific regions and genes with CNAs in metastatic tumor samples may lead to further research in cancer genetics and possible target areas for pharmaceutical testing.
Distinguishing Kentucky Bluegrass Varieties Using EST and Genomic Primers
Kat Combs, Utah State University Plants, Soils, and Climate Kentucky bluegrass (Poa pratensis L.) is a commonly used turfgrass species with many varieties being sold around the world. However, those varieties are very difficult to tell apart morphologically. Our objective was to use genetic markers (primers) to identify varieties, even if they are visually similar. This is valuable to the turfgrass industry for plant variety protection. We also wanted to use this data to explore the apomictic tendency (clonal reproduction) of the varieties. We collected leaf tissue from 24 Kentucky bluegrass varieties, extracted DNA, and sequenced portions using 29 EST and 21 genomic primers. This data was used to determine genetic relationships using a neighbor-joining dendrogram. Similarities of the genetic sequences from the varieties were estimated using the DICE coefficient. We found more polymorphisms in genomic primers than in EST primers with high variability between the varieties. Both types of primers were robust enough to distinguish varieties and that each variety was unique and genetically distinguishable. In addition, we discovered some varieties had large amounts of variation within a variety. This was unexpected due to the usual apomictic nature of the species. The markers resulting from our research will be available to the turfgrass industry.
Identifying the Genes that Control Paraquat Resistance in the Roundworm C. elegans
Tyler Shimko, University of Utah Biology Differences in the genomes of organisms control an organism’s ability to deal with and adapt to environmental stresses. In this project, two strain isolates of the nematode Caenorhabditis elegans were analyzed using high-throughput assays measuring growth and offspring production to determine the genes that confer a greater resistance to the herbicide paraquat. Paraquat acts by interfering with electron transport mechanisms within the cells of living organisms. This mechanism not only allows it to act as an effective herbicide, but also causes it to pose a considerable risk to the health of animals, including livestock and humans. Using statistical genetics, regions of the genome were identified that are likely responsible for differences in growth rate and fecundity observed in the two strain isolates when grown in paraquat. Near-isogenic lines and extra-chromosomal arrays were then created to isolate these portions of the genome in a control genetic background. This approach allowed us to be able to attribute any differences in the two traits to the genes contained within the intervals. After analyzing the body size data, representing the growth of the animals over 72 hours, we were able to draw a preliminary conclusion that an interval on chromosome V may have a small but significant effect on growth determination. As a result of this project, a specific interval was identified that may be responsible for a greater growth rate, three near-isogenic lines were created, and 34 extra-chromosomal arrays were generated. This work will be used in the future to identify the gene(s) responsible for the greater growth rate and fecundity observed in some animals exposed to the herbicide paraquat. These results will allow us to draw conclusions about the roles that these genes, and others like them, play in an organism’s ability to cope with environmental stresses.
Vascular Function Assessed During Handgrip Exercise Following Heart Transplantation
Alexa Provancha, University of Utah Exercise and Sport Science Impaired endothelium-dependent vasodilation has been associated with various cardiovascular diseases, including heart failure, is linked to oxidative stress, and persists despite heart transplantation (HTx). PURPOSE: This study aimed to determine if changes in vascular function following HTx can be assessed using incremental handgrip (HG) exercises to induce nitric oxide-dependent vasodilation of the brachial artery. Furthermore, the efficacy of an acute oral antioxidant cocktail (AOC) to reduce oxidative stress and improve vascular function in this population will be assessed. METHODS: 31 HTx recipients (14 years post-HTx) and 10 healthy age-matched controls were given either and AOC (Vitamin C, E, and alpha-lipoic acid) or placebo (PL; randomized for the subjects’ two visits. Measurements of the brachial arterial blood velocity and vessel diameter were performed during three absolute workloads (4, 8, and 12 kg) of HG exercise using ultrasound Doppler. RESULTS: Maximal vasodilation during PL HG exercise was not different between the controls (8.2 ± 1.5%), and recent (< 3 years post) HTx group (8.5 ± 1.2%), but the 5-10 years post-HTx groups had a tendency to be lower (6.5 ± 1.9%). The > 14 years post-HTx group recipients (5.2 ± 1.9%) were significantly attenuated compared to both the controls and the recent (< 3 years post) HTx recipients. CONCLUSION: The study supports the use of HG exercise as an assessment of vascular function in a patient population with known cardiovascular risk. Additionally, these results suggest that vascular function is similar between controls and early HTx recipients but declines as time passes following surgery despite normalized cardiac function.
Identification of Genes Regulating Sperm Motility in C. elegans
Kandrie MyIroie, University of Utah Human Genetics In C. elegans, sperm activation is the process through which sperm become motile. Genes that regulate sperm motility are being identified through a genetic screen. In this screen, swm-1 mutants that have sperm that activate too early are mutagenized, and genes regulating sperm motility can be found when the sperm of mutant worms no longer activated too early. Two genes have already been identified, try-5 and snf-10, and these can help identify new mutations. By selecting specific strains with sperm activation defects, the mutations causing the defect can be characterized. To sort through the many mutants, complementation tests to identify them as a new gene, or a new allele of try-5, snf-10 are being done. Selectively crossing an unknown mutant strain to a strain with a known mutation in try-5 or snf-10 will help identify the unknown mutation. If the progeny of the cross have activated sperm then the two strains complement each other. In this case the alleles must be in different genes and the unknown mutation from that cross has not been identified. If the progeny instead has non-activated sperm then the mutations failed to complement and the unknown mutation is allelic to the mutation it was crossed with. One new allele of try-5 and of snf-10 has been found. It is suspected that the other strains contain alleles of new genes not previously identified. Further complementation tests will be done to test this theory.
The Role of Nup153 in Nuclear Lamina Assembly
Merima Beganovic, Westminster College Molecular Biology Nuclear Pore Complexes (NPC) create aqueous channels embedded in the nuclear envelope and are made from a network of proteins called nucleoporins (nups). The nucleoporin Nup153 has previously been found to be required for proper assembly of the nuclear lamina. In this study, a fragment of Nup153 was overexpressed in order to impede Nup153 function in T-Rex HeLa cells. After inducing the expression of the dominant negative fragment, I examined the localization of lamins A, B1 and B2, as well as SUN1, Emerin, and BiP, three proteins that mark cell membrane compartments. Lamins B1, B2, SUN1, and Emerin were found to mislocalize to the cytoplasm of the cells, and colocalization among the proteins was observed. Lamin A also had an abnormal phenotype unlike that seen with the B lamins, but indicative of a problem with integration of Lamin A into the nuclear lamina. Colocalization of the various lamin isoforms with membrane proteins such as SUN1 and Emerin indicates a problem with membrane assembly. The distinct localization of BiP, however, suggests that there is a “nuclear-like” membrane in the cytoplasm that either does not incorporate normally into the nuclear envelope as it forms or is newly-recruited to mislocalize the lamin proteins.
Identification of Novel Invertebrate Neurokinin Receptor Gene Sequence
Chelsie Thomas, Weber State University Zoology The invertebrate ribbon worm, Paranemertes peregrina, serves as a unique model in that it thrives in an environment exposed to drastic fluctuations in salinity during tidal interchange. Its ability to sustain homeostatic integrity is not well understood. With an aim to clarify this phenomenon, total RNA was isolated, and reverse transcription with polymerase chain reaction allowed us to serendipitously clone and elucidate a 488 base pair region of a gene coding for a Tachykinin Receptor (TKR), a subtype of G-protein coupled receptor (GPCR). This region shows 79% homology to the mouse TKR-2 mRNA sequence, and 44% homology to human Neuromedin-K receptor’s amino acid sequence. Specifically, we have isolated a portion containing a cytosolic carboxy-terminus that has classically been associated with palmitoylation or otherwise hydrophibicity-enhancing interactions. This process facilitates the docking of cytosolic subunits to the membrane in the assembly of GPCRs, acting as a regulatory component. In vertebrate models, much of these proteins are conserved. Given that only a few of these genes have been reported for invertebrates, this suggests a critical need for investigation of the evolution of TKRs as they relate to stress response. Additionally, this receptor poses questions about its potential role in pain, with the prospect of revealing insight about the long-elusive pain perception in invertebrates.
Serenity, A Drug Recovery Center for Women
Brooke Nelson, Weber State University Interior Design According to the National Substance Abuse Index (2006), Utah women account for 31.7 % of the entire drug abusing population. Mind-altering substance abuse among women creates many unique problems in their lives according to Wesa and Culliton (2004). Additional research by Wesa and Cullliton shows this can affect their futures, finances, families, health, and relationships. Many of the women have other underlying problems that lead them to use mind altering substances to cope with these problems as researched by James (2011). In the Ogden, Utah area, mind-altering substances have created an epidemic that needs to be helped. Serenity, A Drug Abuse Recovery Center, will be an 18,000 square foot building located in Ogden, Utah. Serenity helps facilitate mental and physical healing to create an overall wellbeing for the women. Research has said that women are more likely to receive help for mental conditions than the substance according to Greenfield (2006). Mental disorders and substance abuse will be addressed at the recovery center. Individual and group therapy methods will be used because of their effectiveness shown by Greenfield. Research by Greenfield has shown that women in treatment centers have a greater chance of retention if dependent children are present. Serenity will provide a private room for a woman and two dependent children to stay at the center. The center will include nutrition education and dining area, and a children’s area. The children’s area will have reading, playing, learning, and therapy treating areas.
Antibiotic Resistance of Enterococci Isolated from the Great Salt Lake and Fresh Water Sources
Jennifer Jorgenson, Weber State University Microbiology Enterococcus, a bacterial genus that normally inhabits the gastrointestinal tract of animals, can be pathogenic to humans, causing urinary tract infections, sepsis and other serious diseases. It is also one of the major causes of hospital acquired infections. One important complication of those infected with Enterococcus is the fact that they often have a high level of antibiotic resistance, making effective treatment of patients more difficult. While it is a normal inhabitant of the gastrointestinal tract, it can survive outside its host in the environment, even in adverse conditions, such as the Great Salt Lake. In this experiment, isolates of Enterococcus were collected from the Great Salt Lake and from fresh water sources. These isolates were tested for different phenotypic characteristics and for their antibiotic resistant patterns against five antibiotics. The results of the Kirby Bauer disk-diffusion assay demonstrated that 47% of enterococcal isolates from the Great Salt Lake were resistant to one or more of the five antibiotics. In contrast only 15% of Enterococcus isolated from the fresh water source were resistant to one or more of the five antibiotics. This has implications for those who have recreational and occupational contact with the Great Salt Lake.
A Qualitative Study: The Role of Reflection and Service: Learning in an Exercise Science Class
Gessica Stovall, Utah Valley University Exercise Science Introduction:
Creating Claudin-16 Reporter Assays for Studying Epithelial Ovarian Cancer
Miguel Cuevas and Joseph Wilkerson, Utah Valley University Biology Ovarian cancer is the leading cause of death from gynecologic malignancies in the United States and is the fifth leading cause of cancer death among American women. It is estimated that over 22,000 women in 2012 will be diagnosed with ovarian cancer in the United States and approximately 15,500 women will succumb to the disease. This is due to the fact that only 20 percent of cases are diagnosed before the cancer has spread to the peritoneal cavity. Currently, there are no reliable, standard screening tests; the only diagnostic test currently available is the CA125 tumor antigen blood test. This test is inadequate and not available as a general screening tool; additional diagnostics are required to effectively diagnose this disease. It has been previously shown that the tight junction protein Claudin-16, found only in normal kidney, is aberrantly expressed in epithelial ovarian tumors. Therefore, this protein is a good candidate for ovarian cancer diagnostics and targeted therapy. By identifying the promoter region that controls cldn-16 gene expression in ovarian tumors, we can create a luciferase reporter assay to identify cells that express Claudin-16 in culture. To do this, PCR-amplify of various upstream regulatory elements previously identified in kidney cell lines were subcloned into the pGL3 luciferase reporter vector. A higher amount of luminescence is present if the promoter sequence successfully up-regulates the luciferase gene in the vector. This is measured using a Dual Luciferase Assay to determine which promoter region is responsible for the over-expression of Claudin 16. Promoter activity was verified in kidney cell lines that normally express Claudin-16. Next, the assays will be repeated in ovarian cancer cell lines known to express Claudin-16 compared to cell lines that do not express the protein. The promoter assay will then be tested on a collection of ovarian cancer cell lines to determine if luciferase activity correlates with Claudin-16 expression. Once validated, we can test our construct as a cell based assay for identifying therapeutics that can lower Claudin-16 expression in ovarian cancer cells.
Nanospecific Inhibition of Secondary Metabolism and Resistance Induction of the Soil Bacterium Pseudomonas chlororaphis 06 to ZnO Nanoparticles
Jordan Goodman, Utah State University Biological Engineering Nanotechnology is revolutionizing imaging techniques, antibiotic therapy and cancer treatments. Nanoparticles (NPs) are also utilized in many commercial products such as sunscreens, paints, ceramics and semiconductors. Consequently, it is inevitable that NPs find their way into the environment. The effects that NPs have on agriculture and soil ecosystems are the focus of this project. Metal-oxide NPs such as ZnO are toxic to many bacterial pathogens but the beneficial root-colonizing isolate, Pseudomonas chlororaphis O6 (PcO6), has high tolerance. This bacterium represents an important group of micro-organisms that colonize plant roots improving their resilience to both abiotic and biotic stress. At sublethal dose, the ZnO NPs remodel the secondary metabolism of PcO6 in ways that could have an impact on agricultural ecosystems. Formation of antibiotic phenazines produced by PcO6 is strongly inhibited by ZnO NPs. Phenazines are important for PcO6 growth in biofilms, induction of tolerance mechanisms in the colonized plant, and antagonism of other rhizosphere pathogens. A role of NPs as a point source for soluble metal release is involved in these processes but does not explain the total effect of the NPs. The sublethal effects of the ZnO NPs on bacteria are similar to changes reported by sublethal doses of traditional antibiotics on human pathogens. These changes have a strong impact on fitness of bacterial pathogens, the most significant of which is induction of antibiotic resistance. Although many metal-containing NPs are being used in antimicrobial formulations, these alternative antibiotics too may be inducers of antibiotic resistance.
Comparing Trophic Level Position of Invertebrates in Fish and Fishless Lakes in Arctic Alaska
Katie Fisher, Utah State University Watershed Science Arctic lakes are very sensitive to the effects of climate change. It is important to understand the current food web dynamic and energy flow within these lakes to better understand how they will change in the future due to the effects of a rapidly changing climate. In order to understand the current conditions in arctic lakes, this project consists of an analysis of stable isotopes of carbon (13C) and nitrogen (15N) from invertebrates among fish and fishless lakes in arctic Alaska to compare their trophic level positions and primary energetic sources. In order to carry out this analysis, I collected pelagic invertebrates were collected from 6 different lakes, 3 of which have resident fish populations and 3 of which are fishless. Samples collected in 2011 were analyzed for stable isotope composition by a mass spectrometer at University of California Davis. Results from samples collected in 2012 are pending at Washington State University. I will analyze and correlate the stable isotope results with isotopic data collected from other related projects. With this analysis, I will create food webs to 1) assign trophic positions to each species in each lake and compare those positions across lakes, 2) assess the potential effect fish predation has on pelagic invertebrate community structure. I hypothesize that fish predation will determine zooplankton community structure (e.g., dominant taxa) and alter trophic linkages (e.g., secondary trophic level predation rates).
Measuring Cellular Ceramide Accrual using Immunofluorescence
Anindita Ravindran, University of Utah Exercise and Sport Science Obesity predisposes individuals with Type II Diabetes to cardiovascular complications such as impaired blood vessel function. Due to the elevation of free fatty acids (FFAs) in obese individuals, ceramide, a lipid metabolite, accumulates and might contribute to the inability of a blood vessel to constrict or relax appropriately. Vessel dysfunction is partly caused by the inability of the endothelium, the innermost protective lining of blood vessels, to synthesize and release nitric oxide (NO). Our data indicate that ceramide impairs endothelial NO synthase (eNOS), the enzyme that synthesizes NO. In order to study mechanisms by which ceramide might impair eNOS, it is important to measure cellular ceramide production in response to pharmacological and genetic manipulations. Previously we used P-32 radioactive assays to measure ceramide accumulation. However, the use of radioactivity is expensive, potentially hazardous, and waste disposal is an environmental concern. Therefore, I sought to import a less harmful, more cost effective, yet accurate technique of measuring ceramide production by immunofluorescence (IF). IF allows ceramide to be tagged with a primary antibody which can be detected by a secondary antibody conjugated with a fluorescent dye. I have observed that 250, 500, and 750 uM palmitate (pal) incubation for 3 h increases (p<0.05) endothelial cell ceramide accrual in a dose-dependent manner. Further, a FFA-independent method to alter ceramide accrual i.e., 3 h incubation of cells with N-oleoylethanolamine, also elevates (p<0.05) ceramide production. Importantly, I have shown that 500 uM palmitate-induced ceramide accrual can be prevented (p<0.05) by two structurally dissimilar inhibitors (10 uM myriocin, 1mM L-cycloserine) of the rate-limiting enzyme responsible for ceramide biosynthesis i.e., serine palmitoyl transferase (SPT). None of these inhibitors impairs cell viability. These data indicate that IF is an accurate and reproducible method whereby ceramide accrual can be quantified in endothelial cell systems.
Impairment of Withholding a “Pre-Potent” Response In Rats With METH-induced Neurotoxicity
Lee Leavitt, University of Utah Biology Chronic methamphetamine (METH) abuse leads to structural and functional damage in the brain, which likely contributes to cognitive and behavioral dysfunction. Recent data suggest an association between METH abuse and impaired inhibitory control over behavior; that is an impaired ability to inhibit inappropriate actions or thoughts. However, the extent to which METH-induced neurotoxicity is responsible for such impairment remains to be determined. Previously, we reported that rats with METH-induced partial dopamine (DA) and serotonin (5-HT) loss in striatum and prefrontal cortex (PFC) exhibited impaired response inhibition in the form of perseverative responding. Furthermore, levels of serotonin transporter (SERT) binding in PFC correlated with perseverative responding. Herein, we have examined another dimension of response inhibition impulsive action, which is an inability to withhold a “pre-potent” response in rats with METH-induced neurotoxicity. Rats were trained to perform a stop-signal task (SST). Once rats achieved stable responding (>80% correct response) on both “Go” and “Stop” trials, they were treated with saline (0.9%), a neurotoxic regimen of METH (4 x 10 mg/kg, 2-hr intervals, s.c.) under normal ambient temperature conditions (“neurotoxic” METH group) or the METH regimen under cooling conditions (“normothermic” METH group). One week after the treatment, rats were again tested on the SST. After behavioral tests were done, animals were sacrificed and brains removed for determination of monoamine loss. The results showed: 1) the “neurotoxic” METH-, but not the “normothermic” METH or saline-treated rats, showed a 40-60% loss of SERT and dopamine transporter (DAT) binding in PFC and striatum; 2) the “neurotoxic” METH group showed normal behavioral performance in “Go” trials of the SST relative to the “normothermic” METH group or saline controls; 3) the “neurotoxic” METH group exhibited impaired withholding of a “pre-potent” response, as reflected by increased numbers of errors on the “Stop” trials of the SST. Overall, these data suggest that impaired inhibitory control over behavior (i.e., increased impulsive action) can arise as a consequence of METH-induced neurotoxicity to central dopamine and serotonin systems. Supported by NIH grant DA 024036