Skip to main content
Utah's Foremost Platform for Undergraduate Research Presentation

Life Sciences

Physiological and pathophysiological stimuli alter endothelial cell autophagy

January 01, 2014 12:00 AM
J David Symons, University of Utah Life Sciences Autophagy plays a central role in cellular quality control by destroying damaged or excess proteins, lipids, membranes, and organelles that accumulate in response to deviations from homeostasis. The existence and role of autophagy in endothelial cells (ECs) and blood vessels has not been established. Autophagy can be quantified by assessing the ratio of the membrane bound conjugate of microtubule-associated protein light chain 3 (LC3-II) to the cytosolic non-lipidated conjugate LC3-1 (LC3-II:LC3-I) or GAPDH (LC3-II:GAPDH) via immunoblotting. We sought to determine the extent to which a variety of cellular stressors induces autophagy in ECs and intact blood vessels. LC3-II:LC3-I or LC3-II:GAPDH was elevated (p<0.05) (i) 450±6% (n=4) in ECs incubated for 2 h in amino acid (AA)-deplete vs. AA-replete media; (ii) 47±3% (n=3) in arteries from fasted (14 h) vs. fasted / refed (1 h) mice; (iii) 40±2% (n=3) in arteries from mice that completed acute exercise vs. sedentary controls; (iv) 38±1% in arteries from exercise-trained vs. sedentary mice under basal conditions (n=2 per group); and was decreased (p<0.05) (v) 57±8% (n=4) in arteries from ~30 month-old (i.e., old) vs. ~6 month-old (i.e., young) mice. Further, indices of autophagy were elevated (p<0.05) 101±6% in ECs exposed to 3 h x 500 uM palmitate vs. vehicle (n=4), and 50±6% in arteries from obese vs. lean mice (n=4 per group). Thus, autophagy is altered in ECs and blood vessels in response to physiological (e.g., fasting, acute exercise, exercise training, aging) and pathophysiological (acute lipotoxicity, diet-induced obesity) stimuli. Ongoing research will determine the functional role of vascular autophagy in health and disease.

Concentrations of Trace Pharmaceuticals Found in Hobble Creek

January 01, 2014 12:00 AM
Janweb Lagazo, Brigham Young University Life Sciences The scientific community and the general public have long been interested in the effects of water pollution. Most studies on water pollution have focused solely on industrial pollution, but have failed to consider the potential impact of pharmaceuticals that unintentionally accumulate in aquatic ecosystems via wastewater treatment effluents. The purpose of this study is to advance our understanding on how these wastewater effluents affect aquatic ecosystems in Utah. We quantified the concentration of select pharmaceuticals in Hobble Creek using mass spectrometry. Then we sampled above the treatment plant, at the effluent outlet, and downstream of the effluent to determine pre-effluent and post-effluent drug concentrations. We are currently using this preliminary data to investigate how common endocrine disrupting, anti-inflammatory, analgesic, and anti-anxiety drugs may potentially affect the aquatic ecosystem of the endangered Chasmistes liorus, commonly known as June sucker.

Three-Dimensional Modeling of Facial Nerve VII

January 01, 2014 12:00 AM
Dani Peterson, Brigham Young University Life Sciences Due to its long and complicated trajectory through the cranium, facial nerve VII (CN VII) can be damaged in surgeries, sometimes resulting in facial muscle paralysis. Surgical removal of acoustic neuromas and parotid tumors, in addition to surgical repair of the temporomandibular joint disorder are associated with a risk of damage to CN VII. In addition, insertion of auditory implants can damage the nerve, as can improper stimulation to the nerve after the implantation has occurred. We will create a three-dimensional (3D) model based off of data from dissection of the nerve in a human cadaver in order to give physicians a greater in vivo knowledge of the pathway of CN VII. We have dissected the lateral side of the right half of the head to the level of the parotid gland, identified the parotid plexus of CN VII, and followed its five branches. In addition, we are currently following the nerve through the internal auditory meatus on its pathway through the temporal bone. In preparation for the modeling MicroScribe technique described below, we have imaged the head using Magnetic Resonance Imaging (MRI) at BYU. These images will be used as a template for the nerve reconstruction model. After completing the dissection, we will track the nerve trajectory using a MicroScribe 3D Digitizer. The MicroScribe technique is used to create 3D computer models of any physical object. The user sets reference points and uses the stylus to trace data points of the object’s contours. Our final product will be a 3D spatial computer mapping of CNVII, as well as a mapping of the skull, parotid gland, and other landmarks to put the nerve model into context. We hypothesize that with our approach and MicroScribe technique, we will be successful in creating an accurate model of CN VII in the head.

High Intake of Soy and Selenium Reduces Prostate Cancer Risk: Does Timing of Intervention Matter?

January 01, 2014 12:00 AM
Lauren Archibald, Brigham Young University Life Sciences Increased intake of selenium (Se) and soy have both been shown to reduce risk for prostate cancer, especially if these dietary treatments are combined. The purpose of this project is to determine how the timing of Se supplementation of either a low- or high-soy diet affects prostate cancer risk. [C57BL/6 X FVB] F1 TRAMP (TRansgenic Adenocarcinoma of Mouse Prostate) male mice were fed stock diets low or high in soy. Half of the mice received Se supplementation (4.0 mg Se/kg BW as Se-methylselenocysteine) by gavage 5 d/wk in a 2 X 2 factorial design. Se supplementation began at conception, 6 weeks, 12 weeks, or 18 weeks of age. The mice were then sacrificed at different stages of maturation (4, 12, 18, and 24 weeks). Our results showed that, at 12 weeks of age, urogenital tract weights, a measure of prostate proliferation and tumor volume, were significantly reduced by Se supplementation (p<0.001) and by soy (p=0.044), independent of time of dietary intervention. Histological scores of prostate cancer progression also showed a protective effect of Se supplementation (p=0.030). At this writing, statistical analysis of data from mice sacrificed at 18 weeks is in process. Data derived from 18-week mice, combined with our previous findings from 12-week animals, will allow us to chart the progress of prostate cancer in this model. In addition, results will show how dietary Se and soy may alter disease progression and how the timing of dietary intervention may determine its effects.

Cortisol Patterns Used as Bio-markers of Extreme Temperaments

January 01, 2014 12:00 AM
Claudia Gonzalez, Brigham Young University Life Sciences Cortisol has been shown to be a potential bio-marker as it discriminates between individuals with and without depression (Rush et al., 1996 and Ising et al., 2007). However, cortisol has not been used to predict variation in temperament extremes that lead to pathological behaviors in adulthood. In order to examine the relationship between cortisol and temperament extremes, data from the bio-behavioral assessment (BBA) was used. The BBA data base includes data collected from over 2,700 infant rhesus macaques located in California National Primate Research Center (CNPRC). During the BBA four blood samples per subject are obtained and later assayed for plasma cortisol levels. In this study, the plasma cortisol response levels were looked at in a holistic form encompassing all individual cortisol samples. The four points of plasma cortisol concentrations were used to extract patterns of response per subject which provided classifications for each of the monkeys. The pathological patterns of cortisol response were characterized by abnormal plasma cortisol levels in response to Dexamethasone suppression testing and adrenocorticotropin ACTH injections. The variability in plasma cortisol patterns was then compared to BBA temperament ratings of vigilance, gentle, nervousness and confidence. These results showed that 12 of the 26 possible patterns of response were significantly (p<.05) related to each of the temperament ratings of vigilance, gentleness and confidence. Thus cortisol response patterns can be used both as biomarkers for vigilance, gentleness and confidence, and as potential predictors for pathological behaviors in adulthood.

Cultural, Economic, and Educational Factors Related to Diabetes Mellitus Type 2 in Tongans

January 01, 2014 12:00 AM
April McMurray, Brigham Young University Life Sciences Diabetes Mellitus Type 2 (DMT2) is a lifestyle-related disease where the body does not produce enough insulin or the cells are unreceptive to it, and it is now the most common form of diabetes. Individuals who do not control the disease can suffer serious complications such as limb amputation, damage to the eyes, kidneys, nerves, heart, and it can be very costly. This problem is particularly serious in Tonga; the prevalence is almost twice as high as that in the United States. The purpose of this research project was to determine to what extent the cultural, economic, and educational factors contribute to such high prevalence. In May I traveled to Tonga with the nursing students from Brigham Young University to conduct my research. I distributed surveys to patients and medical staff in the diabetes clinic in the Vaiola hospital in Nuku’alofa, Tonga. The surveys had questions related to their socioeconomic status, understanding and attitudes of diabetes, as well as patient management practices. While I was there, I also kept extensive field notes on observations related to my research, which provided supplemental information regarding the Tongan lifestyle that was difficult to gather from the surveys. Preliminary analysis indicates that there has been a very small, positive shift in understanding and attitudes towards DMT2, but economic- and culture-based habits still impede Tongans from managing the disease effectively. There were several limitations to this study: small sample numbers, lack of resources, some resistance from Tongan medical personnel, and particularly cultural barriers made it difficult to gather enough information to come to significant conclusions. However, the research does give insight concerning potential future studies and interventions to help the people of Tonga treat this disease.

The Genetic Architecture of Pelvic Reduction in Ninespine Sticklebacks

January 01, 2014 12:00 AM
Sara Fauver, University of Utah Life Sciences We know that novel genetic variants have driven evolution for millions of years and that natural selection favors phenotypes most suited for survival, leading to the enormous diversity of life we see today. However, what remains unclear, are the patterns of mutations that lead to large phenotypic changes. For example, do mutations in a single gene of large effect lead to morphological changes more often than numerous mutations in genes of smaller effect? Also, do these mutations occur more often in protein coding regions or regulatory regions of DNA? Finally, are the same genes or gene pathways used repeatedly across lineages when parallel phenotypes evolve?

Phylogeny of Heptageniidae Through Molecular Analysis

January 01, 2014 12:00 AM
Jeffrey Leavitt, Utah Valley University Life Sciences Central Research Question: Heptageniidae is a large family within the order Ephemeroptera (mayflies). This family consists of over 500 described species. Recently a study was done across 200 of the species to break them up into subfamilies, and genera. The studied concluded that there are 29 genera and three subfamilies Ecdyonurinae, Heptageniinae, and Rhithrogeninae (Wang, 2004). Furthermore, Ogden et al. (2009) proposed that the families Arthropleidae and Pseudironidae were derived heptageniid lineages. The phylogenetic relationships of Heptageniidae, Arthropleidae, Pseudironidae, to other closely related families are inconclusive. We propose to study these three families and the three subfamilies of Heptageniidae in detail via molecular systematics.

A predictive analytic approach to improve patient handoffs: a retrospective study of biliary complications and acute cellular rejection episodes following liver transplantation

January 01, 2014 12:00 AM
Daniel Hall, Brigham Young University Life Sciences OBJECTIVE(S): Predictive analytics (PA) is increasingly being used in the delivery of healthcare. Whether PA can improve patient handoffs on a busy surgical service is unknown. This study aims to determine if predictive models for acute cellular rejection (ACR) episodes and biliary complications after orthotropic liver transplantation (OLT) can be built in order to improve patient care.

The adverse effects of ionic liquids on pathogenic biofilms

January 01, 2014 12:00 AM
Spencer Alexander, Dixie State University Life Sciences Antibiotic resistance has increased with each new developed medication, creating new problems as bacteria become more difficult to defeat. Some of these bacteria are resistant because they can excrete an extracellular polymeric substance known as a biofilm. The polysaccharide-based biofilm matrix allows the colony to communicate, absorb nutrients, and exchange genetic material giving it an advantage in possible resistance through plasmid exchange. At present, there are no effective antimicrobial agents that can safely treat and prevent resistant bacteria like ORSA. Biofilms have a negative impact ranging from human pathogenesis down to economic expenses. In order to break down established biofilms, we utilized newly developed organic salts known as ionic liquids. These novel liquids have been observed to prevent bacterial colonies and biofilm formation, possibly by introducing intermolecular interactions that disrupt the chemical bonding in biofilms. The morphology of the microbes was characterized and observed to determine the effect of the ionic liquids on biofilms. Inhibition studies were also performed to determine antimicrobial efficiency of the ionic liquids as a function of organic structures. These novel ionic liquids provide an unprecedented, effective and efficient method to combat resistant bacteria, which could have tremendous impacts in achieving sterile environments in medical and remote settings.

MicroScribe 3D digitizing of quadriceps tendon and calcaneal tendon with staining technique

January 01, 2014 12:00 AM
Michael Gillespie, Brigham Young University Life Sciences It is vital to understand the anatomical microstructure of tendons and ligaments in order to ascertain their specific qualities and functions. Recent developments in micro-scribe 3D digitization are highly effective in revealing these intricacies. A necessary component to creating 3D fiber maps from this technology is the ability to distinguish between individual tissue fibers with the naked eye. However, this is a very difficult task with most tendons and ligaments. We developed a paste made of blue dye and powdered sugar that when applied, fits in-between these fibers and contrasts the specimen color. This exposes the fine architecture, making individual fibers much more visible and thus able to be 3D digitized. With these 3D fiber maps now available, tendon and ligament microstructure can be viewed in greater detail than previously possible. This technique was applied to human cadaveric calcaneal tendon and quadriceps tendon. It was discovered that the fibers of human calcaneal tendon have higher overlap relative to the rigidly parallel fibers of the quadriceps tendon. This further understanding carries implications regarding the advancement of biomechanical models, artificial reconstruction, and surgical repair of these tissues. It also highlights the need for further investigation into the microstructure differences among tendons and ligaments.

Assessment of Environmental Awareness among Utah Valley University Students

January 01, 2014 12:00 AM
Michaelle Cadet, Utah Valley University Life Sciences Utah County, Utah has an estimated population of 540,000 residents and is considered to be a non-attainment area for criteria pollutants such as PM-10 and CO. High levels of these contaminants may increase the risk of respiratory diseases. Additional environmental issues exist including water contamination and eutrophication of Utah Lake. These environmental issues are frequently on the news and warnings are issued by the Department of Environmental Quality notifying citizens of the potential health concerns associated with environmental pollution. With these announcements, it is expected that Utahans are acutely aware of environmental issues, particularly, in the academic settings. The purpose of this study was to investigate the status of environmental awareness among students at Utah Valley University and to correlate the results to socio-demographic categories. Utah Valley University, located in Utah County, is a public institution of higher education with approximately 30,000 registered students. Data for this study was collected through a survey using a multistage sampling technique with population stratified based on colleges and schools within the university. Sample size included approximately 1,000 students. The survey contained 12 environmental questions relating to recent local, national and international media exposure. Standards and protocol of the International Research Board were employed. We hypothesize that married, educated, religious males will positively correlate with higher levels of environmental awareness, but will be less than atheists. Additionally, those identifying with the Republican Party will have lower levels of awareness. No significant difference will be found between majors. Furthermore the young, poor and ethnic populations will be less aware than their more affluent counterparts. Results of this study will be used to inform residents of environmental issues and the associated health concerns. Additionally, this study will be used to inform legislators about the importance of environmental education in the community.

Dna Based Identification and Prevalence of Cestode Parasites in the Brine Shrimp (Artemia franciscana) from Great Salt Lake, Utah

January 01, 2014 12:00 AM
Ethel Tackie-Yarboi, Westminster College Life Sciences The brine shrimp, Artemia franciscana are an important source of nutrients for many of the over 15 million migratory birds that visit Great Salt Lake (GSL) in Utah each year. As well as being a source of food, the brine shrimp are an intermediate host to cestode parasites that infect many of the bird species. Although the effects of cestode infection in brine shrimp and the contribution of brine shrimp to cestode circulation in birds have been studied, little research has yet addressed the rate of cestode infection or molecular phylogeny of these cestodes. We collected brine shrimp from three sites in GSL and tested individuals for cestode infection using previously identified and newly designed cestode specific PCR primers that amplify the 18S ribosomal RNA gene. Our preliminary results showed that the Spiral Jetty site from the North arm of GSL had a 2% infection rate, the Antelope Island site from the South arm had a 45% infection rate, and the shrimp collected at the Black Rock site, also in the South arm, had a 32% infection rate using our cestode specific PCR assays. We also have preliminary DNA sequencing results that demonstrate that we are amplifying cestode DNA, which is most closely related to members of the genus Hymenolepis. Our data suggest that there may be a higher prevalence of cestode infection in the shrimp in the South arm than those from the North arm of the Great Salt Lake. Our goal is to extend our study in order to better identify the species of cestodes that infect brine shrimp using further DNA sequencing and to expand our infection rate samples to better estimate the percentage of the brine shrimp population that is infected by the cestode parasites, as well as test samples from several years.

PP2A inhibition using LB1 negates palmitate-induced reductions in nitric oxide production in endothelial cells

January 01, 2014 12:00 AM
J David Symons, University of Utah Life Sciences Cardiovascular complications (e.g., arterial dysfunction) are more prevalent in patients with type 2 diabetes (T2DM). Patients with T2DM have elevated levels of circulating free fatty acids (FFAs). We have shown that when bovine aortic endothelial cells (BAECs) are treated with the physiologically relevant FFA palmitate, protein phosphatase 2A (PP2A) activity increases, phosphorylated endothelial nitric oxide (NO) synthase (eNOS) to total eNOS (p-eNOS:eNOS) decreases, and metabolites of NO production decrease. NO is an important endothelial-derived relaxing factor that is vasculoprotective. As such, FFA-induced, PP2A-mediated reductions in p-eNOS:eNOS and NO production might explain why vascular complications are more common in pathologies associated with lipotoxicity e.g., T2DM and diet-induced obesity. Recently we showed in BAECs that if PP2A is inhibited using okadaic acid (OA), palmitate-induced increases in PP2A activity, and reductions in p-eNOS:eNOS and indices of NO production are negated. We sought to translate these finding from BAECs to the intact organism. However, OA cannot be used in vivo. Lixte Biotechnology 1 (LB1) is a PP2A inhibitor that has been used in vivo in the context of cancer research. The purpose of this study was to determine the efficacy of LB1 under our experimental conditions, with the long-range goal of using LB1 in mice. Further, we used this opportunity to optimize the measurement of NO directly using electron paramagnetic resonance spectroscopy (EPR). BAECs were treated for 3 h with vehicle (V), 500 µM palmitate (P), 4 µM LB1, or P + LB1 (n=10 per treatment). P increased (p<0.05) PP2A activity (50±12%), and decreased (p<0.05) p-tyr307:PP2A (29±9%; redundant indicator of increased PP2A activity), p-eNOS:eNOS (30±3%), and NO production (27±9%). All P-induced effects were prevented by concurrent treatment with LB1. Future experiments will determine whether chronic treatment of mice with LB1 is capable of suppressing PP2A activity in intact arteries.

Edge effect on vegetation type and cover along a popular recreational trail

January 01, 2014 12:00 AM
Cynthiann Heckelsmiller, Weber State University Life Sciences Heavy foot traffic compacts soil, leading to decreased gas exchange, water permeability, and reduced nutrient cycling. Plant communities are defined by the availability of nutrients, water, and other resources.

Mutational Analysis of the Serine Chemoreceptor In Escherichia coli

January 01, 2014 12:00 AM
Jordan Fenlon, University of Utah Life Sciences Tsr, the serine chemoreceptor for E. coli, is a transmembrane protein with a periplasmic sensing domain and cytoplasmic adaptation and kinase control domains. The focus of my research project is Tsr residue A413, located in the cytoplasmic tip of the receptor’s kinase control domain. The project involves characterization of mutant Tsr proteins containing amino acid replacements at residue 413. Based on previous work in the Parkinson lab, this residue is thought to play a key role in Tsr signaling by regulating the dynamic motion of the tip.

Development of sensitive ELISA and qPCR assays to quantitate levels of dust mite antigens in homes in Utah with and without swamp coolers

January 01, 2014 12:00 AM
Evan Campbell, Brigham Young University Life Sciences Asthma is a chronic allergic disorder manifest by airway restriction due to inflammation, bronchoconstriction, and increased respiratory mucous secretion. As many as 300 million people worldwide are affected by asthma and its prevalence is increasing primarily in countries experiencing urbanization and Westernization. Asthma is currently the most common chronic illness among children in the U.S., and the third leading cause of hospitalization for children aged 0 – 15 yrs. Reservoir dust collection and area air sampling are the two primary methods of measuring allergen levels in house dust. Allergen sensitization leading to asthma is thought to occur prior to age six while the immune system is still naïve. In the case of the dust mite allergen Der p1, the exposure window may be as early as age two. However, little evidence is available to establish a dose–response relationship between inhalation exposure and early immunological sensitization to allergens. Temperature and relative humidity play a major role in dust mite survival and proliferation and indoor humidity above 50-60% in arid environments has been shown to support dust mite populations. Evaporative “swamp” coolers cool air by adding humidity to it and can create favorable environments for dust mite survival. We are working to determine how much swamp coolers contribute to dust mite levels in Utah by quantitating dust mite allergen levels in homes with and without swamp coolers. In order to do this we are developing sensitive ELISA and quantitative PCR methods to allow us to determine levels of exposure even when low levels of dust are collected.

Engineering a Pathogen Specific Single Chain T-Cell Receptor Specific for Listeria monocytogenes.

January 01, 2014 12:00 AM
John Hancock, Brigham Young University Life Sciences LLO56 and LLO118 are CD4+ T cells specific for the same Listeria monocytogenes epitope. Despite their TCRs differing by only 15 amino acids, LLO118 and LLO56 have dramatically different primary and secondary responses to Listeria monocytogenes infection. We reasoned that LLO56, the single chain TCR (Vβ2-linker-Vα2) could be subjected to directed evolution to generate mutants that are more stable and bind to peptide-MHC with higher affinity. Single chain LLO56 was fused to the yeast surface protein Aga-2 and error prone PCR was used to generate mutagenic libraries. A first generation stabilized single chain TCR (scTCR) was selected using biotinylated Vβ2 and Vα2 antibodies and anti-biotin beads. The first generation LLO56 mutant expressed LLO56 on the surface of yeast at higher levels than wild type by flow cytometry. To produce mutants with additional stability, a second-generation mutant was generated by combining multiple stability mutations isolated in a number of first generation clones.

Comparative Analysis of Small Transducers and Large Transducers using High-Frequency Ultrasound on Phantom Breast Tissue

January 01, 2014 12:00 AM
Madison Peterson, Utah Valley University Life Sciences High-frequency (HF) ultrasound in the 20-80 MHz range has recently been found to be sensitive to pathology in tissue margins from breast cancer surgery. In order to improve the resolution and sensitivity of this method, however, transducers need to be employed that have piezoelectric elements that are smaller than those currently in use. The purpose of this study was to determine if small element transducers (Blatek pachyometer, 50 MHz, element diameter < 2 mm) produce similar results as those obtained from large element immersion transducers (Olympus NDT, V358-SU, 50 MHz, 6.35-mm diameter active element). Ultrasonic tests were performed on 10 phantom breast samples made of Knox gelatin base and soluble fiber (Metamucil), five of which contained chopped nylon fibers and five which contained polyethylene microspheres. Pulse-echo and through transmission measurements using a HF square-wave pulser/receiver (UTEX, UT340) and a digital storage oscilloscope (Agilent, DSOX3104A, 1 GHz, 4 analog channels) were acquired from a total of 3 sites per phantom in triplicate, first testing all specimens with the large transducers then again with the small transducers. Specimens were marked with India ink for location and accuracy of testing. The density of peaks in the ultrasonic spectra of the small transducers paralleled those of large transducers. Results from HF ultrasonic measurements of phantom breast tissue obtained from small transducers compared to the large transducers indicate that they produce statistically comparable peak densities. In breast conservations surgery it is crucial to excise all cancerous tissue to prevent recurrence. This method could provide in vivo cancer detections in margins and allow for more precise excision of tumors and cancerous tissue preventing the need for subsequent surgeries and thus, less risk, reduced pain and suffering, lower costs and better outcomes for breast cancer patients.

Engineering a stabilized Single Chain T-Cell Receptor called LLO118 for use in generating high affinity T cell receptors.

January 01, 2014 12:00 AM
Brian Ballard, Brigham Young University Life Sciences Antigen presenting cells digest and display proteins from foreign and infected cells on the major histocompatibility complex (MHC) which can then be recognized by T-cells through their T cell receptor (TCR). LLO56 and LLO118 are CD4+ T cells specific for the same Listeria monocytogenes epitope but show dramatically different primary and secondary responses to infection. Because TCRs have very low affinity for MHC we would like to create a high affinity T cell. We reasoned that the single chain LLO118 TCR (Vβ2-linker-Vα2) could be subjected to directed evolution to generate mutants that are more stable and then used as a template for engineering high affinity T cell receptors. Single chain LLO118 was fused to the yeast surface protein Aga-2 and error prone PCR was used to generate mutagenic libraries. The first generation stabilized LLO118 single chain TCR (scTCR) was selected using biotinylated Vβ2 and Vα2 antibodies and anti-biotin beads and it expressed LLO118 at higher levels than wild type by flow cytometry. To produce mutants with additional stability, a second mutagenic library using the first generation mutants as templates has been produced and the most stable clones will be selected after temperature denaturation, permitting isolation of clones with increased stability for generating high affinity pathogen specific scTCRs. After engineering a high affinity T cell our research will further understanding on TCRs and the MHC and could also serve as a resource for creating a therapeutic drug.

Macroinvertebrate Assemblage as an Indicator of Urban Stream Health

January 01, 2014 12:00 AM
Mena Davidson, Westminster College Life Sciences Urban stream syndrome is the phenomenon of stream degradation as streams run from their sources through urban areas, which is exhibited by nutrient loading, decreased dissolved oxygen, changes in channel structure, and increased turbidity and rapid flow events. This can have a direct negative effect on our recreation, drinking water, and the ecosystems surrounding the streams. To discover if urban stream syndrome occurs in the Salt Lake Valley, we monitored pH, turbidity, dissolved oxygen, dissolved nitrates, and collected macroinvertebrates in three streams monthly. We analyzed total abundance, species diversity, and percent pollution sensitive species to assess the macroinvertebrate communities, as known indicators of water quality. Preliminary data shows a significant decrease in percent sensitive species in the urban areas as compared to the nonurban areas over 10 sampling periods. We found decreased biodiversity and fewer sensitive species in urban areas, although we found no difference in total abundance. These findings indicate that urbanization in the Salt Lake Valley leads to degradation in riparian ecosystems and suggest that further investigation is needed to identify the mechanisms leading to this degradation.

Exercise Reverses Stress-induced LTP Reduction in the Hippocampus

January 01, 2014 12:00 AM
Teresa St. Pierre Nufer, Brigham Young University Life Sciences Acute stress has been shown to decrease Long-Term Potentiation (LTP) in the CA1 region of the mouse hippocampus. Stressed animals also show signs of anxiety and suffer decreases in spatial memory tasks such as object recognition and maze navigation. Conversely, exercise has been shown to increase spatial memory task performance in mice, attenuate anxiety-like behaviors and enhance neurogenesis and LTP in the dentate-gyrus. While the effects of stress and exercise have been examined independently, there is currently a lack of experimental evidence that connects how stress and exercise, when experienced by the same animal, might modulate LTP in the CA1 region of the hippocampus. In our ongoing study, mice have been separated into a control group, a stress group (restraint and tail-shock), and an exercise with stress group where mice have voluntary access to a running wheel (for 30 days) before undergoing the stress protocol.

The effect of UV radiation on lichen metabolism

January 01, 2014 12:00 AM
Colby Pearson, Utah Valley University Life Sciences Many lichens synthesize unique secondary metabolites, such as atranorin (AT), which may serve as photo-protection against harmful UV radiation. Our study investigates changes in metabolism and internal levels of atranorin in lichens under various light conditions and atranorin supplementation. We will expose 60 Physcia adscendens (Fr.) H. Olivier lichen thalli to one of three different light levels (UV +PAR; PAR only; and neither UV nor PAR). Half of our experimental thalli will be supplemented with AT. Lichen biomass, AT concentration via HPLC, and photosynthetic and respiration rates will be measured before and after the experiment to measure metabolic responses of both supplemented and non-AT-supplemented thalli under each light level.

Pamphlet and Survey of Common Insects of Capitol Reef National Park

January 01, 2014 12:00 AM
Robert Erickson, Utah Valley University Life Sciences Although the insect fauna of the Colorado Plateau region are somewhat well known, our specific understanding of the arthropod biodiversity in Capitol Reef National Park is sparse.

Cooking Anatomy Academy: Healthy Cooking Intervention to Raise Obesity Awareness in the Polynesian Community

January 01, 2014 12:00 AM
David Vogelsang, Brigham Young University Life Sciences More than one-third of U.S. adults (35.7%) are obese (CDC, 2013a), and since 1980, obesity among adolescents has risen from 5% to 18% (CDC, 2013b). Unless we do something to combat the growing obesity epidemic, we are consigning ourselves and future generations to a lifetime of heart disease, diabetes, cancer, and psychological distress (CDC, 2013a). Cooking Anatomy Academy (CAA) promotes healthy eating and cooking among parents and students in the Polynesian community to raise awareness about the growing obesity epidemic. Our primary focus is introducing parents and students to healthy, great tasting foods and easy to prepare meals (Brown, 2011). Our secondary focus is to teach the simple anatomy and physiology important to understanding healthy nutrition. CAA is composed of seven, one hour lessons that are being offered as an afterschool program at Mana Academy Charter School. We’ve developed the CAA curriculum to incorporate many of the nutrition guidelines on MyPlate.gov, and focus on moderation, variety and raw/unrefined foods. To study the impact of Cooking Anatomy Academy, we will take a qualitative approach and use journal entries to collect data. Participant journal entries will answer prompts like, “based on what you learned today, what will you have for a snack tomorrow,” or, “how many fruit servings should you have each day?” CAA mentors will record any positive or negative feedback they receive during each lesson. From the data we collect, we hope to see that CAA is helping participants make healthy food choices and increasing their obesity awareness.

Differentiating Molecular Subtypes of Breast Cancer Using High-Frequency Ultrasound

January 01, 2014 12:00 AM
Caitlin Carter, Utah Valley University Life Sciences High-frequency (HF) ultrasound (20-80 MHz) has been previously used to detect differences in microstructures and cell materials of different breast tissues types. These differences were used to distinguish between benign and malignant pathologies in different breast tissues. This same technology is predicted to be able to improve methods of detecting changes in cellular activity before changes in pathology take place. The purpose of this study was to use HF ultrasound to detect changes in the actin cytoskeleton, extracellular matrix (ECM), and integrin signaling, therefore differentiating the molecular subtypes associated with these changes in cell biomechanical properties. It is predicted that these cellular changes will also be associated with changes in the ultrasonic properties of breast cancer cells. The ability to rapidly and inexpensively detect the genetic changes or molecular subtypes of breast cancer would greatly impact and personalize patient treatment as well as provide more precise surgical removal of malignant and premalignant tissue. In order to test this hypothesis, four different breast cancer molecular subtypes including luminal A, luminal B, Her2+, and basal (triple negative) were grown as monolayer cell cultures. These subtypes were chosen because of their range of aggressiveness (luminal A as least aggressive and basal as most). After growth at different seeding levels, cell cultures were tested with a HF ultrasound system using a 50 MHz, 6.35-mm diameter immersion transducer and pulse-echo transmission. The data was compared to simulations using multipole expansions which predicted ultrasonic scattering based on possible variations in the biomechanical properties of malignant cells. The analyzed data showed differences in the spectra of waveform signals between each tested breast cancer molecular subtype. It is anticipated that this technique would provide an efficient and cost-effective method for differentiating between different molecular subtypes of breast cancer.

Macrophage polarization by necrotic and apoptotic cancer cells

January 01, 2014 12:00 AM
Kurt Williams, Brigham Young University Life Sciences Macrophages play an important role in innate and adaptive immune responses, inflammation, and tissue repair and are characterized by two distinct phenotypes: classically-activated (M1) and alternatively-activated (M2) macrophages. M1 macrophages are characterized by a pro-inflammatory phenotype and are involved in production of pro-inflammatory cytokines and aggressive engulfment, whereas M2 macrophages are characterized by an anti-inflammatory phenotype and are involved in production of anti-inflammatory cytokines (e.g. IL-10) and tissue repair. Macrophage engulfment of apoptotic cells leads to polarization toward the M2 phenotype and is thus “immunologically silent”. Additionally, there is evidence that tumor-associated macrophages (TAMs) tend toward an M2 phenotype and as a result offer protection from an immune response in the tumor microenvironment. To further investigate the role of necrotic and apoptotic cells in regulating macrophage polarization, we cultured human macrophages with necrotic, apoptotic, or standard viable Raji cells and fluorescent beads and performed an engulfment assay. In a preliminary study we found that macrophages cultured with apoptotic cells showed a decrease in engulfment levels compared to macrophages cultured with necrotic cells. Macrophages cultured with standard viable Raji cells had the lowest levels of engulfment compared to macrophages cultured with apoptotic cells or necrotic cells. Thus, in our initial experiments macrophages cultured with necrotic cells appear to have a more “M1” phenotype, whereas macrophages cultured with apoptotic cells appear to have a more “M2” phenotype. Further experiments are necessary to validate this preliminary data and further characterize the capabilities of necrotic and apoptotic cells to differentially polarize macrophages. If these observations are replicated, it has potential applications in cancer biology and therapeutics, atherosclerosis, diabetes, autoimmunity, and other diseases with an inflammatory component.

Design and Synthesis of (E)-2, 4-bis(p-hydroxyphenyl)-2-butenal analogues as IKKb Inhibitors

January 01, 2014 12:00 AM
Benjamin Gann, Utah Valley University Life Sciences (E)-2,4-bis(p-hydroxyphenyl)-2-butenal (2-Butenal) was shown to inhibit various inflammatory responses by inhibiting NF-kB pathway. A pull-down assay proved 2-butenal to bind to IKKb and was proposed as an active site kinase inhibitor through molecular docking experiment. However, 2-butanal has a highly conjugated aldehyde group that makes it very unstable. Therefore, we have designed more stable 2-butenal analogues and prepared them using Heck reaction. Molecular docking experiment shows that many of them have a greater affinity to IKKb.

Periphyton as an Indicator of Urban Stream Health

January 01, 2014 12:00 AM
Clair Bidez, Westminster College Life Sciences Changes to stream ecosystems due to urbanization are known to degrade riparian ecosystems through multiple stressors including increased erosion and sedimentation, expansion of impervious surface leading to altered flow regimes, degradation of riparian vegetation and habitat, and nutrient contamination. Ultimately, such degradation can inhibit ecosystem services such as contaminant filtration and nutrient cycling. This study examined the effects of urbanization on the function of riparian communities in three streams in the Salt Lake Valley watershed. We attempted to characterize these changes through monthly monitoring in urban and non-urban reaches of the same streams. Specifically, we measured periphyton biomass (as measured by chlorophyll-a) as a known indicator of nutrient pollution and a proxy of riparian health. In addition, we monitored water quality parameters including temperature, dissolved oxygen, and dissolved nitrate concentration. The urban reaches of the streams contained 3.6 to 9.3 times the dissolved nitrate concentration as their non-urban counterparts. Mean stream periphyton biomass was positively correlated with mean stream nitrate concentration for each reach. These findings point to urbanization as a potential source of ecosystem degradation in the Salt Lake Valley. They suggest that long-term monitoring is warranted, along with an in-depth investigation into the ultimate mechanisms responsible for the degradation.

Comparing the homing ability of siblings in the species Columba livia

January 01, 2014 12:00 AM
Eric Middleton, University of Utah Life Sciences One of the most impressive examples of homing among birds is demonstrated by Columba livia, or the rock pigeon. In racing or carrier breeds, birds can routinely travel over 100 miles and reliably find their way back to their home loft (Pratt, 1954). Bred from feral rock pigeons, these racers and carriers have been selected for their increased ability to home. While much research has been conducted on the mechanisms of homing, the heritability of homing is not very well understood. Furthermore, it is unclear if homing is predominantly learned or innate (Melhorn, Haastert, Rehkamper, 2010). The existence of homing breeds demonstrates that homing is heritable, but the degree to which this is the case or what traits in particular are improved with selective breeding are more uncertain. To attempt to better understand the heritability of homing, we will compare the homing ability of pigeons who are siblings to each other, and to unrelated pigeons. We first captured 90 wild pigeons from areas around Salt Lake City and allowed them to breed freely. We tracked the ancestry of all of the pigeons born from the feral birds and banded each of the birds in order to reliably distinguish which birds were related. We are now in the process of teaching the captive bred birds to home. Once this is completed, we will release the birds at varying distances from the loft. To quantify homing ability, we will measure angle of displacement from the loft when the birds first orient themselves and being homing, the time it takes to home, and which birds successfully make it home to the loft. This data will then be used to compare the homing ability of siblings to unrelated pigeons.

Genomic analysis of six Paenibacillus larvae bacteriophages

January 01, 2014 12:00 AM
Bryan D Merrill, Brigham Young University Life Sciences The spore-forming bacteria Paenibacillus larvae causes American Foulbrood (AFB), a highly contagious disease that is lethal in honey bee larvae. P. larvae is the most serious pathogen affecting honey bees. Its increasing antibiotic resistance has led to more research in characterizing bacteriophages which infect and destroy P. larvae. Of the 13 P. larvae phages that have been described in publications, six have been fully sequenced and are currently available for genomic analysis. To understand how P. larvae phages are related to each other and to other phages, the computer program Phamerator was used to analyze more than 100 phage genomes and group phage genes into “phams” based on similarity. Through analysis of grouped phage genes (structural proteins, terminases, recombinases, etc.) we can better understand in vivo replication strategies and evolutionary history of these P. larvae phages.

Ethanol inhibits gaba neurons in the ventral tegmental area and dopamine release in the nucleus accumbens via presynaptic alpha-6 nicotinic receptors on gaba terminals

January 01, 2014 12:00 AM
Taylor Woodward, Brigham Young University Life Sciences The prevailing view is that enhancement of dopamine (DA) transmission in the mesocorticolimbic system, consisting of DA neurons in the ventral tegmental area (VTA) that innervate the nucleus accumbens (NAc), underlies the rewarding properties of alcohol and nicotine (NIC). Dopamine neurotransmission is regulated by inhibitory VTA GABA neurons. We have shown previously that VTA GABA neurons are excited by low-dose ethanol, but inhibited by moderate to high-dose ethanol. The aim of this study was to evaluate the role of []6 nicotinic cholinergic receptors (nAChRs) in ethanol effects on VTA GABA neurons as well as DA release in the NAc. In electrophysiology studies, superfusion of ethanol enhanced the frequency, but not amplitude, of mIPSCs recorded in acutely dissociated VTA GABA neurons from GAD GFP mice. The []6 nAChR antagonist []-conotoxin P1A did not affect mIPSCs, but prevented the ethanol (30 mM)-induced increase in mIPSC frequency. While microdialysis studies show that ethanol enhances DA release in the NAc, we and others have found that ethanol decreases DA release at terminals using fast scan cyclic voltammetry (FSCV). We have reported that ethanol inhibition of DA release at terminals in the NAc of ethanol-naïve animals is mediated by GABA. Using FSCV in the slice preparation, ethanol inhibited DA release in the NAc. Superfusion of the []6 nAChR antagonist []-conotoxin MII did not affect DA release, but prevented ethanol inhibition of DA release. Taken together, these findings suggest that ethanol enhancement of GABA inhibition of VTA GABA neurons is mediated by []6 nAChRs located on GABA terminals to other VTA neurons, affecting DA release in the NAc. Results from this study could provide a pharmacologic rationale for considering drugs that act selectively on nAChRs as therapeutic agents for the treatment of alcohol dependence and alcohol and NIC co-dependence.

Metabolic Inhibition in Saccharomyces Cerevisiae

January 01, 2014 12:00 AM
Corey Wolf, Westminster College Life Sciences The yeast species Saccharomyces cerevisiae is used in numerous industries including brewing, baking, and winemaking. In recent years an increased demand for low ethanol beers has pushed breweries to develop a beer that is both rich in flavor and low in alcohol content. The current strategies employed to decrease the ethanol concentration in beer are costly, time intensive, and result in less flavorful beers. In this study, a method for decreasing alcohol content in the brewing process through the use of metabolic inhibitors of Alcohol Dehydrogenase is tested. Alcohol Dehydrogenase is the enzyme responsible for the conversion of acetaldehyde, an intermediate in the metabolic pathway of yeast, into ethanol. Two competitive inhibitors of Alcohol Dehydrogenase, Pyrazole and Fomepizole, were applied to small scale fermentations in varying concentrations in an attempt to decrease the overall ethanol yield of the beer. The application of either inhibitor resulted in an initial decreased rate of fermentation overall, measured as a change of sugar and ethanol concentration. In the later stages of fermentation, the rate of ethanol production returned to normal, suggesting the inhibitors were either catalyzed or removed by the cell. While this method for manipulating the products of fermentation did not yield the desired effects, this study did highlight the importance of the fermentation pathway for maintaing healthy Saccharomyces cerevisiae cultures. This research may be helpful in understanding the complete metabolic pathway of brewer’s yeast, with further application to organisms with conserved pathways.

Biodegradation of Hydrocarbons by Great Salt Lake Microorganisms

January 01, 2014 12:00 AM
Camrin Rivera, Westminster College Life Sciences The Great Salt Lake (GSL) of Utah is home to organisms that are able to survive and reproduce in waters that can have a salt concentration of over 30%. Oil Jetty is located on the saltier north arm of the GSL and is the location of a natural hydrocarbon seep that flows into the lake. Previous work showed that organisms capable of degrading hydrocarbons can be cultured from this area (Ward & Brcok, 1978). It has also been shown that the salt concentration has an inverse relationship with these organisms’ ability to degrade hydrocarbons (Ward & Brock, 1978). This previous study gives insight of the hydrocarbon degrading capabilities of microorganisms in the GSL; however, the identification and characterization of individual hydrocarbon-degrading microorganisms has yet to be completed. The purpose of this study is to identify GSL microorganisms capable of degrading hydrocarbons under high salinities by sequencing of the 16s rRNA gene. Future studies will include the characterization of these microorganisms in order to find isolates whose hydrocarbon degrading abilities could be utilized for bioremediation and biotechnologies.

Frog Behavior May Protect Against Potentially Lethal Chytriodiomycosis

January 01, 2014 12:00 AM
Hailey Shepherd, Dixie State University Life Sciences Previous studies of canyon tree frogs (Hyla arenicolor) in Zion National Park have shown that some populations test positive for a dangerous fungus in the Chytridiomycosis family. This fungus has been linked to large population losses worldwide in many keystone amphibian species, but appears to have no effect on populations of H. arenicolor. Since Chytrid fungal growth is inhibited at high temperatures, we hypothesized the frogs are able to rid themselves of the fungus because they bask in the sun. During the summer of 2013 we swabbed frogs in multiple slot canyons to test for the presence of the fungus. We also recorded skin temperatures of the frogs we swabbed. Skin temperatures were as high as 38 C°, which is above the previously established lethal threshold of 28 C° for Chytridiomycosis. Our data support the idea that these frogs may be able to rid themselves of infection by allowing skin temperatures to raise enough to become intolerable for this fungus. This is the first known evidence of wild amphibian populations showing a behavior that may clear the infection. If further research supports these findings, it could lead to more effective allocation of limited conservation resources.

Multimechanistic combination enhances selenium’s antiproliferative effect in prostate cancer cells

January 01, 2014 12:00 AM
Merrill Christensen, Brigham Young University Life Sciences Selenium (Se) has established chemopreventive efficacy against prostate cancer, the second leading cause of cancer death among men in the US. Currently, most studies only employ one single chemical form of Se, even though different forms of Se act through varied mechanisms to achieve their anticancer effects. In this study, we propose that systematically combining multiple forms of Se will produce an optimal combination of Se compounds to inhibit in vitro prostate cancer cell growth. As proof of principle, we (1) synthesized Se nanoparticles (nano Se), (2) determined the IC50s of methylseleninic acid (MSA), sodium selenite, and nano Se in PC-3 cells, (3) utilized mixture designs and response surface methodology to direct our combination experiments with these three compounds, (4) tested the fifteen combinations determined in the previous step, and (5) constructed a polynomial model to derive the optimum combination of MSA, sodium selenite, and nano Se to inhibit PC-3 cell growth. Our results showed that combining different forms of Se compounds enhanced its chemopreventive effect. Future studies will expand the use of three Se-containing compounds to four and demonstrate similar effects in xenograft mice.

Do Canyon Tree Frogs in Zion National Park Possess a Mechanism to Defend Against Chytrid?

January 01, 2014 12:00 AM
Chelsea Moody, Dixie State University Life Sciences A relatively new pathogen, chytrid fungus, has been a major cause of decline in amphibians worldwide. This pathogen has been found on Canyon Tree Frogs in Zion National Park. Earlier data suggested that chytrid did not affect populations of Canyon Tree Frogs in Zion National Park. We predicted that since the populations weren’t impacted by the presence of the fungus, there must exist a mechanism by which the frogs rid themselves of the infective agent. To test this prediction, we captured and swabbed ten frogs in each of nine canyons in Zion National Park during the summer of 2013. Swabs were sent to the San Diego Zoo to be analyzed for the presence of chytrid DNA. Chytrid infection rates and population sizes were compared with data from previous years. As expected, the data showed that two of the three infected canyons experienced declines in the percentage of frogs testing positive for the fungus. Thus, these frogs must possess a mechanism to survive this pathogen, whereas most amphibians do not. Our results may prove helpful to other biologists seeking to understand how amphibians can survive this pathogen.

Attachment reduction of invasive species with submersible substrates

January 01, 2014 12:00 AM
Eric Swenson, Dixie State University Life Sciences Underwater invasive species such as mussels and algae attach to submersible substrates that are advantageous for growth, and often include recreational boats that are frequently moved from one waterway to another. This can lead to rapid and uncontrolled spread of the invasive species. Through the use of newly developed ionic surfactants, growth and attachment of species on submersible surfaces can be inhibited. New surfactants have been incorporated into the final coating of typical product sealants to prevent the attachment of various marine organisms. By integrating the surfactant into the coating, an increase in the usefulness and longevity of effective inhibition is expected, as compared to commercially available alkali anti-fowling agents that are applied after the sealing process. It is hypothesized that the adherence properties possessed by marine organisms will be compromised by the introduction of ionic surfactants through changes in the chemical makeup of the exposed surfaces. The ultimate goal is to develop a substrate surface in which there is no affinity for attachment and/or causes fatality to the organism. If the desired outcome is reached, the potential benefits that ensue could create drastic improvements in areas of invasive species prevention and management in the desert southwest fresh-water lakes. Additionally, extension of the surfactant application to metal surfaces could have significant impacts on efficiency in water treatment systems, as well as cargo shipping in saltwater environments.

Waterfowl Population Trends, Pariette Wetlands, Utah 1980-2010

January 01, 2014 12:00 AM
David Baird, Utah Sate University Life Sciences We obtained from the Bureau of Land Management (BLM) 30 years of monthly waterfowl population surveys completed at Pariette Wetlands in the Uintah Basin, Utah between 1980 and 2010. The Pariette Wetlands are the largest wetlands managed by the BLM within the lower-48 states and are comprised of 4,033 acres of land. Pariette Wetlands is surrounded by about 6,000 square miles of land where oil and gas production is the major activity. This waterfowl refuge is a significant location for migrating waterfowl species within the Pacific Flyway and provides important summer habitat for resident waterfowl. Our objectives were to determine what the trends were for waterfowl population abundance, occupancy, and species richness.

Standing on the shoulders of Woodrats: Adaptive Evolution in Desert Iguanas

January 01, 2014 12:00 AM
Albert Pope, Utah Valley University Life Sciences Few animals are capable of using the creosote plant, Larrea tridentate, as food because of a high level of toxic secondary compounds. Some exceptions to this rule are Neotoma lepida and Dipsosaurus dorsalis which are both capable of sustaining themselves on this desert bush. In 2013, Magnanou et al helped identify heightened transcription of genes correlated with digestion of creosote in N. lepida. Building upon their findings, we explore whether the genes for digesting creosote are under an elevated evolutionary rate for D. dorsalis. We have obtained transcriptomes from whole blood of four Iguaninae species: Ctenosaura pectinata, D. dorsalis, Sauromalus ater, Cyclura lewisi yielding an average of 4 GB of DNA sequence data (~51,000,000 fragments) each. Using Velvet in Sequencher we assembled these data, recovering greater than 6000 unique RNA transcripts per transcriptome. We search through the contigs to identify genes in Iguaninae transcriptomes that are homologous to those showing differential expression in Lepida. Using BLAST, we retrieve homologous genes from the public NCBI database of Anolis carolinensis and other reptiles. Lastly we construct phylogenetic trees of each gene and investigate the rate of change along each reptile lineage.

The effect of residue 21 on drug resistance of the A/M2 proton channel of the influenza virus

January 01, 2014 12:00 AM
Cameron Haas, Brigham Young University Life Sciences The influenza A virus contains a proton-selective ion channel, A/M2, through which acidification of the cell is induced. A/M2 is a homotetramer (consists of four identical helices) consisting of 97 residues and activated by low pH levels. Mutations in the amino acid sequences may induce resistance to channel inhibiting drugs. It is believed that residues 26, 27, 30, 31, and 34 are the major contributors of drug resistance, but other nearby residues may prove important as well. The A/California/04/2009 version of the influenza virus is sensitive to the drug AK-11, while its M2 channel is not. The A/Udorn/307/1972 with the S31N mutation M2 channel has been shown to have reduced sensitivity to amantadine compared to its wild type. While both contain a D (aspartic acid) at residue 21, A/Puerto Rico/8/1934 has a mutation from D to G (glycine). The A/Puerto Rico/8/1934 virus A/M2 contains mutations S31N and V27T and has shown sensitivity to the AK-11 drug, but the mechanism of inhibition of the A/M2 channel has not been verified. In these experiments we will be identifying sensitivity to AK11 of A/Udorn/307/1972 with the S31N mutation as well as inducing double mutations with S31N at residues 27 and 21 in the A/M2 from the virus and measure sensitivity by electrophysiological recordings in oocytes of Xenopus laevis. By doing so we may identify the role of these residues in drug resistance and the effects of these amino acid mutations, while verifying the A/M2 channel as the mechanism of acidification inhibition and drug sensitivity. We hypothesize that either D21G, V27T or both mutations causes drug sensitivity in M2 S31N, explaining the sensitivity of A/Puerto Rico/8/1934 to AK-11.

Physiologically Relevant Oxy-Radical Formation of Neuromelanin by Photostimulation: Effects of Iron and Calcium

January 01, 2014 12:00 AM
Whitney Badal, Brigham Young University Life Sciences Light therapy has been utilized to treat alcoholism and opiate-dependent rats as well as ameliorating symptoms of Parkinson’s disease. As both addiction and Parkinson’s Disease (PD) are often associated with decreased dopamine transmission in the striatum, it is likely that light therapy is able to increase dopamine release. A similar technique called near-infrared light treatment has also been shown to be effective in mice in restoring the function of dopamine cells in the substantia nigra pars compacta (an area associated with PD). A possible explanation for this is that light catalyzes the formation of neuromelanin. It is likely that neuromelanin is a neuroprotective cellular agent that is able to reduce damage caused by reactive oxygen species. Using UV-IR spectrophotometry, we show that in the presence of photostimulation, dopamine (0.3-30 uM) oxidizes and polymerizes into neuromelanin. Since hydrogen peroxide catalyzes this formation of neuromelanin, it is likely that this is a radical-polymerization reaction, suggesting that neuromelanin may be a radical scavenger. Additionally, the presence of the selective iron chelator desferrioxamine, the calcium chelator EGTA, or lack of calcium in the artificial cerebral spinal fluid markedly reduces the formation of neuromelanin. Using fast scan cyclic voltammetry in mouse horizontal and/or coronal brain slices, dopamine release in the nucleus accumbens core was enhanced by light exposure, in particular UV and short-wavelength visible light. These findings indicate that both iron and calcium are necessary for melanization in neural tissues and that light-induced melanization enhances dopamine release, suggesting a physiological role for melanization in synaptic transmission.

Insights into the evolution of wings in Insects: Molecular Phylogenetics of Baetidae (Ephemeroptera)

January 01, 2014 12:00 AM
Chase Barker, Utah Valley University Life Sciences Central Research Question: Phylogenetic relationships of mayflies are still not very well known, however molecular and morphological data have begun to shed light on the relationships of these insects (Ogden et al. 2009). Our central question is to elucidate the phylogenetic relationships within the mayfly family Baetidae.

Intrauterine Growth Restriction Alters Estrogen Serum Levels and Signaling in Rat Adipose Tissue in a Sex Dependent Manner

January 01, 2014 12:00 AM
Danielle Holliday, University of Utah Life Sciences Intrauterine growth restriction (IUGR) induces visceral obesity in adulthood, specifically among males. In male rat offspring, IUGR increases visceral adipose tissue (VAT) over subcutaneous adipose tissue (SAT). VAT and SAT functions are regulated by estrogen signaling, and suppressed estrogen signaling contributes to obesity development. Estrogen signaling is composed of estradiol and estrogen receptor alpha (ERα) and beta (ERβ). Estrogen receptors regulate the expression of several obesity related genes, such as lipoprotein lipase (LPL). However, the effects of IUGR on estrogen serum levels and signaling in the adipose tissue are unknown.

Using breast cancer subtypes as a model for detecting cytoskeletal dysfunction in Alzheimer’s disease

January 01, 2014 12:00 AM
Ashley Calder, Utah Valley University Life Sciences An estimated 50-80% of dementia patients suffer from Alzheimer’s disease (AD). Currently there is no test to diagnose AD except post mortem. Recent papers indicate that AD affects the cytoskeleton and cellular structure through mutations that alter structural proteins, and that dysfunction of the cytoskeleton may play a pivotal role in AD and other neurodegenerative diseases. In particular, specific genetic components of AD affect microtubule and actin filaments that control endocytosis, exocytosis, the shape and size of the neuron, vesicular transport along neurites (dendrites and axons), and fibril formation. The goal of our research is to determine if breast cancer molecular subtypes can be used as a model for AD. Breast cancer is comprised of five molecular subtypes that contain different molecular structures depending on mutations specific to each subtype and the proteins being synthesized. These mutations and their expressed proteins change the characteristics of the cytoskeleton and resulting properties of the cell such as size, shape and stiffness. Both computer simulation and experiment have demonstrated that high-frequency ultrasound in the 10-100 MHz range is sensitive to these properties. For this study, ultrasonic tests were conducted on monolayer cell cultures of breast cancer cell lines of different subtypes. Ultrasonic waveforms were analyzed by transforming them into their corresponding spectra. The positions, widths, and shapes of the spectral peaks were compared and correlated to model results using a pattern recognition algorithm. Preliminary results indicate that cell stiffness and size can be determined from the measurements. Further analyses of these and additional data will determine if ultrasound is sufficiently sensitive to differentiate between the molecular subtypes of breast cancer. Results from these analyses, future studies with neuron cell cultures, and application of the results to the development of a minimally invasive, in vivo method for accurately diagnosing AD will be discussed.

3D printing from MRI data of stroke and Alzheimer’s disease subjects: An educational model of neurologic disease

January 01, 2014 12:00 AM
Brett Gardiner, Brigham Young University Life Sciences Normal human anatomy used in the classroom is not reflective of variations confronted in pathology subjects. Current commercialized models are not products of real data, rather representations of it. While learning complicated medical anatomy, students take an enormous stride from the anatomy lab to situational surgical settings. 3D models can bridge this gap in medical education without patient risk, particularly for the brain where surface regions have strong associations to specific physiological activity. Subject specific models are especially advantageous for comprehending real surface morphology of neurologic diseases. Using rapid prototype technology, we have developed an accessible process to produce physical 3D models from specific MRI data of stroke and Alzheimer’s subjects. The neuroanatomical abnormalities modeled from real data by our 3D printouts will educate students on the anatomical variations encountered in an authentic clinical scenario of neuropathology. Our project consists of three phases: (1) image acquisition, (2) post-processing imaging data with segmentation, and (3) 3D printing. By delineating cortical regions we are providing a unique multidimensional facet of clinically accurate data not before available to the classroom. This powerful and versatile technique can allow students and professionals to visualize the inherently complicated structures as seen in clinical neuropathology. From students in the classroom, lawyers in the courtroom or preoperative surgical explanations, these customizable models will resemble real anatomical information. Through rapid prototyping of specific subject data, unique variations in pathology can be reviewed outside of the clinical setting. Beyond its potential use by teachers, lawyers and doctors can benefit from a 3D production to enhance their explanations of anatomical variations from specific pathological subject data.

Life at the Extremes: Finding Earthly analogs for potential life on Mars

January 01, 2014 12:00 AM
Alysa Fratto, Westminster College Life Sciences Although the idea of life on other planets is mused over by many, the scientific study of the potential for extraterrestrial life did not begin until the mid-1950s (SETI, 2013). Since then, many technological advancements have been made that make the study of life on other planets simpler, however it is inherently difficult to study the potential for life in an environment that one cannot access. To address this issue, scientists look on Earth for extreme environments that mimic those found elsewhere in the universe.

Variance of toxin producing clostridium botulinum in utah honey

January 01, 2014 12:00 AM
Tamara Fox, Weber State University Life Sciences Clostridium botulinum has been implicated in cases of infant botulism across the United States. It is recommended that infants under the age of one year not be fed honey because of the presence of C.botulinum spores. The goal of this project is to determine whether honey produced in small and large apiaries in Utah contain varying amounts of toxin producing C. botulinum. Honey samples will be collected from hives maintained in Utah and tested for the presence of toxin producing strains of C. botulinum. Samples will be dissolved and centrifuged to isolate the spores and then superheated to release the DNA. Testing will then be done through a multiplex polymerase chain reactions (PCR) using primers specific for 16s rRNA, Clostridia species, and toxins A, B, E, and F. The presence and type of toxin producing Clostridia species will be compared with a Chi-Squared Test of Independence. Research will be completed by February of 2014 and we expect small apiaries will have a lower frequency of toxin producing C. botulinum strains than large apiaries and that toxin phenotype will vary between the two groups. The results will increase understanding on the variance of C. botulinum in Utah honey and will contribute to further research on this topic.

Functional Switch in GABA(A) Receptors on VTA GABA Neurons by Chronic Ethanol

January 01, 2014 12:00 AM
Ashley Nelson, Brigham Young University Life Sciences The motivational effects of opiates and ethanol switch from a dopamine (DA)-independent to a DA-dependent pathway when the animal is in a drug-dependent state. A corresponding change occurs in ventral tegmental area (VTA) GABA(A) receptors in opiate-dependent animals, which switch from a GABA-induced hyperpolarization of VTA GABA neurons to a GABA-induced depolarization. The aim of this study was to evaluate VTA GABA neuron excitability, GABA synaptic transmission to VTA GABA neurons and GABA-mediated DA release in the nucleus accumbens (NAc) under ethanol-naïve and dependent conditions. To accomplish these studies, we used standard whole-cell and attached-cell mode electrophysiological techniques to evaluate acute and chronic ethanol effects on VTA GABA neurons in GAD GFP mice, which enabled the visual identification of GABA neurons in slice preparation. In naïve animals, superfusion of ethanol (IC50 = 30 mM) and GABA(A) receptor agonist muscimol (IC50 = 100 nM) decreased VTA GABA neuron firing rate in a dose-dependent manner. Compared to saline-injected controls, in animals made dependent on ethanol by twice daily injections of 2.0 g/kg ethanol, neither ethanol nor muscimol significantly affected VTA GABA neuron firing rate on average. We and others have found that ethanol decreases DA release at terminals, as measured by fast scan cyclic voltammetry. We have recently reported that ethanol inhibition of DA release at terminals in the NAc of ethanol-naïve animals is mediated by GABA, possibly from VTA GABA neurons that project to the NAc. We evaluated the effects of ethanol on DA release in the same ethanol-dependent animals. Compared to controls, superfusion of ethanol did not significantly affect DA release. Together, these findings suggest that VTA GABA neurons undergo a switch in GABA(A) receptor function with chronic ethanol, which results in a corresponding switch in DA release, perhaps resulting from adaptations in VTA GABA neuron input to the NAc.

Correlation between phantom thickness and peak density in high-frequency ultrasonic spectra

January 01, 2014 12:00 AM
Robyn Kira Omer, Utah Valley University Life Sciences Peak density, which is the number of peaks and valleys in a specified spectral range of high-frequency (HF) ultrasound, correlates to breast pathology in lumpectomy specimens. It has been a question in both previous and current studies, however, whether the thickness of a sample has an independent effect on the peak density. The objective of this study was to discover any correlation, if any, between specimen thickness and peak density in HF ultrasound measurements (10-100 MHz). Phantoms were fabricated from a mixture of water, gelatin, and soluble fiber. Polyethylene microspheres (180-212 micrometer diameter) were embedded into half of the phantom specimens at 0.0003% concentration to simulate tissue heterogeneity. The other phantoms were devoid of microspheres to provide control measurements. Seventy two pitch-catch measurements were acquired in triplicate using 50-MHz transducers, a HF pulser-receiver, and a 1-GHz digital oscilloscope. The waveforms were analyzed to provide spectra and the resulting peak densities were determined. The results indicate that no significant correlation exists between specimen thickness and peak density. The coefficients of correlation for the microsphere and control specimens were 0.366 and 0.652, respectively. The peak density values were most consistent within the control specimens, ranging from 1 to 4. The peak densities for the microsphere phantoms had a greater range of values, varying from 1 to 8. It is believed that the wide variation in peak density for the microsphere phantoms was due to clustering of the microspheres. Future studies will include looking at previous phantom and tissue studies to further investigate the apparent lack of thickness-peak density correlation.