Skip to main content
Utah's Foremost Platform for Undergraduate Research Presentation

Life Sciences

c-Fos and β-cell Proliferation

January 01, 2015 12:00 AM
Jason Ray, Benjamin Bitner, Kyle Kener, and Brent Jackson, Brigham Young University Life Sciences Type 1 and Type 2 diabetes are increasing at an alarming rate. Both types of diabetes result in decreased functional β-cell mass, which is defined as the number of β-cells multiplied by their Glucose Stimulated Insulin Secretion rate. Decreased functional β-cell mass inhibits regulation of blood glucose levels. β-cells have an extremely low proliferation rate after adolescence, meaning the functional β-cell mass cannot naturally recover. Increasing functional β-cell mass could provide a cure for diabetes, either through pancreatic islet transplants or through enhancement of the endogenous β-cell population. Nkx6.1 has been shown to increase β-cell proliferation by inducing the nuclear receptors Nr4a.1 and Nr4a.3. We have shown that Nkx6.1 increases expression of the gene c-Fos, and that c-Fos induces expression of Nr4a1 and Nr4a3. Furthermore, we have shown that c-Fos is sufficient to induce proliferation of β-cells in the INS-1 832/3 cell line and in primary rat islets. Finally, using lenti-sh-c-Fos to create a stable c-Fos deficient stable cell line, we have demonstrated that Nkx6.1 mediated proliferation is modified by the lack of c-Fos. We propose a model by which c-Fos is a critical link between Nkx6.1 and Nr4a mediated β-cell proliferation.

Species List of Insects in Capitol Reef National P ark

January 01, 2015 12:00 AM
Robert Erickson, Utah Valley University Life Sciences Although the insect fauna of the Colorado Plateau region are somewhat well known, our specific understanding of the arthropod biodiversity in Capitol Reef National Park has been sparse. Objective: From the multiple insect surveys conducted in Capitol Reef National Park we intend to catalog the arthropod biodiversity into a species list. Methods: In addition to the previous collecting trips, we carried out collection efforts this past summer (2014). We used the Utah Valley University Capitol Reef Field Station as our home base. General insect collecting efforts were conducted around the field station and the nearby Pleasant Creek, near the public campgrounds, along trails, and in several other locations in the southern portion of the park. Additionally, we performed night collecting with a mercury vapor lamp trap on the nights we were in the park and utilized stationary malaise and aquatic larvae traps. The collected specimens were curated using methods of pinning, spreading, labeling, identifying, photographing, and organizing the insects. Results: The collections contributed to an increased understanding of the parks insect diversity and resulted in a curated natural history museum collection. A species list will be made available for the records of Capitol Reef National Park. More than 3000 specimens have been collected within the park. Furthermore, a booklet of the common insects for the park is in the process of being created in order to serve as an educational tool for visitors to the park and field station.

The Role of PAS Kinase and Cbf1 in Glucose Metabolism

January 01, 2015 12:00 AM
Jenny Pattison, Brigham Young University Life Sciences Sensory protein kinases are essential in the phosphorylation of many protein substrates, allowing them to control several metabolic functions and maintain cellular homeostasis. PAS kinase is a sensory protein kinase that is highly conserved and plays a crucial role in glucose homeostasis, however little is known about the molecular mechanisms behind its function. UGP1 is the only well-characterized substrate of PAS kinase, and its phosphorylation diverts glucose away from storage and towards cell wall biosynthesis. We have recently discovered another key substrate of PAS kinase that affects glucose metabolism in the cell, Centromere binding factor 1 (Cbf1). Cbf1 regulates genes involved in respiration, and we have shown that the phosphorylation of Cbf1 by PAS kinase inhibits Cbf1, decreasing respiration in yeast cells. We hypothesize that this is due to a decrease in mitochondrial mass in cbf1 deficient yeast. Further characterizing the effects of PAS kinase on Cbf1 will give further insight into how cells regulate their central metabolic functions, including respiration.

Evolution and Molecular Phylogenetics of Baetidae (Ephemeroptera)

January 01, 2015 12:00 AM
Chase Barker, Utah Valley University Life Sciences Central Research Question:

The Effects of Umbellularia Californica Essential Oil on the Cutaneous Vasculature of Frogs

January 01, 2015 12:00 AM
Stephan Maman and Holden Wagstaff, Southern Utah University Life Sciences Most plant species produce chemical compounds called secondary metabolites that enhance fitness in a variety of ways. Many of these compounds are also physiologically active in vertebrates and have widespread medicinal uses. The most ubiquitous secondary metabolites are the terpenoids, many of which cause vasodilation of the aorta and mesenteric arteries. In this study, we examined the vasoactive effects of the essential oil of Umbellularia californica, which contains the terpenoid umbellulone. Oil obtained via steam distillation using aerial portions of U. californica was applied directly to cutaneous arterioles of frogs. Arteriole diameter was monitored both before and after oil application by video microscopy. Within seconds of application, the oil caused significant vasoconstriction that persisted until the oil was washed off. Our control, medical grade sesame oil, caused no observable effects when applied using the same protocols. These results are opposite to the vasodilatory effects of terpenoids on aortic rings and mesenteric arteries. This suggests that the vasoactive effects of umbellulone are different from other terpenoids, that the vasoactive effects of terpenoids differ depending on blood vessel type, or that application of the complete essential oil affects vasculature differently than application of the isolated terpenoid.

Trends in Birds Communities in Red Butte Canyon ov er the Past 22 Years

January 01, 2015 12:00 AM
Kylynn Parker, University of Utah Life Sciences Red Butte Canyon (RBC) is a Research Natural Area administered by the US Forest Service in Salt Lake City, Utah. RBC is an undisturbed area and a haven for all types of birds. Most of the avian species found in this area are migratory, and either pass through or breed in the area. The overall aim of this project is to determine if there have been any notable changes in populations of species in the area over the past 22 years. The research question that is covered in this summary are the following: has the density and relative abundance of the top five most commonly detected avian species in Red Butte Canyon notably changed through time in Transect 1? Data was collected by Mark Leppert, PhD and Sherwood Casjens, PhD of the University of Utah. They recorded the number and species of birds that were both seen and heard in 10 different transects within RBC over the past 22 years (1991-2013) and 457 survey days. In 2013 and 2014, I compiled and entered all of the data into a database with the guidance of the researchers. For analysis, I focused on the five most commonly detected species in Transect 1. These species are Black-Capped Chickadee (Poecile atricapilla), Warbling Vireo (Vireo gilvus), Yellow Warbler (Dendroica petechia), American Robin (Turdus migratorius), and Lazuli Bunting (Passerina amoena). Detection trends were found by graphing the number of individual birds seen or heard in Transect 1 over the days since surveys began in 1991 and statistical evidence was found showing significant changes in species population size of these five most commonly detected species, especially in the case of the American Robin which exhibits a decline in detections in recent years.

The Role of Pas Kinase in NAD Homeostasis

January 01, 2015 12:00 AM
Daniel Barnett, Brigham Young University Life Sciences Approximately one-third of US adults have metabolic disease, increasing their risk for diabetes, cancers and neurodegenerative disease (www.ADA.org). At the heart of these diseases are imbalances in the cellular redox state. The cofactor NAD(P), commonly known as niacin, is required for over 300 essential reactions in the cell and is largely responsible for the cellular redox state. NAD kinase regulates the NAD to NADP ratio, an important ratio for controlling cellular redox state and central metabolism. Herein we provide evidence that PAS kinase, a nutrient sensing kinase required for glucose homeostasis, phosphorylates NAD kinase. We are currently investigating the effect of this phosphorylation on the function of NAD kinase both in vitro and in vivo by measuring NAD kinase activity and associated phenotypes. This research will increase our understanding of how cells regulate central metabolism. In addition, because PAS kinase is a nonessential protein, it may prove to be an invaluable treatment target for regulating NAD(P) levels and controlling cellular redox state. This may lead to therapeutic targets for cancer and metabolic diseases such as diabetes.

Aurora Kinase A is Critical for the Nkx6.1 Mediated Β-Cell Proliferation Pathway

January 01, 2015 12:00 AM
Amanda Hobson, Carrie Draney, Andrew Stratford, Thomas Becker, Danhong Lu, Michelle Arlotto,

Is There a Correlation between Skin Temperature and Chytrid Survival on Hyla Arenicolor?

January 01, 2015 12:00 AM
Brent Knoblauch and Marty Larsen, Dixie State University Life Sciences Chytrid fungus (Batrachochytrium dendrobatidis) is one of the major hypothesized theories behind global amphibian decline. Canyon Tree frogs (Hyla arenicolor) found in Zion National Park have been found to contain infected individuals, however population sizes have grown despite infection with the usually deadly fungus. The present study sought to demonstrate a correlation between skin temperatures and fungal proliferation, and investigated what enabled Hyla arenicolor to survive and reproduce with chytrid present. Ten frogs were sampled with sterile swabs from each of seven different study areas found in Zion National Park. Along with each swab a temperature was taken via infrared thermometer and recorded. DNA was also extracted from the swabs, and Batrachochytrium dendrobatidis- specific primers were used in a touchdown PCR protocol to determine infection rates. Swabs from specimens with higher temperatures were expected to display lower instances of infection. This would establish for the first time a clear demonstration that high skin temperatures were destroying the fungus in infected individuals in the wild.

Engineering High Affinity T-Cell Receptors Specific for Listeria Monocytogenes

January 01, 2015 12:00 AM
Bryce Anderson, Kemais Ehlers, Deborah Johnson, and Stephen Persaud, Brigham Young University Life Sciences Antigen presenting cells digest and display foreign proteins from infected cells on the major histocompatibility complex (MHC) that is recognized by T cells via their T cell receptor (TCR). LLO56 and LLO118 are CD4+ helper T cells with TCRs specific for the same Listeria monocytogenes epitope. Despite differing by only 15 amino acids, these TCRs have dramatically different primary and secondary responses to infection. TCRs have very low affinity for peptide MHC. We determined to generate high affinity T cell receptors to test if T cell activation would be improved. We reasoned that the single chain LLO118 and LLO56 TCRs (Vβ2-linker-Vα2) could be subjected to directed evolution to generate mutants that are more stable and then used as a template for engineering high affinity T cell receptors. Single chain LLO118 and LLO56 were fused to the yeast surface protein Aga-2 and error prone PCR was used to generate mutagenic libraries. Stabilized single chain TCRs (scTCRs) were selected for using biotinylated Vβ2 and Vα2 antibodies and anti-biotin beads. First generation clones with increased stability compared to wild type were isolated for both LLO118 and LLO56. A second mutagenic library using the first generation mutants as templates was produced and the most stable clones were selected after temperature denaturation, permitting isolation of clones with increased stability. We are currently engineering high affinity T cell receptors by generating affinity libraries using site directed mutagenesis of the CDR3 regions. These libraries are sorted for their ability to bind to MHC tetramers and individual clones are tested using flow cytometry. Generation of pathogen specific high affinity TCRs will increase our understanding of how T cells are activated and could also provide infection specific diagnostics and therapeutics.

c-Fos Regulation of Glucose Stimulated Insulin Secretion in Be ta Cells

January 01, 2015 12:00 AM
Benjamin Bitner, Jason Ray, Kyle Kener, and Brent Wright, Brigham Young University Life Sciences β-cell mass is lost in both major forms of diabetes. Mature β-cell have restricted proliferative capacity. Studies aimed at increasing β-cell mass frequently have the unwanted side effects of decreased glucose stimulated insulin secretion (GSIS) or increased apoptotic rates. Without functional β-cells, the body is unable to reduce elevated blood glucose, which results in hyperglycemia induced maladies. Enhanaced GSIS could be used as a treatment for diabetes. Overexpression of the β-cell transcription factor Nkx6.1 induces β-cell proliferation, enhances GSIS and protects against apoptosis. Nkx6.1 induces expression of VGF, which is necessary for enhanced GSIS. Microarray analysis of Nkx6.1 expressing primary rat islets demonstrates upregulation of c-Fos at 24 and 48 hours after adenoviral transduction. We have shown that c-Fos upregulates expression of VGF. Finally, preliminary data suggest that c-Fos modulates GSIS as demonstrated in INS-1 β-cell line, stable INS-1 knockdown cells transduced with lenti-sh-c-Fos and in primary islets. We present a model by which c-Fos is necessary for Nkx6.1 mediated enhanced GSIS by inducing expression of VGF.

Gone Again: A story of Evolution, Mandibular Tusks, and Burrowing Mayflie

January 01, 2015 12:00 AM
Stephanie Bartlett, Utah Valley University Life Sciences Our project investigates the phylogenetic relationships of the superfamily Ephemeroidea + Behningiidae. Found in waters worldwide, burrowing families are unique in that they have mandibular tusks that allow them to tunnel in the silt or gravel of riverbeds. Surprisingly, even without the mandibular tusks necessary for tunnel construction, the Behningiidae family is still found within these burrows as nymphs. Because the Behningiidae don’t have tusks, morphological research has lead to a phylogenetic classification of this family that our genomic investigation ultimately disputes. To begin this investigation, mayfly specimens were collected worldwide and prepared for DNA extraction. For each specimen genes were amplified via polymerase chain reaction and visualized on an agarose gel, before being sequenced and analyzed. The specific genes targeted for this analysis include; 12s mitochondrial rDNA, 16s mitochondrial rDNA, 18s nuclear rDNA, 28s nuclear rDNA, H3 nuclear protein coding, and CO1 mitochondrial protein coding. Datasets were supplemented with sequences acquired from Genbank. The ingroup consisted of approximately 30 samples. Phylogenetic relationships were estimated using Maximum Parsimony, Maximum Likelihood, and Baysian methods. We constructed phylogenetic relationships of burrowing mayflies using molecular DNA data analysis, when compared to morphological analysis we identified some important classification differences. As a result of our findings, we propose an alternative explanation for the evolution of mandibular tusks in burrowing mayflies (Ephemeroptera). The data support that burrowing mayflies first evolved tusks. Within the family Behningiidae, tusks were lost, while the burrowing lifestyle (i.e., living in a burrow to filter feed) was retained. This study represents the largest analysis to date for these insects and strongly supports the evolutionary trend of a gain and a loss of mandibular tusks during their evolution.

The Putative Cannabinoid Receptor GPR55: Expression, Modulation of Hippocampal Plasticity and Behavior

January 01, 2015 12:00 AM
Jacob Welch, Brigham Young University Life Sciences Learning and memory occur due to adaptive brain changes in response to our environment. These changes are mediated by synaptic plasticity, particularly within the hippocampus. Plasticity can either strengthen or weaken synapses, known as long-term potentiation (LTP) or long-term depression (LTD) respectively. While many forms of plasticity are NMDA-dependent, recently endocannabinoids were identified to mediate several new forms of hippocampal synaptic plasticity through the CB1 and TRPV1 receptors. However, research has demonstrated a non-CB1/TRPV1-dependent endocannabinoid synaptic plasticity in the hippocampus. Several potential candidate receptors that bind the endocannabinoid anandamide have been identified. These are among the orphan G-protein coupled receptors (GPRs) whose distribution in the brain and/or function is less well known. GPR55 is of particular interest as it activates second messenger systems. Using quantitative RT-PCR, electrophysiological and memory behavioral tasks we examined hippocampal GPR55 expression and function. GPR55 is expressed in hippocampus of both rats and mice. Cellular expression is currently being examined and appears to be rare in interneurons and more likely expressed by pyramidal cells. Interestingly, application of the GPR55 agonist LPI (2 μM) to wild-type mice demonstrates a significant enhancement of LTP in brain slices. This LPI effect was not noted in GPR55 knock-out (KO) mice, which exhibit significantly (p < 0.05) smaller LTP (146%) than wildtype (WT) (181%). GPR55 also appears to increase release probability (Sylantyev et al., PNAS, 2013), denoting a presynaptic role. Paired-pulse ratios are now being analyzed between GPR55 KO and WT mice to confirm this finding; however we did not note a change in EPSCs in CA1 in response to 2μM LPI. These data suggest GPR55 is expressed and physiologically relevant in the hippocampus. Because enhanced LTP is usually associated with better memory performance in rodents, this provides a potential target to enhance the cellular mechanism associated with memory formation.

Construction of a Weighing Lysimeter on the SUU Green Roof

January 01, 2015 12:00 AM
Bryce Taylor and Ian Kesler, Southern Utah University Life Sciences Green infrastructure is the use of natural processes to manage stormwater runoff and has many positive effects on evaporative cooling, building energy demand, and wildlife habitat. Very little green infrastructure research has been conducted in arid environments such as Southern Utah. The scope of this research project is to establish a complete water budget of the green roof using a lysimeter (an acrylic box resting on a high-resolution weighing scale). The water budget will help in determining whether the cost of irrigating the green roof is off- set by the potential benefits to biodiversity and decreased energy demands.We have constructed a working lysimeter and will collect the required data by using: a high resolution scale, a tipping bucket to measure drainage, two soil moisture and temperature sensors and weather data from the campus weather station. A collection of mixed Sedum species vegetation will be planted in the lysimeter using a special green roof media to accurately simulate a greenroof environment. Both pitfall (used to capture grounded insects) and combination traps (used to capture airborne insects) will be used to measure the biodiversity. Data collection will begin during the winter of 2014 and continue indefinitely.

To Accept or Not Accept: A study of Evolution and Worldview Reconciliation in an Introductory Biology Course

January 01, 2015 12:00 AM
Danny Ferguson, Utah Valley University Life Sciences This research examined the acceptance of evolution for introductory Biology students and the reasons why they don’t accept evolution, accept evolution, and why they change their minds over the semester. Previous studies examined student’s observations and knowledge of the evolutionary theory and found that the degree of conflict students perceived between religion and science was negatively correlated with their knowledge of evolution. Objective: The objective of this research was to better understand the student’s views of evolution and its integration into their worldly and religious views. Methods: We will conduct interviews with general Biology students in order to better understand the reasons why they don’t accept evolution, accept evolution, and why they change their minds over the semester. The interview questions are designed to investigate, in more detail than the previous surveys, the opinions of evolution and how they change over the course of the semester. The recordings will be transcribed and quantified by binning answers into categories. Given high % of students are LDS, we will ask a few additional questions to this portion of the population. Results: We found that as students knowledge of evolution increased, their conflict with religion decreased. The data demonstrate that there are three main reasons for this trend: 1) Evidence convinces the students to accept evolution; 2) Particularly for LDS students, knowledge of the official position of the Church, enables them to allow evolution to be a correct process in nature; and 3) the instructor as a role model (believer yet accepts evolution) can have a large influence.

Patterns of Urban Forest Composition in Utah’s Growing Mountain Communities

January 01, 2015 12:00 AM
Anne Thomas and Richard Gill, Brigham Young University Life Sciences Providing water for expanding urban communities in the western United States is a growing concern for city planners and governmental agencies. Landscaping can claim up to 50% of the urban water budget but also has the most potential for water conservation. Landscape water use is highly variable, however, because of species-specific differences in tree water use and because of decision-making by city planners and residents in maintaining trees. The objective of this study is to improve our ability to predict urban forest water use by identifying differences in tree basal area and diversity between neighborhoods that have arisen at different periods of development in Heber Valley, Utah. We classified neighborhoods as established, exurban (rural housing), commercial, or new tract based on age, location, and lot size. We performed a stratified random survey with twenty lots in each category and collected diameter and species data for each tree in the lot. Some of the patterns we observed were easily anticipated, such as higher basal area per hectare in the older, established neighborhoods relative to newer tract housing. Surprisingly, the number of individual trees per hectare in tract and established neighborhoods is very similar. Perhaps of more interest is the low species richness of tract housing compared to exurban communities. Because exurban communities are being replaced by tract housing there is evidence that tree diversity will be lost. Another important aspect of community structure in urban forests is the ratio of conifers to broadleaf trees because of fundamental differences in water use patterns. Conifers comprised twenty-five percent of the basal area in exurban and thirty-five percent in established neighborhoods, as opposed to five percent in tract. Our data suggest that tree diversity is likely to decrease while water demand is likely to increase with changes in urban forests in the coming decade.

Entomophilic Nematode Distribution and Diversity in Beaver Dam Wash

January 01, 2015 12:00 AM
Westen Archibald, Trevor Smart, and Emily Forsyth, Brigham Young University Life Sciences The Beaver Dam Wash National Conservation Area is considered an important biodiversity hotspot for the Western United States. The wash is an ecotone on the Northeastern edge of the Mojave Desert and is directly adjacent to both the Colorado Plateau and the Great Basin. Thus, this area contains various species of flora and fauna from each of the surrounding biomes. Prior research of the Beaver Dam Wash has documented high aboveground biodiversity for a desert ecosystem however no research has been conducted on belowground diversity. For this reason we chose to characterize the diversity and distribution of entomophilic nematodes, as they are commonly used as a biological indicator to the surrounding ecosystems. We hypothesized that because plant and insect biodiversity is high here, we would also find a diversity of entomophilic nematodes that is higher than the surrounding areas. To test this hypothesis we collected soil samples from 15 sample sites representative of the diversity of the different ecological communities. We tested for patterns of codistribution between entomophilic nematodes and environmental variables, such as plant cover, proximity to water, presence of organic matter, elevation, ecosystem classification, and soil chemistry. We extracted nematodes from the soil samples and sequenced the 28s rDNA region of representative individuals from each sample. Nematode diversity was low; one species was broadly distributed, X others were more patchily distributed. No correlation was found between above ground factors or soil chemical properties (ppm phosphorous, percent organic matter, and percent soil moisture). We conclude that the distribution of entomophilic nematodes in this ecological confluence is to some degree stochastic and uncoupled from aboveground diversity or belowground soil conditions.

Yeast PAS Kinase as a Model for Cellular Metabolic Control

January 01, 2015 12:00 AM
Katherine Harris, Brady Evans and Thomas Andros, Brigham Young University Life Sciences Metabolic diseases, such as obesity and diabetes, have become endemic and the need for better treatments is rising. Mutations in PAS kinase, a recently discovered sensory kinase, have been shown to cause Maturity Onset Diabetes of the Young (MODY) in humans (Semplici et al., 2011). In addition, PAS kinase deficient mice display many phenotypes related to diabetes including resistance to weight gain, insulin insensitivity and triglyceride accumulation in response to a high-fat diet (Hao et al., 2007). Despite its importance in metabolism, little is known about the regulation of PAS kinase. PAS kinase consists of a sensory PAS domain that binds to and inhibits a protein kinase domain (Amezcua et al, 2002). We are currently engaged in several yeast genetic screens which will allow identification of regions in the full length PAS kinase that are essential for activation or for binding its substrates. The first screen is based on the finding that PAS kinase overexpression rescues a temperature-sensitive mutation in Tor2, the tor2(ts). We have isolated both point mutations and truncations in PAS kinase which alleviate the tor2(ts), suggesting they are hyperactive alleles. These mutations identify novel regions involved in PAS kinase regulation. Our second screen uses the yeast 2-hybrid to select for both point mutations and truncations that increase the ability of PAS kinase to bind its substrates. These mutations will help identify key regions of PAS kinase utilized in substrate recognition. Finally, we have identified regions of PAS kinase that are well-conserved throughout evolution and will compare these regions with the regions affected by our mutations. This study will be the first reported mutagenic analysis of PAS kinase. Analysis of these specific genetic regions will help elucidate the molecular mechanisms involved in the regulation and function of PAS kinase, a key player in the development of metabolic disease.

Ventral Tegmental Area Dopamine and GABA Neurons: Physiological Properties and Expression of Mrna for Endocannabinoid Biosynthetic Enzymes and Type I Mglurs

January 01, 2015 12:00 AM
Scott Newton, Brigham Young University Life Sciences The ventral tegmental area (VTA) is known to controls the processing of rewarding and addictive behaviors. The VTA contains dopamine (DA) cells, which release DA to downstream targets in response to rewarding stimuli, and GABA cells, which modulate DA cell activity. Therefore, both cell types are involved in associative reward learning. Synaptic plasticity plays an important role in adaptive reward signaling within the VTA. Endocannabinoids mediate or modulate synaptic plasticity at synapses within the reward circuit. However, the source of endocannabinoids within the VTA is not well understood. Therefore, our goal was to describe the distribution of endocannabinoid biosynthetic enzyme mRNA within VTA neurons. We extracted single VTA neurons via whole cell patch clamp and used single-cell real-time quantitative PCR to identify DA and GABA neurons based on mRNA expression of cell-type specific targets. Additionally, electrophysiological properties such as action potential frequency and sag potential amplitude were examined between the two cell types. Concurrent with established observations, slower firing frequencies were observed in DAergic neurons, however overlap was identified between these two cell types. VTA neurons were then probed for endocannabinoid/ biosynthetic enzyme mRNA, such as N-acyl-phosphatidylethanolamine-specific phospholipase D (NAPE- PLD), diacylglycerol lipase α (DAGLα), and 12-lipoxygenase. We also probed for type I metabotropic glutamate receptor (mGluR) mRNA, as endocannabinoid synthesis requires mGluR activation. Our data demonstrate that endocannabinoid biosynthetic enzyme mRNA is expressed in both DAergic and GABAergic cells with concurrent expression of type I mGluRs. Next, to ensure mRNA expression was representative of protein content, slices were stained using immunohistochemistry for GAD67, DAGLα, NAPE-PLD and type I mGluRs. Positive labeling for these targets was observed in VTA neurons, supporting our RT-PCR results. Collectively, these data suggest DAergic and GABAergic cells of the VTA have the capability to produce endocannabinoids and potentially alter synaptic plasticity involved in reward and addiction.

ATP Production in Serpentinization-Driven Ecosystems

January 01, 2015 12:00 AM
Alex Hyer, University of Utah Life Sciences Geochemical reactions associated with the process known as serpentinization can generate copious quantities of organic carbon and chemical energy that support life, but these reactions also greatly increase the pH of serpentinization sites. High-pH environments hinder ATP production because the low proton concentrations at high pH can result in a reversed proton gradient across cell membranes. Organisms present at serpentinization sites are not well-characterized, and adaptations to their alkaliphilic lifestyle are unknown. Bacillus pseudofirmus OF4 was not isolated from serpentinization sites, but it is a well- studied alkaliphile that has several distinct adaptations for ATP production in high pH environments. Its sequence for ATP synthase, the molecular motor responsible for ATP generation in the cell, contains several distinctive mutations including an AXAXAXA motif that increases the C-ring stoichiometry, a P51XXE54XXP57 motif that creates a distinct kink in the outer helix of the C-subunit, and a V21 mutation granting rotamer freedom to E54. In this study, we search for similar mutations in metagenomic databases containing DNA sequences collected from serpentinization sites. Analysis of alignments from the programs BLAST and Exonerate indicate that V21 is present in several alignments, but P51 is found in only a single alignment from serpentinization sites. The AXAXAXA motif is non- existent in our databases, but the more common GXGXGXG motif is present with alanine replacements occurring periodically. In general, these results indicate that our DNA sequences from high-pH sites of serpentinization are more reminiscent of typical neutrophiles than of the alkaliphile B. pseudofirmus OF4. Therefore, serpentinization- adapted organisms may harbor other adaptations to high pH such as local pmf regulation. Future work will test for quantitative correlations between environmental pH measurements and the incidence of mutations in ATP synthase in order to identify novel adaptations to high pH in serpentinization-driven ecosystems.

Development of a Resin-Free Protein Purification Technique Utilizing Unique Biochemical Properties of the E. coli SSB Protein

January 01, 2014 12:00 AM
Mark Soffe, Utah State University Life Sciences SSBs are DNA binding proteins that are essential components of cells and play key roles in DNA replication, repair, and recombination. Here we utilize two biochemical properties associated with the E. coli SSB protein to develop a novel procedure to purify proteins using a resin-free strategy. 1. E. coli SSB binds to single stranded DNA (ssDNA) with extremely high affinity (K = 1013 M-1), indicating very tight binding. 2. It is also a unique protein with respect to its purification – it is possible to obtain greater than 95% pure SSB from the total cell lysate without using any sort of column or resin, utilizing polyethyleneimine (PEI) and ammonium sulfate precipitation. Our design uses SSB as an affinity/solubility tag to enhance the solubility and expression of difficult-to-purify proteins, and allows for the simple, resin-free purification using PEI and ammonium sulfate precipitation. There also may be a possibility to co-express protein dimers and possibly tetramers using this method. Constructs have been made that include the SSB gene, along with the ability to fuse any gene of interest, as well as a TEV Protease cleavage sequence allowing for proteolytic cleavage after gene expression. Two genes of interest have been cloned in thus far—TEV protease and Rad51. In this proposal I outline experiments to develop this strategy further and test our proof of principle concept and its application to a broader set of target proteins.

Urban Noise as a Stressor in Side-Blotched Lizards

January 01, 2014 12:00 AM
Marilize Van der Walt, Utah State University Life Sciences Urbanization is accompanied by a lot of changes to the landscape that have the potential to affect the native species inhabiting the area. If animals are chronically exposed to these anthropogenic disturbances and are unable to acclimatize, changes in circulating glucocorticoid hormones may cause adverse effects to the animal’s health, such as an impairment in innate immune activity. One such disturbance is human-induced noise. Using the side-blotched lizard, Uta stansburiana, because of their localized habitat and inability to escape such disturbances within the urban environment, we looked at the field and lab components of noise as a stressor. We first measured decibel levels in urban and rural field sites in their natural habitats in St. George, Utah, and conducted a lab study exposing U. stansburiana to either a synthesized urban sound recording or no sound recording (control) for nine days. We collected blood samples and measured circulating corticosterone and testosterone concentrations and bactericidal ability to determine if there are endocrine and immune alterations in response to increased noise decibels. Our results show that lizards exposed to urban noise experienced increased corticosterone levels indicative of stress. Furthermore, bactericidal ability was indirectly affected by noise through significant correlations between body condition and corticosterone and testosterone concentrations. These results indicate that an increase in ambient decibel levels acts as a stressor to animals in urban areas. By dissecting out an individual component of a complex stressor we can better understand the effects of urbanization as a whole.

Plant-Soil Feedback of Native and Exotic Species in the Inter-Mountain West

January 01, 2014 12:00 AM
Molly Van Engelenhoven, Utah State University Life Sciences For thousands of years farmers have known that soil organisms can destroy crops but only in the past ten years have researchers begun to understand that complex interactions among soil organisms and plants can determine plant diversity and productivity. Much of the research in this young field of study has come from qualitative greenhouse experiments and separately from simple mathematical models. Here, we report findings from a six-year plant-soil feedback (PSF) field experiment that assessed the effects of soil organisms on the growth of twelve plant species common to the intermountain west. Initially, twelve native and exotic species were randomly assigned to 1550 experimental plots in a field. After four years of growth, the plants were killed. Next, the same plant species were randomly assigned to the 1550 plots again to test how each plant species responded to the soil microbial communities ‘cultivated’ by each other plant species. Two years later plant growth responses to different soil types were measured. Most plants showed large growth differences on different soil types. For example, Bromus tectorum grew twice as much on Pseudoroegneria spicata-cultivated soils than on self-cultivated soils. When the plant growth responses observed in this experiment were used in a mathematical model, PSFs were found to play a critical role in determining which plants were likely to be dominant in a community and how productive these different plant communities would be. In summary, this large-scale experiment provides strong evidence for the role of PSFs in plant productivity and diversity. Results have implications for natural methods of effective native plant restoration, biofuel production and weed control.

Long-term evaluation of Leafy Spurge biological control in Richmond, Utah

January 01, 2014 12:00 AM
Jacob Anderson, Utah Sate University Life Sciences Leafy spurge (LS) is an aggressive Eurasian forb that has been successfully reduced in many areas in western North America through the biological control releases of flea beetles. Long term studies of this phenomenon are sparse. Three flea beetle species were released in the mid-1990s at a site dominated by LS in Richmond, Utah. This study assessed the long term effects of LS biocontrol on an ecological community at this site by addressing five questions: (1) Is LS abundance significantly lower now than in the 1990s? (2) What plant species are replacing LS and are they native or non-native? (3) Have the flea beetle populations persisted since their initial release? (4) What part does soil type play in which flea beetle species now dominate at the site? (5) In response to their unexpected presence, what role may long-horned beetles contribute to the long-term reduction of LS? It was found that LS abundance has significantly decreased from the 1990s; the dominant plant species are those of non-native grasses; flea beetles have persisted in significantly smaller numbers, with Aphthona lacertosa being the most abundant; and long-horned beetles appear to play a significant role in the reduction of sexual success of LS. The results of this project have implications for land managers when considering the vegetative response to LS biological control and the importance of long-horned beetles for long-term in managed, LS-reduced habitats.

Advancement of Petroleum Diesel Alternatives Utilizing a Multifaceted and Interdepartmental Approach

January 01, 2014 12:00 AM
Michael Morgan, Utah State University Life Sciences The advancement of biologically derived alternatives to petroleum diesel fuel requires a multifaceted approach. At Utah State University we use an interdisciplinary team including the Colleges of Engineering, Agriculture & Applied Sciences, and Science in conjunction with industry partners to drive innovation in improving the science behind petroleum diesel alternatives. With increasing petroleum use, depleting reserves, increasing emissions standards, and other factors, there is need for petroleum diesel alternatives that are cost effective, offer improvement, and perform similarly to petroleum diesel. Our team has focused on the use of oleaginous microbes utilizing low value effluent and waste sources including sugars and CO2 to create biofuels. We have focused on a yeast, Cryptococcus curvatus, and a microalgae, Nannochloropsis salina which have shown high yields of fuel per cell mass. Using these microbes we have utilized USU’s own direct trans-esterification reaction to create sufficient quantities of biodiesel for engine performance and emissions testing, including a subset of ASTM tests characterizing the fuels from each organism. Our initial engine testing used petroleum diesel as a baseline in conjunction with commercial soybean biodiesel to establish the quality of our microbially derived biodiesel. Testing in stationary diesel engines and on the Bonneville Salt Flats has proven our microbial fuels perform similarly to soybean biodiesel and comparably to petroleum diesel. To further improve biological diesel replacements we have begun working to create green diesel, hydrocarbons from a biological source, using a novel method of hydrothermal liquefaction. Preliminary results of those tests are presented here. Through a multifaceted and interdisciplinary approach USU is successfully improving petroleum diesel alternatives from microbial sources including characterization of the properties of these fuels and is working to create the fuels at the scale necessary for exhaustive engine performance and emissions testing including ASTM testing of all important fuel properties.

Physiological effects of habitat disturbance in the wandering gartersnake (Thamnophis elegans)

January 01, 2014 12:00 AM
Austin Spence, Utah State University Life Sciences This study investigated the physiological effects of localized habitat disturbances around two well-studied hibernacula of the wandering gartersnake Thamnophis elegans. After three years of monitoring snake morphology and physiology at several hibernacula, several disturbance events occurred, including log clearing, stream bank disturbance, and vegetation removal. Individuals from three populations, two with disturbed hibernacula and one control population with no disturbance, were collected during the spring emergence immediately following the disturbance. Blood samples were collected upon capture and following a uniform stressor to measure baseline and post-stress physiological conditions. The samples were analyzed using a radioimmunoassay to measure corticosterone levels and a bacterial killing assay to measure innate immunocompetence. Baseline and post-stress corticosterone levels were higher in both populations with disturbance events compared to the control population. The bacterial killing ability of the site with the most anthropogenic activity was lower than the control site, indicating immunocompromise. Data are currently being analyzed to assess differences within the same populations between years with and without disturbance events. Pre-disturbance data are a rare and useful commodity and allow us to facilitate a better understanding of the various effects of anthropogenic change on natural populations. This study was funded through the Undergraduate Research and Creative Opportunity Grant from Utah State University.

Copper Resistant Phenotype in MDM35-deletion Saccharomyces cerevisiae

January 01, 2014 12:00 AM
Jacob Bassett, Utah Valley University Life Sciences Many discoveries regarding the complex interplay between biological pathways within a cell begin with attempts to link new observations to scrupulously studied cellular mechanisms. Our lab is studying the soluble inter-mitochondrial space protein mdm35, which has been observed to facilitate the function of ups1 & 2 proteins, as they in turn regulate the mitochondria’s phosphatidic acid metabolism. In addition to this phenotype, our lab has observed a copper resistance at 0.17% on YPD plate and 0.14% in liquid cultures of S. cerevisiae lacking the mdm35 protein, when compared to the Wild Type strain. Our investigation measures the levels of expression in the cup1 and ctr1 promoters in an attempt to link this observation to a potential mechanism contributing to this resistance.

Classifying Neurons in the Brainstem

January 01, 2014 12:00 AM
Lee Leavitt, University of Utah Life Sciences The ventral respiratory column (VRC) is a region in the brainstem shown to control breathing patterns in mammals. Using activation and inhibition of neurons in this region, classes have been assigned based on response-combinations. Using a mouse model, cells from this region are dissociated, plated and incubated with a dye that indicates changes in cytoplasmic calcium levels. Hundreds of cells are measured while varieties of pharmacological agents are applied. Response-combinations provide a profile of the receptors found on these neurons. Previously, varieties of cell classes were shown to contain NMDA receptors (receptors linked to learning and memory). However, specific compositions of subunits within these receptors are not known. These receptors are ligand gated ion channels composed of four non-covalently bound proteins. Each subunit has a different activation profile determined by interactions of agonist and antagonists. Conantokins (peptides isolated from snail venom) and other compounds further afford understanding of the architecture the assigned cell-classes. This project has continued to classify the subunit compositions of NMDA receptors with the ultimate goal of understanding which NMDA receptor subunits are present in each class. This will provide valuable information on the VRC’s function, and will allow for pharmacological innervations to change behavior in this region.

Insect Phylogeography Study on Patagonia

January 01, 2014 12:00 AM
Dasom Kim, Brigham Young University Life Sciences The main purpose of the project is to compare the phylogeography of a species of stonefly (Klapopteryx kuschelli) and a species of dragonfly (Rhionaeshna variegata) in Patagonia. Specifically, the project will study how geography and behavior (i.e., their dispersal abilities) have affected their evolutionary histories. Of all the varied climates and geography in South America, comparatively few phylogeographic studies have been conducted with insects, especially in Patagonia. This study will provide an important foundation for a comparative phlyogeographic study of two insect groups inhabiting the same regions of Patagonia. Also, if funded, this project will give me an exclusive opportunity to interact with international research institutions in South America as well as their scientists.

Comparison of Antibiotic Resistant Enterococci Isolated from Various Weber River Locations, from the Great Salt Lake and from Hospitalized Patients

January 01, 2014 12:00 AM
Madison Landreth, Weber State University Life Sciences Enterococcus, a bacterial genus that normally inhabits the gastrointestinal tract of animals, can be pathogenic to humans, causing urinary tract infections, sepsis and other serious diseases. It is also one of the major causes of hospital acquired infections. One important complication of those infected with Enterococcus is the fact that these bacteria often have a high level of antibiotic resistance, making effective treatment of patients more difficult. While Enterococcus is a normal inhabitant of the gastrointestinal tract, it can survive outside its host in the environment, even in adverse conditions, such as the Great Salt Lake (GSL). In this experiment, hundreds of isolates of Enterococcus were collected from the Great Salt Lake, from various sites along the Weber River which flows into the GSL and from clinical sources. Isolates were tested for different phenotypic characteristics and for their resistant patterns against certain antibiotics. Preliminary results of the Kirby Bauer disk-diffusion assay demonstrated that 47% of enterococcal isolates from the Great Salt Lake were resistant to one or more of the five antibiotics compared to 98% of the clinical isolates. In contrast, in a previous study, as few as 15% of Enterococcus isolated from the fresh water sources were resistant to one or more of the five antibiotics. These data may have implications concerning the importance of anthropological impact on rates of antibiotic resistance in this genus.

The Location and Dimensions of FGF Source are Critical for Proper Limb Pattern

January 01, 2014 12:00 AM
Derrick Crawford, Brigham Young University Life Sciences Members of the FGF family of signaling factors are key components in distal outgrowth and patterning of the vertebrate limb. These factors are expressed and secreted by the apical ectodermal ridge (AER) on the distal margin of the limb. Blocking their function is known to truncate the limb skeleton. Conversely, replacing the AER with beads soaked in Fgf protein can rescue limb outgrowth and patterning. Our lab has demonstrated that one of the mechanisms whereby the Fgf/AER functions is to mediate directed outgrowth of the adjacent mesenchyme. As the AER regulates growth of mesenchyme toward itself, it would be predicted that the AER’s dimensions would be important for shaping the mesenchyme that it recruits. We have found that the shape of the AER changes over time in a manner that corresponds to the shape of limb elements as they form along the proximal distal axis. Further, mutants that exhibit defects in the dimensions of the AER show corresponding anomalies in the limb skeleton. Given these observations it would be predicted that an Fgf soaked bead being of fixed spherical dimensions would only be capable of forming a cylindrical, rod-shaped limb. A bead placed posteriorly fulfills this expectation whereas a bead placed apically does not. We provide a molecular explanation for this discrepancy. We have also manipulated the shape of the AER surgically and find that similar to beads the shape and the AP position of the AER dictates the shape of the forming limb skeleton.

Using Microsatellite Markers to Characterize Genetic Diversity of Utah Agave and its Subspecies

January 01, 2014 12:00 AM
Charlee Byers, Brigham Young University Life Sciences Agave utahensis (Utah agave) plays a critical role as a keystone species in its native habitat. A rise in frequent, intense fires across the range of these habitats threatens to eliminate Utah agave populations, and consequently limit its genetic diversity. Characterizing the genetic diversity of Utah agave and its subspecies will help in restoration efforts to protect the species. We constructed primers to amplify microsatellite markers of two subspecies of Utah agave, ssp. kaibabensis and ssp. utahensis. Using these markers, we determined the level of polymorphism within four populations of each of the two subspecies.

The effects of imidacloprid on Atremia franciscana

January 01, 2014 12:00 AM
Sean Studstill, Weber State University Life Sciences Imidacloprid is a popular systemic insecticide that has been applied to our staple crops for two decades. According to the EPA, it is persistent in the environment and at risk of effecting non-targeted organisms. Imidacloprid is an insect neurotoxin; however it is also known to be toxic to various aquatic species in concentrations as low as 37 ppb. Ingestion of imidacloprid causes paralysis in organisms through the blockage of postsynaptic nicotinic cholinergic receptors. We sought to find out how toxic imidacloprid is to brine shrimp and what kinds of physiological reactions occur upon exposure.

Three-Dimensional Mapping and Virtual Reconstruction of a Pharyngeal Space Nerve Plexus

January 01, 2014 12:00 AM
Jake Gamboa, Brigham Young University Life Sciences It is estimated that approximately 350,000 people in the United Stated die annually from post-myocardial infarction arrhythmias. A majority of these people will undergo a surgery that results in partial or complete removal of the stellate ganglion and other nerve fibers of the pharyngeal space in an attempt to prevent over stimulation from the neurons to the area of dead heart tissue and, therefore, future arrhythmias. However, without a somatomototopy, it is unclear what physiological effects partial or full sympathectomies may have. We will create a three-dimensional map of the pharyngeal space nerve plexus which will, in turn, allow for a more accurate and precise surgery.

Human Breast Cancer Response to Telomere Loss

January 01, 2014 12:00 AM
Teressa Paulsen, University of Utah Life Sciences Breast cancer is still the most common cancer among women regardless of race or ethnicity. The focus of our research is to uncover the mechanism breast cancer cells use to escape the inherent limitations of the telomere and obtain immortality. The protective end of a chromosome, the telomere, degrades with each cellular division. The cellular response to telomere dysfunction is to activate programmed cell death. Therefore, this type of damage normally limits the proliferative potential of the cell and subsequently carcinogenesis.

American avocet (recurvirostra americana) incubation constancy throughout the nesting cycle on the great salt lake

January 01, 2014 12:00 AM
Josh Hall, Weber State University Life Sciences Reproduction in birds is extremely conservative with the vast majority of the birds adopting bird-egg contact incubation to maintain an appropriate microclimate for embryonic development (Deeming, 2004). The Great Salt Lake is a vital nesting site for American Avocets (Recurvirostra Americana) that shows extreme temperatures and hostile environments where nest success can be as low as 1 -14% (Cavitt, 2008). Constancy of incubation, i.e. the time that the eggs are in contact with an adult, is a major indicator of nest success and environmental conditions. Our goals were to examine some of the costs natural selection places on embryos and parents to maintain a constant embryo temperature. We hypothesized that incubation attentiveness would increase across the nesting cycle. Over 200 AMAV nests were surveyed. Thermal probes were used to record various nest microclimates at every minute. A pseudonest with painted chicken eggs was also created and a thermal probe was placed to measure the ambient temperature without any adult incubation. A motion sensitive camera was placed over nests to examine differences in parental care. Nests will be divided into three phases: early, mid, and late incubation. Thermal data will be analyzed using descriptive statistics and mean variance values to calculate how incubation constancy varied throughout these phases. We expect this data to tell us more on how natural selection is working on these populations and some possible theories of how this developed.

Gene Expression of P2X7 and P2Y1 in CFS and FMS Patients on Lyrica versus Placebo

January 01, 2014 12:00 AM
Goyeun Tun, University of Utah Life Sciences Chronic Fatigue Syndrome (CFS) and Fibromyalgia Syndrome (FMS) are disorders which their symptoms and treatments are not clearly known. CFS and FMS are not life threatening diseases; however, they can affect patients’ quality of life because they experience symptoms including exercise intolerance, need for bedrest, and debilitating chronic pain and fatigue with these disorders. The research from Dr. Light’s lab has shown that moderate exercise for 25 minutes causes changes in mRNA levels in CFS and FMS patients but not healthy controls. The objective of our study was to examine changes in white blood cell gene expression of CFS and FMS patients both on Lyrica and on placebo in a double-blinded, cross-over design (where each study subject was his or her own control) by using quantitative PCR gene expression analysis. The lab routinely analyzes blood samples for 48 different genes from study subjects and healthy controls collected before (baseline) and then 8, 24, 48 hours after exercise moderate exercise. My focus was on changes in expression of two ATP-responsive purinergic receptors, P2X7 and P2Y1, which have not been studied after exercise in CFS and FMS but have been associated with chronic inflammation and pain in animal models. White blood cell layers (buffy coat) were collected from samples, RNA was extracted and converted to cDNA. 384 well PCR plates were robotically loaded from 96 well source plates, then the PCR reaction was run in an ABI 7900 thermal cycler that tracks fluorescence in “real time” (real time qPCR). Analysis of results is in progress and will be reported on the poster.

Protein phosphatase 2A activation contributes to endothelial dysfunction that occurs in mice with diet-induced obesity

January 01, 2014 12:00 AM
Xin Wan, University of Utah Life Sciences Endothelial dysfunction exists in individuals with diet-induced obesity (DIO) and type 2 diabetes (T2DM). Markers of endothelial dysfunction include reduced phosphorylation (p) of endothelial nitric oxide (NO) synthase (eNOS) to total eNOS (p-eNOS:eNOS), and attenuated endothelium-dependent vasorelaxation. Free fatty acids (FFAs) are elevated in individuals with DIO and T2DM. Our laboratory has shown that when: (i) endothelial cells are incubated with saturated FFA palmitate; (ii) mice are infused with lard-oil; and/or (iii) when mice are fed with high-fat diet, protein phosphatase 2A (PP2A) binds directly with eNOS. When this occurs, the association among Akt-Hsp90-eNOS is disrupted, p-eNOS:eNOS is impaired, and endothelium-dependent dysfunction occurs. This is prevented using pharmacological and genetic approaches that limit production of FFA metabolite ceramide. It is unknown whether PP2A inhibition per se is protective. We hypothesized that arterial dysfunction in obese vs. lean mice is prevented by PP2A inhibition. Seven-week-old, male, C57B16 mice consumed standard (CON, n=20) or high-fat (HF, n=20) chow for 12-weeks. Subgroups (n=10) of CON and HF mice received IP injections of saline (vehicle; V) or Lixte Biotechnology 100 (LB1, 1 mg/kg/day) for the last 14-days. Preliminary experiments verified that LB1-treatment for 3 and 21 days decreases (p<0.05) arterial PP2A activity. HF mice gained weight and developed peripheral glucose intolerance vs. CON mice regardless of LB1 treatment. Endothelium-dependent vasorelaxation was impaired (p<0.05) in HF-V vs. CON-V mice, but dysfunction was less severe (p<0.05) in HF-LB1 mice. p-eNOS:eNOS was reduced (p<0.05) in arteries from HF-V vs. CON-V mice, but p-eNOS:eNOS was similar in arteries from HF-LB1 and CON-LB1 mice. Akt and Hsp90 co-immunoprecipitation with eNOS was impaired (p<0.05) in HF-V vs. HF-CON mice, but this was not observed in arteries from HF-LB1 and CON-LB1 mice. These findings suggest that PP2A activity suppression in vivo is sufficient to preserve endothelial function in obese mice.

Physiological and pathophysiological stimuli alter endothelial cell autophagy

January 01, 2014 12:00 AM
J David Symons, University of Utah Life Sciences Autophagy plays a central role in cellular quality control by destroying damaged or excess proteins, lipids, membranes, and organelles that accumulate in response to deviations from homeostasis. The existence and role of autophagy in endothelial cells (ECs) and blood vessels has not been established. Autophagy can be quantified by assessing the ratio of the membrane bound conjugate of microtubule-associated protein light chain 3 (LC3-II) to the cytosolic non-lipidated conjugate LC3-1 (LC3-II:LC3-I) or GAPDH (LC3-II:GAPDH) via immunoblotting. We sought to determine the extent to which a variety of cellular stressors induces autophagy in ECs and intact blood vessels. LC3-II:LC3-I or LC3-II:GAPDH was elevated (p<0.05) (i) 450±6% (n=4) in ECs incubated for 2 h in amino acid (AA)-deplete vs. AA-replete media; (ii) 47±3% (n=3) in arteries from fasted (14 h) vs. fasted / refed (1 h) mice; (iii) 40±2% (n=3) in arteries from mice that completed acute exercise vs. sedentary controls; (iv) 38±1% in arteries from exercise-trained vs. sedentary mice under basal conditions (n=2 per group); and was decreased (p<0.05) (v) 57±8% (n=4) in arteries from ~30 month-old (i.e., old) vs. ~6 month-old (i.e., young) mice. Further, indices of autophagy were elevated (p<0.05) 101±6% in ECs exposed to 3 h x 500 uM palmitate vs. vehicle (n=4), and 50±6% in arteries from obese vs. lean mice (n=4 per group). Thus, autophagy is altered in ECs and blood vessels in response to physiological (e.g., fasting, acute exercise, exercise training, aging) and pathophysiological (acute lipotoxicity, diet-induced obesity) stimuli. Ongoing research will determine the functional role of vascular autophagy in health and disease.

Concentrations of Trace Pharmaceuticals Found in Hobble Creek

January 01, 2014 12:00 AM
Janweb Lagazo, Brigham Young University Life Sciences The scientific community and the general public have long been interested in the effects of water pollution. Most studies on water pollution have focused solely on industrial pollution, but have failed to consider the potential impact of pharmaceuticals that unintentionally accumulate in aquatic ecosystems via wastewater treatment effluents. The purpose of this study is to advance our understanding on how these wastewater effluents affect aquatic ecosystems in Utah. We quantified the concentration of select pharmaceuticals in Hobble Creek using mass spectrometry. Then we sampled above the treatment plant, at the effluent outlet, and downstream of the effluent to determine pre-effluent and post-effluent drug concentrations. We are currently using this preliminary data to investigate how common endocrine disrupting, anti-inflammatory, analgesic, and anti-anxiety drugs may potentially affect the aquatic ecosystem of the endangered Chasmistes liorus, commonly known as June sucker.

Characterizing breast cancer cell lines using principal component analysis of high- frequency ultrasonic spectra

January 01, 2014 12:00 AM
Laurel Thompson, Utah Valley University Life Sciences Breast cancer is divided into subtypes which are defined by their proteomics, histology, and genetic expression profile. Current methods, therefore, are aimed at testing these, and include DNA microarrays, immunohistochemical staining, and proteomic analysis. These methods are effective classifiers, but are not easily transferable to real-time clinical applications, such as the determination of cancerous status during operation or when taking a biopsy. The determination of molecular subtype by other means would be a significant advancement in cancer detection and treatment. We have made some preliminary studies that suggest high-frequency ultrasound may be sensitive to variations among the cancer subtypes as manifest in cell cultures through their cytoskeletal protein structure, which has a distinct spectral signature. The object of this study was to explore the basis for this variation through a combination of experimental and theoretical analysis. We used first-principal modeling methods and compared the model spectra generated from these to spectra obtained in the cell culture lab. Variations in bulk modulus, cell position and size were modeled and combined with experimental spectra in principal component analysis (PCA), and the Euclidean distances between each principal component of the experimental were found as they relate to the theoretical principal components. A graphical method similar to heat maps used for gene expression profiling was then developed to display the relative distances (similarities) between spectra. The program was tested by comparing experimental spectra of three breast cancer cell lines to model spectra. The results indicate the properties and thus molecular subtypes of breast cancer cells could potentially be determined by comparing their measured spectra to model spectra using a feature classification program such as PCA and that these classifying features can be displayed in a convenient graphical representation according to their spectral similarities.

Three-Dimensional Modeling of Facial Nerve VII

January 01, 2014 12:00 AM
Dani Peterson, Brigham Young University Life Sciences Due to its long and complicated trajectory through the cranium, facial nerve VII (CN VII) can be damaged in surgeries, sometimes resulting in facial muscle paralysis. Surgical removal of acoustic neuromas and parotid tumors, in addition to surgical repair of the temporomandibular joint disorder are associated with a risk of damage to CN VII. In addition, insertion of auditory implants can damage the nerve, as can improper stimulation to the nerve after the implantation has occurred. We will create a three-dimensional (3D) model based off of data from dissection of the nerve in a human cadaver in order to give physicians a greater in vivo knowledge of the pathway of CN VII. We have dissected the lateral side of the right half of the head to the level of the parotid gland, identified the parotid plexus of CN VII, and followed its five branches. In addition, we are currently following the nerve through the internal auditory meatus on its pathway through the temporal bone. In preparation for the modeling MicroScribe technique described below, we have imaged the head using Magnetic Resonance Imaging (MRI) at BYU. These images will be used as a template for the nerve reconstruction model. After completing the dissection, we will track the nerve trajectory using a MicroScribe 3D Digitizer. The MicroScribe technique is used to create 3D computer models of any physical object. The user sets reference points and uses the stylus to trace data points of the object’s contours. Our final product will be a 3D spatial computer mapping of CNVII, as well as a mapping of the skull, parotid gland, and other landmarks to put the nerve model into context. We hypothesize that with our approach and MicroScribe technique, we will be successful in creating an accurate model of CN VII in the head.

High Intake of Soy and Selenium Reduces Prostate Cancer Risk: Does Timing of Intervention Matter?

January 01, 2014 12:00 AM
Lauren Archibald, Brigham Young University Life Sciences Increased intake of selenium (Se) and soy have both been shown to reduce risk for prostate cancer, especially if these dietary treatments are combined. The purpose of this project is to determine how the timing of Se supplementation of either a low- or high-soy diet affects prostate cancer risk. [C57BL/6 X FVB] F1 TRAMP (TRansgenic Adenocarcinoma of Mouse Prostate) male mice were fed stock diets low or high in soy. Half of the mice received Se supplementation (4.0 mg Se/kg BW as Se-methylselenocysteine) by gavage 5 d/wk in a 2 X 2 factorial design. Se supplementation began at conception, 6 weeks, 12 weeks, or 18 weeks of age. The mice were then sacrificed at different stages of maturation (4, 12, 18, and 24 weeks). Our results showed that, at 12 weeks of age, urogenital tract weights, a measure of prostate proliferation and tumor volume, were significantly reduced by Se supplementation (p<0.001) and by soy (p=0.044), independent of time of dietary intervention. Histological scores of prostate cancer progression also showed a protective effect of Se supplementation (p=0.030). At this writing, statistical analysis of data from mice sacrificed at 18 weeks is in process. Data derived from 18-week mice, combined with our previous findings from 12-week animals, will allow us to chart the progress of prostate cancer in this model. In addition, results will show how dietary Se and soy may alter disease progression and how the timing of dietary intervention may determine its effects.

Cultural, Economic, and Educational Factors Related to Diabetes Mellitus Type 2 in Tongans

January 01, 2014 12:00 AM
April McMurray, Brigham Young University Life Sciences Diabetes Mellitus Type 2 (DMT2) is a lifestyle-related disease where the body does not produce enough insulin or the cells are unreceptive to it, and it is now the most common form of diabetes. Individuals who do not control the disease can suffer serious complications such as limb amputation, damage to the eyes, kidneys, nerves, heart, and it can be very costly. This problem is particularly serious in Tonga; the prevalence is almost twice as high as that in the United States. The purpose of this research project was to determine to what extent the cultural, economic, and educational factors contribute to such high prevalence. In May I traveled to Tonga with the nursing students from Brigham Young University to conduct my research. I distributed surveys to patients and medical staff in the diabetes clinic in the Vaiola hospital in Nuku’alofa, Tonga. The surveys had questions related to their socioeconomic status, understanding and attitudes of diabetes, as well as patient management practices. While I was there, I also kept extensive field notes on observations related to my research, which provided supplemental information regarding the Tongan lifestyle that was difficult to gather from the surveys. Preliminary analysis indicates that there has been a very small, positive shift in understanding and attitudes towards DMT2, but economic- and culture-based habits still impede Tongans from managing the disease effectively. There were several limitations to this study: small sample numbers, lack of resources, some resistance from Tongan medical personnel, and particularly cultural barriers made it difficult to gather enough information to come to significant conclusions. However, the research does give insight concerning potential future studies and interventions to help the people of Tonga treat this disease.

The Genetic Architecture of Pelvic Reduction in Ninespine Sticklebacks

January 01, 2014 12:00 AM
Sara Fauver, University of Utah Life Sciences We know that novel genetic variants have driven evolution for millions of years and that natural selection favors phenotypes most suited for survival, leading to the enormous diversity of life we see today. However, what remains unclear, are the patterns of mutations that lead to large phenotypic changes. For example, do mutations in a single gene of large effect lead to morphological changes more often than numerous mutations in genes of smaller effect? Also, do these mutations occur more often in protein coding regions or regulatory regions of DNA? Finally, are the same genes or gene pathways used repeatedly across lineages when parallel phenotypes evolve?

A predictive analytic approach to improve patient handoffs: a retrospective study of biliary complications and acute cellular rejection episodes following liver transplantation

January 01, 2014 12:00 AM
Daniel Hall, Brigham Young University Life Sciences OBJECTIVE(S): Predictive analytics (PA) is increasingly being used in the delivery of healthcare. Whether PA can improve patient handoffs on a busy surgical service is unknown. This study aims to determine if predictive models for acute cellular rejection (ACR) episodes and biliary complications after orthotropic liver transplantation (OLT) can be built in order to improve patient care.

The adverse effects of ionic liquids on pathogenic biofilms

January 01, 2014 12:00 AM
Spencer Alexander, Dixie State University Life Sciences Antibiotic resistance has increased with each new developed medication, creating new problems as bacteria become more difficult to defeat. Some of these bacteria are resistant because they can excrete an extracellular polymeric substance known as a biofilm. The polysaccharide-based biofilm matrix allows the colony to communicate, absorb nutrients, and exchange genetic material giving it an advantage in possible resistance through plasmid exchange. At present, there are no effective antimicrobial agents that can safely treat and prevent resistant bacteria like ORSA. Biofilms have a negative impact ranging from human pathogenesis down to economic expenses. In order to break down established biofilms, we utilized newly developed organic salts known as ionic liquids. These novel liquids have been observed to prevent bacterial colonies and biofilm formation, possibly by introducing intermolecular interactions that disrupt the chemical bonding in biofilms. The morphology of the microbes was characterized and observed to determine the effect of the ionic liquids on biofilms. Inhibition studies were also performed to determine antimicrobial efficiency of the ionic liquids as a function of organic structures. These novel ionic liquids provide an unprecedented, effective and efficient method to combat resistant bacteria, which could have tremendous impacts in achieving sterile environments in medical and remote settings.

Metabolic Inhibition in Saccharomyces Cerevisiae

January 01, 2014 12:00 AM
Corey Wolf, Westminster College Life Sciences The yeast species Saccharomyces cerevisiae is used in numerous industries including brewing, baking, and winemaking. In recent years an increased demand for low ethanol beers has pushed breweries to develop a beer that is both rich in flavor and low in alcohol content. The current strategies employed to decrease the ethanol concentration in beer are costly, time intensive, and result in less flavorful beers. In this study, a method for decreasing alcohol content in the brewing process through the use of metabolic inhibitors of Alcohol Dehydrogenase is tested. Alcohol Dehydrogenase is the enzyme responsible for the conversion of acetaldehyde, an intermediate in the metabolic pathway of yeast, into ethanol. Two competitive inhibitors of Alcohol Dehydrogenase, Pyrazole and Fomepizole, were applied to small scale fermentations in varying concentrations in an attempt to decrease the overall ethanol yield of the beer. The application of either inhibitor resulted in an initial decreased rate of fermentation overall, measured as a change of sugar and ethanol concentration. In the later stages of fermentation, the rate of ethanol production returned to normal, suggesting the inhibitors were either catalyzed or removed by the cell. While this method for manipulating the products of fermentation did not yield the desired effects, this study did highlight the importance of the fermentation pathway for maintaing healthy Saccharomyces cerevisiae cultures. This research may be helpful in understanding the complete metabolic pathway of brewer’s yeast, with further application to organisms with conserved pathways.

Olfactory Processing in the Brain: The Impact of Lateral Glomerular Interactions on Odor Representation

January 01, 2014 12:00 AM
Kyle Hansen, University of Utah Life Sciences Our brain processes physical stimuli from the world around us to shape how we perceive our environment. In the olfactory system, this processing begins with olfactory sensory neurons that relay information about distinct odorants to a region of the brain called the olfactory bulb. Olfactory sensory neurons express the same odorant receptors converge onto structures within the olfactory bulb called glomeruli. Here, we map lateral interactions between glomeruli to better understand how olfactory information from the environment is processed within the olfactory bulb. Using GCaMP6, a fluorescent calcium indicator, in awake mice we can observe optogenetically-evoked patterns of lateral connectivity between glomeruli in the olfactory bulb. The findings from this study will help clarify potential interglomerular connection schemes and provide understanding of how local circuitry in the olfactory bulb transforms the representations of sensory information before it is relayed to higher brain areas.

Multimechanistic combination enhances selenium’s antiproliferative effect in prostate cancer cells

January 01, 2014 12:00 AM
Merrill Christensen, Brigham Young University Life Sciences Selenium (Se) has established chemopreventive efficacy against prostate cancer, the second leading cause of cancer death among men in the US. Currently, most studies only employ one single chemical form of Se, even though different forms of Se act through varied mechanisms to achieve their anticancer effects. In this study, we propose that systematically combining multiple forms of Se will produce an optimal combination of Se compounds to inhibit in vitro prostate cancer cell growth. As proof of principle, we (1) synthesized Se nanoparticles (nano Se), (2) determined the IC50s of methylseleninic acid (MSA), sodium selenite, and nano Se in PC-3 cells, (3) utilized mixture designs and response surface methodology to direct our combination experiments with these three compounds, (4) tested the fifteen combinations determined in the previous step, and (5) constructed a polynomial model to derive the optimum combination of MSA, sodium selenite, and nano Se to inhibit PC-3 cell growth. Our results showed that combining different forms of Se compounds enhanced its chemopreventive effect. Future studies will expand the use of three Se-containing compounds to four and demonstrate similar effects in xenograft mice.