Skip to main content
Utah's Foremost Platform for Undergraduate Research Presentation
2014 Abstracts

Differentiating Molecular Subtypes of Breast Cancer Using High-Frequency Ultrasound

Caitlin Carter, Utah Valley University

Life Sciences

High-frequency (HF) ultrasound (20-80 MHz) has been previously used to detect differences in microstructures and cell materials of different breast tissues types. These differences were used to distinguish between benign and malignant pathologies in different breast tissues. This same technology is predicted to be able to improve methods of detecting changes in cellular activity before changes in pathology take place. The purpose of this study was to use HF ultrasound to detect changes in the actin cytoskeleton, extracellular matrix (ECM), and integrin signaling, therefore differentiating the molecular subtypes associated with these changes in cell biomechanical properties. It is predicted that these cellular changes will also be associated with changes in the ultrasonic properties of breast cancer cells. The ability to rapidly and inexpensively detect the genetic changes or molecular subtypes of breast cancer would greatly impact and personalize patient treatment as well as provide more precise surgical removal of malignant and premalignant tissue. In order to test this hypothesis, four different breast cancer molecular subtypes including luminal A, luminal B, Her2+, and basal (triple negative) were grown as monolayer cell cultures. These subtypes were chosen because of their range of aggressiveness (luminal A as least aggressive and basal as most). After growth at different seeding levels, cell cultures were tested with a HF ultrasound system using a 50 MHz, 6.35-mm diameter immersion transducer and pulse-echo transmission. The data was compared to simulations using multipole expansions which predicted ultrasonic scattering based on possible variations in the biomechanical properties of malignant cells. The analyzed data showed differences in the spectra of waveform signals between each tested breast cancer molecular subtype. It is anticipated that this technique would provide an efficient and cost-effective method for differentiating between different molecular subtypes of breast cancer.