Skip to main content
Utah's Foremost Platform for Undergraduate Research Presentation
2015 Abstracts

RRMS Patient Genotype Correlated with Copaxone-Induced Hepatotoxicity

Tielle Gallion, Brigham Young University

Life Sciences

Quality of life is highly dependent on how well the liver functions. Increases in liver-enzyme levels, such as alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), and gamma-glutamyl transferase (GGT) are associated with liver damage. A common treatment for Relapse-Remitting Multiple Sclerosis (RRMS) is Copaxone. This treatment has shown to be effective in reducing the number of relapses (periods of disability), but despite its effectiveness there is a prevalence of side effects, including increased liver enzyme activity. The aim of this pharmacogenetic project is to look at the effects of Copaxone, a drug therapy used in treating RRMS, on a patient’s liver-enzyme levels. I will determine if a correlation exists between increased liver levels and a specific genotype present in RRMS patients. I also plan to utilize medical record extraction. We have identified clinic visits in which 1,050 patients are recorded as currently using Copaxone by creating an algorithm to extract this data from electronic medical records (EMRs). This records are part of the Vanderbilt University Medical Center BioVU database. With this information, I have determined the period of time when patients are taking the drug. I accomplished this by manually calculating start and stop dates of Copaxone and created a table with information for each individual. Laboratory values are stored in a database, and we are currently extracting liver levels for ALT, AST, ALP, and GGT during the identified time frames for respective patients. Once extraction of lab values is complete, I will perform a linear regression analysis in R, a statistical computing program, to determine if any correlation exists between RRMS patient genotypes and liver-enzyme levels. Patients have previously been genotyped on the ImmunoChip, which contains 196,524 SNPs and has undergone stringent quality control.