Skip to main content
Utah's Foremost Platform for Undergraduate Research Presentation
2014 Abstracts

Nucleosome positioning preferences of octamer containing H2A variants Htas1 and Htz1 in C. elegans

Sharisa Nay, Brigham Young University

Life Sciences

Gene therapy is a growing field of science with the potential to improve thousands of lives. With an eye toward improving the effectiveness and longevity of gene therapies, my project examines the preferential binding tendencies of the histone protein variants Htz1 and Htas1. Htz1 is the Ceanorhabditis elegans homolog of H2AZ, an important variant of the H2A histone. This protein has been shown as necessary for survival and as playing a role in the prevention of ectopic heterochromatin spread. Htas1 is another variant of H2A that plays a role in the increased transcription of sperm-producing genes. The preferred positioning of these variants on naked DNA is not yet known. Through a DNA extraction, nucleosome reconstitution, and DNA digest and sequencing, we will take these variants and examine where they are prone to localize within the N2 Bristol strain of c. elegans. This will allow us to include DNA sequences on our gene insertions possessing a high binding-affinity for these transcription-promoting histones. Thus, if we can identify the locations at which these variants will localize within DNA, we will be able to insert these preferred constructs into the genes used for gene therapy and thereby increase the effectiveness of gene therapies.