2020 Abstracts
data-content-type="article"
Experimental adaptation of Influenza A Virus to specific host genotypes
Kelleher, Justin; Costa, Rodrigo; Potts, Wayne (University of Utah)
Faculty Advisor: Potts, Wayne (University of Utah, School of Biological Sciences)
Influenza A Virus (IAV) is a highly adaptable pathogen with the ability to cross over into different host species. Theory predicts that when a pathogen adapts to specific host genotypes, it loses virulence when encountering novel genotypes. This study focuses on whether influenza virulence is lost when infecting novel host genotypes. To test whether influenza adaptation to different genotypes leads to viral fitness and virulence tradeoffs, IAV was adapted to 2 strains of mouse via serial passage and subsequently tested against the host of passage (familiar) and in the novel host (unfamiliar). After 10 rounds of passage, IAV virulence increased in the familiar host. However, when adapted IAV strains were used to infect unfamiliar hosts, influenza virulence effects were mitigated, but not to a statistically significant degree. This study helps elucidate why different barriers to infection, including novel host genotypes, affect IAV virulence and fitness. Studying genotype-dependent virulence tradeoffs focuses can further research on more effective Influenza control in epidemiological, agricultural and conservation settings.
Faculty Advisor: Potts, Wayne (University of Utah, School of Biological Sciences)
Influenza A Virus (IAV) is a highly adaptable pathogen with the ability to cross over into different host species. Theory predicts that when a pathogen adapts to specific host genotypes, it loses virulence when encountering novel genotypes. This study focuses on whether influenza virulence is lost when infecting novel host genotypes. To test whether influenza adaptation to different genotypes leads to viral fitness and virulence tradeoffs, IAV was adapted to 2 strains of mouse via serial passage and subsequently tested against the host of passage (familiar) and in the novel host (unfamiliar). After 10 rounds of passage, IAV virulence increased in the familiar host. However, when adapted IAV strains were used to infect unfamiliar hosts, influenza virulence effects were mitigated, but not to a statistically significant degree. This study helps elucidate why different barriers to infection, including novel host genotypes, affect IAV virulence and fitness. Studying genotype-dependent virulence tradeoffs focuses can further research on more effective Influenza control in epidemiological, agricultural and conservation settings.
overrideBackgroundColorOrImage=
overrideTextColor=
promoTextAlignment=
overrideCardHideSection=
overrideCardHideByline=
overrideCardHideDescription=
overridebuttonBgColor=
overrideButtonText=
promoTextAlignment=
data-content-type="article"
Genomic Analysis Between Trichoptera and Lepidoptera Show Evolutionary Innovations Allowing Trichoptera to Adapt to an Aquatic Environment
Olsen, Lindsey; Frandsen, Paul (Brigham Young University)
Faculty Advisor: Frandsen, Paul (Life Science, Plant and Wildlife)
Trichoptera (caddisflies) have evolved to become the most diverse, exclusively aquatic insects, yet many of the genomic changes that contribute to Trichoptera's the success of this order of insects are still unknown. Trichoptera and Lepidoptera (moths and butterflies) are reciprocally monophyletic meaning that they both share their most recent common ancestor. Despite being closely related, Trichoptera have evolved into the most diverse, exclusively aquatic insects, whereas, Lepidoptera have evolved to become a diverse, almost exclusively terrestrial insect (Holzenthal et al. 2007). Trichoptera and Lepidoptera are the subjects of scientific inquiry because they are both capable of spinning silk. Trichoptera produce silk as larvae and use it to make cases or fixed retreats. Trichoptera silk is of particular interest because its properties allow for it to be an underwater adhesive. While other research has focused primarily on the evolution of Trichoptera silk, little research has been done to identify the evolutionary innovations that allowed Trichoptera to adapt and diversify in an aquatic environment. Our research focuses on identifying the genomic basis of their evolutionary innovations. We report the genome annotation of four newly sequenced Trichoptera species Hesperophylax magnus, Parapsyche elsis, Philanisus plebeius, and Rhyacophila brunnea. These annotations will reveal levels of homozygosity, conserved elements, and gene duplications. We then conducted a genome-wide search for gene family expansions and retractions using CAFE, in order to identify genomic regions that could contribute to Trichoptera's unique qualities and evolutionary history.
Holzenthal R. W., R. J. Blahnik, A. L. Prather, and K. M. Kjer, 2007 Order Trichoptera Kirby, 1813 (Insecta), Caddisflies*. Zootaxa 1668: 639—698. https://doi.org/10.11646/zootaxa.1668.1.29
Faculty Advisor: Frandsen, Paul (Life Science, Plant and Wildlife)
Trichoptera (caddisflies) have evolved to become the most diverse, exclusively aquatic insects, yet many of the genomic changes that contribute to Trichoptera's the success of this order of insects are still unknown. Trichoptera and Lepidoptera (moths and butterflies) are reciprocally monophyletic meaning that they both share their most recent common ancestor. Despite being closely related, Trichoptera have evolved into the most diverse, exclusively aquatic insects, whereas, Lepidoptera have evolved to become a diverse, almost exclusively terrestrial insect (Holzenthal et al. 2007). Trichoptera and Lepidoptera are the subjects of scientific inquiry because they are both capable of spinning silk. Trichoptera produce silk as larvae and use it to make cases or fixed retreats. Trichoptera silk is of particular interest because its properties allow for it to be an underwater adhesive. While other research has focused primarily on the evolution of Trichoptera silk, little research has been done to identify the evolutionary innovations that allowed Trichoptera to adapt and diversify in an aquatic environment. Our research focuses on identifying the genomic basis of their evolutionary innovations. We report the genome annotation of four newly sequenced Trichoptera species Hesperophylax magnus, Parapsyche elsis, Philanisus plebeius, and Rhyacophila brunnea. These annotations will reveal levels of homozygosity, conserved elements, and gene duplications. We then conducted a genome-wide search for gene family expansions and retractions using CAFE, in order to identify genomic regions that could contribute to Trichoptera's unique qualities and evolutionary history.
Holzenthal R. W., R. J. Blahnik, A. L. Prather, and K. M. Kjer, 2007 Order Trichoptera Kirby, 1813 (Insecta), Caddisflies*. Zootaxa 1668: 639—698. https://doi.org/10.11646/zootaxa.1668.1.29
overrideBackgroundColorOrImage=
overrideTextColor=
promoTextAlignment=
overrideCardHideSection=
overrideCardHideByline=
overrideCardHideDescription=
overridebuttonBgColor=
overrideButtonText=
promoTextAlignment=
data-content-type="article"
Engineered bacterial tight junctions: a high-throughput method to characterize claudins and identify epithelial modulators
Rollins, Jay; Whitney, Jordan; Hope, Sandra; Mizrachi, Dario (Brigham Young University)
Faculty Advisor: Mizrachi, Dario (Brigham Young University, Physiology and Developmental Biology)
Epithelial and endothelial tissues form selectively permeable barriers, with the permeability largely controlled by intercellular tight junctions. Claudin (CLDN) proteins are critical components of these tight junctions, making them the gatekeepers that control the paracellular space in multicellular organisms. CLDN proteins are thus targets for studies on epithelial and endothelial absorption, to therefore learn how to regulate them for potential drug delivery or therapeutics. CLDN characterization is still in progress. Previously, the relative strength of each member of the CLDN family was unknown. Additionally, no high-throughput method to study absorption enhancers or inhibitors had been found.
Through CLDN expression in Escherichia coli, we determined the relative strength of each CLDN protein and confirmed the effects of various absorption enhancers from previous studies. Therefore, we propose that CLDN expression in Escherichia coli is a valid model for the study of tight junctions and that, through flow cytometry, it is a high-throughput method for interrogating large libraries of potential drug delivery compounds. Using CLDN 2 because of its role in cancer-metastasis prevention and its measured sensitivity towards epithelial modulators, we studied a fifty thousand compound library (DIVERSet-CL Library) to identify absorption moderators, drug delivery compounds, and possible cancer-metastasis prevention.
Faculty Advisor: Mizrachi, Dario (Brigham Young University, Physiology and Developmental Biology)
Epithelial and endothelial tissues form selectively permeable barriers, with the permeability largely controlled by intercellular tight junctions. Claudin (CLDN) proteins are critical components of these tight junctions, making them the gatekeepers that control the paracellular space in multicellular organisms. CLDN proteins are thus targets for studies on epithelial and endothelial absorption, to therefore learn how to regulate them for potential drug delivery or therapeutics. CLDN characterization is still in progress. Previously, the relative strength of each member of the CLDN family was unknown. Additionally, no high-throughput method to study absorption enhancers or inhibitors had been found.
Through CLDN expression in Escherichia coli, we determined the relative strength of each CLDN protein and confirmed the effects of various absorption enhancers from previous studies. Therefore, we propose that CLDN expression in Escherichia coli is a valid model for the study of tight junctions and that, through flow cytometry, it is a high-throughput method for interrogating large libraries of potential drug delivery compounds. Using CLDN 2 because of its role in cancer-metastasis prevention and its measured sensitivity towards epithelial modulators, we studied a fifty thousand compound library (DIVERSet-CL Library) to identify absorption moderators, drug delivery compounds, and possible cancer-metastasis prevention.
overrideBackgroundColorOrImage=
overrideTextColor=
promoTextAlignment=
overrideCardHideSection=
overrideCardHideByline=
overrideCardHideDescription=
overridebuttonBgColor=
overrideButtonText=
promoTextAlignment=
data-content-type="article"
Effects of Grape Seed Extract Metabolites on ß-cell Proliferation and Function
Beales, Joseph; Lloyd, Trevor; Krueger, Emily; Barlow, Andrew (Brigham Young University)
Faculty Advisor: Tessem, Jeffery (Life Sciences; Nutritional, Dietetics, and Food Science)
Worldwide, an estimated 415 million people suffer from diabetes.1 Diabetes is characterized by chronic dysfunction of the pancreatic ß-cell, which leads to unregulated insulin secretion and abnormal blood glucose levels. Therefore, methods which increase the number of ß-cells or improve their function have potential for complementary treatment of type 2 diabetes. Compounds such as antioxidants and their gut metabolites have received attention in literature as having potential ß-cell-regulating properties.2,3 Therefore, we hypothesize that supplementation of grape seed extract (GSE), which is rich in antioxidants, will enhance ß-cell proliferation and insulin secretion. Accordingly, we obtained metabolites, derived from rats on either a control or grape seed extract diet, to measure the metabolites' impact on ß-cell function through in vitro assays such as glucose stimulated insulin secretion (GSIS) and 3H-thymidine incorporation. Discoveries regarding GSE metabolites' effects on ß-cell function could be fundamental to understanding ß-cell regulation and potential pharmaceutical or dietary treatments for diabetes.
1 Ogurtsova, K., et al. "IDF Diabetes Atlas: Global Estimates for the Prevalence of Diabetes for 2015 and 2040." Diabetes Research and Clinical Practice, Elsevier, 31 Mar. 2017, www.sciencedirect.com/science/article/pii/S0168822717303753?via%3Dihub.
2 Bajaj, Sarita, and Afreen Khan. "Antioxidants and diabetes." Indian journal of endocrinology and metabolism vol. 16,Suppl 2 (2012): S267-71. Doi:10.4103/2230-8210.104057
3 Tsuda, Takanori. "Recent Progress in Anti-Obesity and Anti-Diabetes Effect of Berries." MDPI, Multidisciplinary Digital Publishing Institute, 6 Apr. 2016, www.mdpi.com/2076-3921/5/2/13.
Faculty Advisor: Tessem, Jeffery (Life Sciences; Nutritional, Dietetics, and Food Science)
Worldwide, an estimated 415 million people suffer from diabetes.1 Diabetes is characterized by chronic dysfunction of the pancreatic ß-cell, which leads to unregulated insulin secretion and abnormal blood glucose levels. Therefore, methods which increase the number of ß-cells or improve their function have potential for complementary treatment of type 2 diabetes. Compounds such as antioxidants and their gut metabolites have received attention in literature as having potential ß-cell-regulating properties.2,3 Therefore, we hypothesize that supplementation of grape seed extract (GSE), which is rich in antioxidants, will enhance ß-cell proliferation and insulin secretion. Accordingly, we obtained metabolites, derived from rats on either a control or grape seed extract diet, to measure the metabolites' impact on ß-cell function through in vitro assays such as glucose stimulated insulin secretion (GSIS) and 3H-thymidine incorporation. Discoveries regarding GSE metabolites' effects on ß-cell function could be fundamental to understanding ß-cell regulation and potential pharmaceutical or dietary treatments for diabetes.
1 Ogurtsova, K., et al. "IDF Diabetes Atlas: Global Estimates for the Prevalence of Diabetes for 2015 and 2040." Diabetes Research and Clinical Practice, Elsevier, 31 Mar. 2017, www.sciencedirect.com/science/article/pii/S0168822717303753?via%3Dihub.
2 Bajaj, Sarita, and Afreen Khan. "Antioxidants and diabetes." Indian journal of endocrinology and metabolism vol. 16,Suppl 2 (2012): S267-71. Doi:10.4103/2230-8210.104057
3 Tsuda, Takanori. "Recent Progress in Anti-Obesity and Anti-Diabetes Effect of Berries." MDPI, Multidisciplinary Digital Publishing Institute, 6 Apr. 2016, www.mdpi.com/2076-3921/5/2/13.
overrideBackgroundColorOrImage=
overrideTextColor=
promoTextAlignment=
overrideCardHideSection=
overrideCardHideByline=
overrideCardHideDescription=
overridebuttonBgColor=
overrideButtonText=
promoTextAlignment=
data-content-type="article"
Evaluating the use of Drones for Yield Estimates, Disease Detection, and Other Problems in Agriculture
Nischwitz, Claudia; Compton, Tyson (Utah State University)
Faculty Advisor: Nischwitz, Claudia (College of Science, Biology Department)
This research evaluates the use of Unmanned Aerial Vehicles (UAVs) in agricultural applications. We center our research on early disease detection and yield estimation in vegetable crops using aerial imagery and computer software. Previous research on UAV use in agriculture has addressed topics such as soil and field analysis (Long, 2017), Precision Viticulture in Italy (Matese, et al., 2015), and other areas pertinent to agriculturists. Our research builds on previous studies and aims to provide Utah farmers with knowledge and tools to increase agricultural productivity. A DJI Inspire drone is used with both a traditional light camera and a Near-Infrared (NIR) camera. Normal and NIR images are taken at the USU Research Farm in Kaysville Utah, and over local farm fields in Utah throughout the growing season. Unhealthy plants, identified from the aerial images, are tested at the USU Plant Pathology lab to identify diseases. Computer software (ImageJ, Microsoft ICE, and MATLAB) is used to process the images and collect crop health and yield estimate data. At the end of the growing season, the yield for each crop is measured and correlated to the aerial image data to create a predictive model for yield. Some plant diseases including Beet curly top virus in tomato and powdery mildew in squash are readily identified. We find that yield estimation with aerial imagery works well for specific crops. Potato yield was correlated with plant size at different numbers of days after planting. Further tests in coming years will provide validation for these results. Our current data show that the use of an UAV can be a valuable tool for early disease detection and yield estimation in vegetable crops.
Faculty Advisor: Nischwitz, Claudia (College of Science, Biology Department)
This research evaluates the use of Unmanned Aerial Vehicles (UAVs) in agricultural applications. We center our research on early disease detection and yield estimation in vegetable crops using aerial imagery and computer software. Previous research on UAV use in agriculture has addressed topics such as soil and field analysis (Long, 2017), Precision Viticulture in Italy (Matese, et al., 2015), and other areas pertinent to agriculturists. Our research builds on previous studies and aims to provide Utah farmers with knowledge and tools to increase agricultural productivity. A DJI Inspire drone is used with both a traditional light camera and a Near-Infrared (NIR) camera. Normal and NIR images are taken at the USU Research Farm in Kaysville Utah, and over local farm fields in Utah throughout the growing season. Unhealthy plants, identified from the aerial images, are tested at the USU Plant Pathology lab to identify diseases. Computer software (ImageJ, Microsoft ICE, and MATLAB) is used to process the images and collect crop health and yield estimate data. At the end of the growing season, the yield for each crop is measured and correlated to the aerial image data to create a predictive model for yield. Some plant diseases including Beet curly top virus in tomato and powdery mildew in squash are readily identified. We find that yield estimation with aerial imagery works well for specific crops. Potato yield was correlated with plant size at different numbers of days after planting. Further tests in coming years will provide validation for these results. Our current data show that the use of an UAV can be a valuable tool for early disease detection and yield estimation in vegetable crops.
overrideBackgroundColorOrImage=
overrideTextColor=
promoTextAlignment=
overrideCardHideSection=
overrideCardHideByline=
overrideCardHideDescription=
overridebuttonBgColor=
overrideButtonText=
promoTextAlignment=
data-content-type="article"
Genome-wide CRISPR-Cas9 Screen Identifies Genes Required for Ꞵ-cell Survival of Metabolic Stressors.
Ekpo, Idongesit; Yates, Joshua; Tessem, Jeffery; Hill, Jonathan (Brigham Young University)
Faculty Advisor: Tessem, Jeffery (Life Sciences; Nutrition, Dietetics, and Food Science); Hill, Jonathan (Life Sciences, Physiology and Developmental Biology)
By the year 2040, an estimated 642 million people are expected to have diabetes globally. Diabetes results from an elevation of metabolic stressors, such as glucotoxicity, lipotoxicity and oxidative stress induced by reactive oxygen and nitrogen species. Current treatment methods for diabetes are not curative and do not help us understand its pathogenesis. A more effective method involves exploring the pathogenesis of diabetes by probing the genetic variation involved in diabetes so that we can understand the disease better and develop curative methods to combat it. Gene therapy is a method for determining genetic variation in disease and CRISPR-Cas9 is a gene-editing tool that can be used. Because of its convenience, CRISPR-Cas9 has been used to create many forward genetic screens. We use the CRISPR-Cas9 tool to create a knockout forward genetic screen of all the genes in the INS-1 Ꞵ-cell line that are required for _-cell survival of metabolic stressors. We hypothesize that the gene knockouts generated by the CRISPR-Cas9 system will help us identify genes that are involved in the mechanistic pathways of these metabolic stressors. Here we present the results of our forward genetic screen.
Faculty Advisor: Tessem, Jeffery (Life Sciences; Nutrition, Dietetics, and Food Science); Hill, Jonathan (Life Sciences, Physiology and Developmental Biology)
By the year 2040, an estimated 642 million people are expected to have diabetes globally. Diabetes results from an elevation of metabolic stressors, such as glucotoxicity, lipotoxicity and oxidative stress induced by reactive oxygen and nitrogen species. Current treatment methods for diabetes are not curative and do not help us understand its pathogenesis. A more effective method involves exploring the pathogenesis of diabetes by probing the genetic variation involved in diabetes so that we can understand the disease better and develop curative methods to combat it. Gene therapy is a method for determining genetic variation in disease and CRISPR-Cas9 is a gene-editing tool that can be used. Because of its convenience, CRISPR-Cas9 has been used to create many forward genetic screens. We use the CRISPR-Cas9 tool to create a knockout forward genetic screen of all the genes in the INS-1 Ꞵ-cell line that are required for _-cell survival of metabolic stressors. We hypothesize that the gene knockouts generated by the CRISPR-Cas9 system will help us identify genes that are involved in the mechanistic pathways of these metabolic stressors. Here we present the results of our forward genetic screen.
overrideBackgroundColorOrImage=
overrideTextColor=
promoTextAlignment=
overrideCardHideSection=
overrideCardHideByline=
overrideCardHideDescription=
overridebuttonBgColor=
overrideButtonText=
promoTextAlignment=
data-content-type="article"
Field based real time sequencing of microbial samples via nanopore technology
Jackson, Ryan; Miller, Charles (Utah State University)
Faculty Advisor: Jackson, Ryan (College of Science, Chemistry and Biochemistry Department); Miller, Charles (College of Engineering, Biological Engineering Department)
The concept of real time species identification in situ is a long time researchers dream. This dream now lies within reach due to the recent innovation of nanopore sequencing technology. These machines, with their small size and powerful computing capability, have made it possible to preform 16s and whole genome sequencing, with a setup that can fit in a backpack. Not only will this increase convenience of sampling for researchers, but a recent study in Wales has shown that sampling on site may help to identify closely related organisms at a greater level of accuracy (Parker, 2017). If sampling in the field really can give more accurate results, field sequencing may help to identify an extraordinarily large amount of biodiversity and genetic pathways.
One obstacle that stands in the way of this technology becoming more accessible across the globe is the lack of scientific literature on how to build the infrastructure necessary to sample on site. This study aims to construct a complete, self-contained kit with which you could field sequence. I have, currently at my disposal, a portable thermocycler, a nanopore sequencer, and computer designed with a workflow to do real time sequencing analysis. Using this technology already available, we aim to round out the kit with the necessary reagents, and structure to house the equipment. We will provide in depth analysis of the equipment, reagents, and all other materials provided to sequence a sample in any given location.
Faculty Advisor: Jackson, Ryan (College of Science, Chemistry and Biochemistry Department); Miller, Charles (College of Engineering, Biological Engineering Department)
The concept of real time species identification in situ is a long time researchers dream. This dream now lies within reach due to the recent innovation of nanopore sequencing technology. These machines, with their small size and powerful computing capability, have made it possible to preform 16s and whole genome sequencing, with a setup that can fit in a backpack. Not only will this increase convenience of sampling for researchers, but a recent study in Wales has shown that sampling on site may help to identify closely related organisms at a greater level of accuracy (Parker, 2017). If sampling in the field really can give more accurate results, field sequencing may help to identify an extraordinarily large amount of biodiversity and genetic pathways.
One obstacle that stands in the way of this technology becoming more accessible across the globe is the lack of scientific literature on how to build the infrastructure necessary to sample on site. This study aims to construct a complete, self-contained kit with which you could field sequence. I have, currently at my disposal, a portable thermocycler, a nanopore sequencer, and computer designed with a workflow to do real time sequencing analysis. Using this technology already available, we aim to round out the kit with the necessary reagents, and structure to house the equipment. We will provide in depth analysis of the equipment, reagents, and all other materials provided to sequence a sample in any given location.
overrideBackgroundColorOrImage=
overrideTextColor=
promoTextAlignment=
overrideCardHideSection=
overrideCardHideByline=
overrideCardHideDescription=
overridebuttonBgColor=
overrideButtonText=
promoTextAlignment=
data-content-type="article"
Quantification of Staphylococcus Biofilm Clearance
Kaneshiro, Alma; Jordan, Adam; Crompton, Rhees; Brailsford, Samantha; Spencer, Jonathan (Weber State University)
Faculty Advisor: Clark, Daniel (Science, Microbiology Department and Neuroscience Center); Chaston, John (Life Sciences, Plant & Wildlife Sciences)
Antibiotic resistance is of great concern in the medical community, with bacterial resistance increasing proportional to their use. Staphylococcus aureus, such as methicillin resistant S. aureus (MRSA), can cause fatal infections. Problems due to this resistance are compounded when the infecting bacteria form a biofilm, thick sticky layers of bacterial secretions, which are difficult for antibiotics to penetrate. Biofilm formation is common in hospital settings on stents, catheters, and IV lines. Biofilms make antibiotic treatment risky due to incomplete killing—the most resistant survive exposure. There is evidence that bacteriophage can break up biofilms, possibly making them more susceptible to antibiotics. We induced a S. aureus biofilm formation using chemicals that mimic a skin wound. Using bacteriophage K, we inoculated the biofilm and observed clearance. Samples of cell pellets and liquid supernatant were collected, and DNA was extracted. Real-time PCR was used to quantify the levels of bacteriophage K replication, representing clearance of the bacteria. This research can be used to find efficient ways to treat an infection caused by a S. aureus biofilm. Bacteriophage used in combination with antibiotics may be able to better clear a biofilm infection and reduce antibiotic resistance risk due to more complete infection clearance.
Faculty Advisor: Clark, Daniel (Science, Microbiology Department and Neuroscience Center); Chaston, John (Life Sciences, Plant & Wildlife Sciences)
Antibiotic resistance is of great concern in the medical community, with bacterial resistance increasing proportional to their use. Staphylococcus aureus, such as methicillin resistant S. aureus (MRSA), can cause fatal infections. Problems due to this resistance are compounded when the infecting bacteria form a biofilm, thick sticky layers of bacterial secretions, which are difficult for antibiotics to penetrate. Biofilm formation is common in hospital settings on stents, catheters, and IV lines. Biofilms make antibiotic treatment risky due to incomplete killing—the most resistant survive exposure. There is evidence that bacteriophage can break up biofilms, possibly making them more susceptible to antibiotics. We induced a S. aureus biofilm formation using chemicals that mimic a skin wound. Using bacteriophage K, we inoculated the biofilm and observed clearance. Samples of cell pellets and liquid supernatant were collected, and DNA was extracted. Real-time PCR was used to quantify the levels of bacteriophage K replication, representing clearance of the bacteria. This research can be used to find efficient ways to treat an infection caused by a S. aureus biofilm. Bacteriophage used in combination with antibiotics may be able to better clear a biofilm infection and reduce antibiotic resistance risk due to more complete infection clearance.
overrideBackgroundColorOrImage=
overrideTextColor=
promoTextAlignment=
overrideCardHideSection=
overrideCardHideByline=
overrideCardHideDescription=
overridebuttonBgColor=
overrideButtonText=
promoTextAlignment=
data-content-type="article"
Role of CD5 in oral inflammation and periodontal disease
Townsend, Jessica; Freitas, Claudia; Weber, Scott; Cardon, Dallin (Brigham Young University)
Faculty Advisor: Weber, Scott (Brigham Young University / Life Sciences, Microbiology and Molecular Biology)
The World Health Organization reported in 2016 that oral diseases affected half of the world's population. Oral diseases are due to poor oral hygiene and tobacco use which can develop into periodontal disease. Periodontal disease is caused by an immune response to microbial challenge, which initiates an invasion of lymphocytes and other single-nucleated cells to the site of inflammation in the mouth that can cause tooth loss and is a risk factor for heart and lung disease. Patients with severe periodontitis have increased auto-reactive B lymphocytes that express the CD5 co-receptor and these cells are influenced by T cells. We propose to investigate the relationship between oral inflammation, CD5, and the T helper immune response. This will be done by comparing oral inflammation in mice with and without CD5. CD5 is a T cell co-receptor that regulates T cell development and function and we hypothesize CD5 plays an important role in periodontal disease. We will test this hypothesis by co-culturing T cells expressing or lacking CD5 with oral mucosal or gingival epithelial cells that have been exposed to LPS (lipopolysaccharide, a major component of gram-negative bacteria's wall) and will exam differences in cell number, T cell subtype, and cell function.
Faculty Advisor: Weber, Scott (Brigham Young University / Life Sciences, Microbiology and Molecular Biology)
The World Health Organization reported in 2016 that oral diseases affected half of the world's population. Oral diseases are due to poor oral hygiene and tobacco use which can develop into periodontal disease. Periodontal disease is caused by an immune response to microbial challenge, which initiates an invasion of lymphocytes and other single-nucleated cells to the site of inflammation in the mouth that can cause tooth loss and is a risk factor for heart and lung disease. Patients with severe periodontitis have increased auto-reactive B lymphocytes that express the CD5 co-receptor and these cells are influenced by T cells. We propose to investigate the relationship between oral inflammation, CD5, and the T helper immune response. This will be done by comparing oral inflammation in mice with and without CD5. CD5 is a T cell co-receptor that regulates T cell development and function and we hypothesize CD5 plays an important role in periodontal disease. We will test this hypothesis by co-culturing T cells expressing or lacking CD5 with oral mucosal or gingival epithelial cells that have been exposed to LPS (lipopolysaccharide, a major component of gram-negative bacteria's wall) and will exam differences in cell number, T cell subtype, and cell function.
overrideBackgroundColorOrImage=
overrideTextColor=
promoTextAlignment=
overrideCardHideSection=
overrideCardHideByline=
overrideCardHideDescription=
overridebuttonBgColor=
overrideButtonText=
promoTextAlignment=
data-content-type="article"
Native seed density and priority effects drive invasion resistance against Phragmites in wetland restoration
Holdaway, Bailey; Emily, Martin; Kettenring, Karin (Utah State University)
Faculty Advisor: Kettenring, Karin (S.J. & Jessie E. Quinney College of Natural Resources, Watershed Sciences Department);
Seeds are the primary revegetation method for Great Salt Lake wetlands, however, the density and the priority timing to sow seeds are not clear to wetland managers due to a lack of Great Salt Lake specific revegetation research. Having too low a native seed sowing density could allow unwanted species like the non-native invasive plant Phragmites to reinvade. Too high of a density and density-dependent mortality of sown native seeds could occur, resulting in wasted seeds and unneeded costs for resource-limited managers. In addition, the priority timing (i.e., the relative time and order that seeds are sown) of sowing is also vital for revegetation to favor natives over unwanted invasives. Therefore, our research goal was to determine the optimal seed sowing density and timing priority for reestablishing Great Salt Lake native wetland plant communities. We conducted an outdoor mesocosm experiment with two native sowing densities (3 and 5x the standard sowing density in the region) and three native seed mix sowing timings (4, 2, or 0 weeks prior to sowing Phragmites seeds). We determined the cover of the native plant community and Phragmites at the end of the growing season across the 6 treatment combinations. We found the greatest reduction in Phragmites cover when the native seed mix was sown 4 weeks prior to Phragmites, particularly at the higher native sowing density. A 2-week priority effect did not significantly benefit native species over Phragmites. These results suggest that native seed mixes in Great Salt Lake wetland restorations need to sown much earlier in the summer growing season than when Phragmites seeds germinate and at a very high density to reduce Phragmites cover overall. Though, managers may need to greatly reduce Phragmites seed densities in the seed bank and in the vicinity of restoration sites before revegetation efforts begin.
Faculty Advisor: Kettenring, Karin (S.J. & Jessie E. Quinney College of Natural Resources, Watershed Sciences Department);
Seeds are the primary revegetation method for Great Salt Lake wetlands, however, the density and the priority timing to sow seeds are not clear to wetland managers due to a lack of Great Salt Lake specific revegetation research. Having too low a native seed sowing density could allow unwanted species like the non-native invasive plant Phragmites to reinvade. Too high of a density and density-dependent mortality of sown native seeds could occur, resulting in wasted seeds and unneeded costs for resource-limited managers. In addition, the priority timing (i.e., the relative time and order that seeds are sown) of sowing is also vital for revegetation to favor natives over unwanted invasives. Therefore, our research goal was to determine the optimal seed sowing density and timing priority for reestablishing Great Salt Lake native wetland plant communities. We conducted an outdoor mesocosm experiment with two native sowing densities (3 and 5x the standard sowing density in the region) and three native seed mix sowing timings (4, 2, or 0 weeks prior to sowing Phragmites seeds). We determined the cover of the native plant community and Phragmites at the end of the growing season across the 6 treatment combinations. We found the greatest reduction in Phragmites cover when the native seed mix was sown 4 weeks prior to Phragmites, particularly at the higher native sowing density. A 2-week priority effect did not significantly benefit native species over Phragmites. These results suggest that native seed mixes in Great Salt Lake wetland restorations need to sown much earlier in the summer growing season than when Phragmites seeds germinate and at a very high density to reduce Phragmites cover overall. Though, managers may need to greatly reduce Phragmites seed densities in the seed bank and in the vicinity of restoration sites before revegetation efforts begin.
overrideBackgroundColorOrImage=
overrideTextColor=
promoTextAlignment=
overrideCardHideSection=
overrideCardHideByline=
overrideCardHideDescription=
overridebuttonBgColor=
overrideButtonText=
promoTextAlignment=
data-content-type="article"
Parks and Recreation Administrators' Role in the Food Environment: An Exploratory Qualitative Study
Spruance, Lori; Augustine, Madi (Brigham Young University)
Faculty Advisor: Spruance, Lori (Life Sciences, Public Health)
Youth sport programs are an opportunity to increase physical activity, but the food environment may be detrimental to improving and maintaining health. From a previous study, parents indicated that they would like guidance and direction in a top-down approach from coaches and administrators; yet, understanding the administrator experience relative to the youth sports food environment remains unclear. The purpose of this study is to understand that experience. Semi-structured qualitative interviews will take place with administrators across the state of Utah. Interviews will be recorded and transcribed. Thematic analysis will be conducted to identify salient themes. A peer-reviewed publication and multiple presentations will result from the study conducted.
Faculty Advisor: Spruance, Lori (Life Sciences, Public Health)
Youth sport programs are an opportunity to increase physical activity, but the food environment may be detrimental to improving and maintaining health. From a previous study, parents indicated that they would like guidance and direction in a top-down approach from coaches and administrators; yet, understanding the administrator experience relative to the youth sports food environment remains unclear. The purpose of this study is to understand that experience. Semi-structured qualitative interviews will take place with administrators across the state of Utah. Interviews will be recorded and transcribed. Thematic analysis will be conducted to identify salient themes. A peer-reviewed publication and multiple presentations will result from the study conducted.
overrideBackgroundColorOrImage=
overrideTextColor=
promoTextAlignment=
overrideCardHideSection=
overrideCardHideByline=
overrideCardHideDescription=
overridebuttonBgColor=
overrideButtonText=
promoTextAlignment=
data-content-type="article"
Low dose alcohol enhances dopamine release in the nucleus accumbens via alpha6-containing nicotinic receptors on GABAergic inputs from the ventral tegmental area
Hansen, Wade; Stockard, Alyssa; Anderson, Elizabeth; Yorgason, Jordan; Sudweeks, Sterling; Wu, Jie; Steffensen, Scott (Brigham Young University)
Faculty Advisor: Steffensen, Scott (Family, Home, and Social Sciences; Psychology); Yorgason, Jordan (Life Sciences, Physiology & Developmental Biology); Sudweeks, Sterling (Life Sciences, Physiology & Developmental Biology)
The prevailing view is that enhancement of dopamine (DA) transmission in the mesolimbic underlies the rewarding properties of ethanol (EtOH) and nicotine (NIC). Although the dogma is that EtOH enhancement of DA neural activity contributes to enhancement of DA transmission, DA neurons are not sensitive to rewarding levels of EtOH. However, VTA GABA neurons are sensitive to low-dose EtOH. We have shown previously that EtOH modulation of DA release in the NAc is mediated by α6-containing nicotinic receptors (α6*-nAChRs), that α6*-nAChRs mediate low-dose EtOH effects on VTA GABA neurons and EtOH preference, and α6*-nAChRs may be a molecular target for low-dose EtOH. The aim of this study was to evaluate EtOH effects on VTA GABAergic input to CINs and DA release in the NAc. Using DIO channel rhodopsin-2 (ChR2) viral injections into the VTA of VGAT Cre mice, we found that VTA GABA neurons send an inhibitory projection to CINs, replicating what has been demonstrated by others. Low-dose EtOH (IC50 = 10 mM) decreased optically-evoked IPSCs (oIPSCs) on CINs and enhanced (EC50 = 10 mM) CIN-mediated spontaneous DA release. Surprisingly, oIPSCs on CINs were not blocked by typical GABAA receptor (GABAAR) antagonists, but by GABAR rho-1 antagonists, suggesting involvement of atypical GABARs on CINs that are postsynaptic to VTA GABAergic input. The α6-conotoxin MII blocked the effects of EtOH on spontaneous DA release and optically-evoked DA release in choline acetyltransferase (ChAT) ChR2 mice. Chronic administration of NIC enhanced EtOH consumption in the drink-in-the-dark procedure and EtOH preference in the CPP procedure and concomitantly enhanced expression of α6*-nAChRs in VTA GABA neurons, without affecting other nAChR subunits. Taken together, these findings suggest that VTA GABA neuron inhibitory input to CINs is modulated by α6*-nAChRs and sensitive to low-dose EtOH, which may underlie the rewarding properties of EtOH.
Faculty Advisor: Steffensen, Scott (Family, Home, and Social Sciences; Psychology); Yorgason, Jordan (Life Sciences, Physiology & Developmental Biology); Sudweeks, Sterling (Life Sciences, Physiology & Developmental Biology)
The prevailing view is that enhancement of dopamine (DA) transmission in the mesolimbic underlies the rewarding properties of ethanol (EtOH) and nicotine (NIC). Although the dogma is that EtOH enhancement of DA neural activity contributes to enhancement of DA transmission, DA neurons are not sensitive to rewarding levels of EtOH. However, VTA GABA neurons are sensitive to low-dose EtOH. We have shown previously that EtOH modulation of DA release in the NAc is mediated by α6-containing nicotinic receptors (α6*-nAChRs), that α6*-nAChRs mediate low-dose EtOH effects on VTA GABA neurons and EtOH preference, and α6*-nAChRs may be a molecular target for low-dose EtOH. The aim of this study was to evaluate EtOH effects on VTA GABAergic input to CINs and DA release in the NAc. Using DIO channel rhodopsin-2 (ChR2) viral injections into the VTA of VGAT Cre mice, we found that VTA GABA neurons send an inhibitory projection to CINs, replicating what has been demonstrated by others. Low-dose EtOH (IC50 = 10 mM) decreased optically-evoked IPSCs (oIPSCs) on CINs and enhanced (EC50 = 10 mM) CIN-mediated spontaneous DA release. Surprisingly, oIPSCs on CINs were not blocked by typical GABAA receptor (GABAAR) antagonists, but by GABAR rho-1 antagonists, suggesting involvement of atypical GABARs on CINs that are postsynaptic to VTA GABAergic input. The α6-conotoxin MII blocked the effects of EtOH on spontaneous DA release and optically-evoked DA release in choline acetyltransferase (ChAT) ChR2 mice. Chronic administration of NIC enhanced EtOH consumption in the drink-in-the-dark procedure and EtOH preference in the CPP procedure and concomitantly enhanced expression of α6*-nAChRs in VTA GABA neurons, without affecting other nAChR subunits. Taken together, these findings suggest that VTA GABA neuron inhibitory input to CINs is modulated by α6*-nAChRs and sensitive to low-dose EtOH, which may underlie the rewarding properties of EtOH.
overrideBackgroundColorOrImage=
overrideTextColor=
promoTextAlignment=
overrideCardHideSection=
overrideCardHideByline=
overrideCardHideDescription=
overridebuttonBgColor=
overrideButtonText=
promoTextAlignment=
data-content-type="article"
Quantification of GAD 65/67 Proteins in Learning and Addiction Pathways
Edwards, Jeffrey; Friend, Lindsey; Weed, Jared; Sandova, Philipl; Nufer, Teresa; Ostlund, Isaac Ostlund (Brigham Young University)
Faculty Advisor: Edwards, Jeffrey (Life Sciences, Physiology and Developmental Biology)
Substance abuse is a widespread problem in the United States. Although there are some existing treatments for addiction, the neural mechanisms of addiction are not deeply understood. This study quantifies the expression of GAD65 and GAD67 in GABAergic cells in the VTA of adolescent mice to shed light on the subtypes of cells involved in learning and addiction pathways.
The ventral tegmental area (VTA) of the brain, a critical part of the dopamine reward system, has many dopamine cells that are inhibited by nearby GABAergic neurons. Formation of memories and addiction involve long-term potentiation (LTP) and long-term depression (LTD) of these inhibitory GABA cells. We studied potential pathways of learning and addiction by measuring levels of expression of GAD 65/67 proteins and quantifying the cells that express one or both of these proteins.
Our results will provide insight about which GABAergic neurons are involved in the addiction pathway, furthering our understanding of the cellular mechanism of addiction. This will pave the way for more educated, effective treatment of drug addicts in clinical settings.
Faculty Advisor: Edwards, Jeffrey (Life Sciences, Physiology and Developmental Biology)
Substance abuse is a widespread problem in the United States. Although there are some existing treatments for addiction, the neural mechanisms of addiction are not deeply understood. This study quantifies the expression of GAD65 and GAD67 in GABAergic cells in the VTA of adolescent mice to shed light on the subtypes of cells involved in learning and addiction pathways.
The ventral tegmental area (VTA) of the brain, a critical part of the dopamine reward system, has many dopamine cells that are inhibited by nearby GABAergic neurons. Formation of memories and addiction involve long-term potentiation (LTP) and long-term depression (LTD) of these inhibitory GABA cells. We studied potential pathways of learning and addiction by measuring levels of expression of GAD 65/67 proteins and quantifying the cells that express one or both of these proteins.
Our results will provide insight about which GABAergic neurons are involved in the addiction pathway, furthering our understanding of the cellular mechanism of addiction. This will pave the way for more educated, effective treatment of drug addicts in clinical settings.
overrideBackgroundColorOrImage=
overrideTextColor=
promoTextAlignment=
overrideCardHideSection=
overrideCardHideByline=
overrideCardHideDescription=
overridebuttonBgColor=
overrideButtonText=
promoTextAlignment=
data-content-type="article"
Precipitation and Thunder Associated Vocalizations in Mantled Howler Monkeys (Alouatta palliata)
Pehkonen, Eliza (Salt Lake Community College)
Faculty Advisor: Seaboch, Melissa (Salt Lake Community College, Anthropology)
Precipitation-associated behaviors have been observed in several species of primate including bonobos (e.g., building leafy shelters), chimpanzees (e.g., drinking, rain dancing displays), and mantled howler monkeys (e.g., licking rain from the air, altering typical behavior based on weather and season). The purpose of this study is to determine if mantled howler monkeys (Alouatta palliata) exhibit precipitation-associated vocalizations. A. palliata is well known for its vocalizations, which are the loudest sound made by any terrestrial mammal and are used for a wide variety of communicative purposes, such as attracting mates, defending territory, and deterring predation. Given the purpose with which A. palliata vocalizes and the existence of precipitation-associated behaviors within primate species, including A. palliata, it was hypothesized that A. palliata would vocalize in association with climatic events (precipitation and thunder). To test this hypothesis, 41.75 hours of data were collected on A. palliata over a two-week time period during the rainy season at La Selva Biological Station in Costa Rica. All-occurrence sampling was used to record the timing and duration of all A. palliata vocalizations, precipitation, and thunder events. Events were considered accompanied if they occurred within five minutes of one another. Of the 59 observed vocalization events 53% were associated with climatic events. Of the 20 observed precipitation events 90% were accompanied by vocalizations and of the 37 observed thunder events 57% were accompanied by vocalization. Associated vocalizations occurred before, during and after climatic events, however, during or after were most common. The data indicate an association between A. palliata vocalization and precipitation, confirming the hypothesis. Further research is warranted to investigate a possible purpose of precipitation-associated vocalizations, an understanding of which could provide further insight into A. palliata's behavioral interaction with climatic events.
Faculty Advisor: Seaboch, Melissa (Salt Lake Community College, Anthropology)
Precipitation-associated behaviors have been observed in several species of primate including bonobos (e.g., building leafy shelters), chimpanzees (e.g., drinking, rain dancing displays), and mantled howler monkeys (e.g., licking rain from the air, altering typical behavior based on weather and season). The purpose of this study is to determine if mantled howler monkeys (Alouatta palliata) exhibit precipitation-associated vocalizations. A. palliata is well known for its vocalizations, which are the loudest sound made by any terrestrial mammal and are used for a wide variety of communicative purposes, such as attracting mates, defending territory, and deterring predation. Given the purpose with which A. palliata vocalizes and the existence of precipitation-associated behaviors within primate species, including A. palliata, it was hypothesized that A. palliata would vocalize in association with climatic events (precipitation and thunder). To test this hypothesis, 41.75 hours of data were collected on A. palliata over a two-week time period during the rainy season at La Selva Biological Station in Costa Rica. All-occurrence sampling was used to record the timing and duration of all A. palliata vocalizations, precipitation, and thunder events. Events were considered accompanied if they occurred within five minutes of one another. Of the 59 observed vocalization events 53% were associated with climatic events. Of the 20 observed precipitation events 90% were accompanied by vocalizations and of the 37 observed thunder events 57% were accompanied by vocalization. Associated vocalizations occurred before, during and after climatic events, however, during or after were most common. The data indicate an association between A. palliata vocalization and precipitation, confirming the hypothesis. Further research is warranted to investigate a possible purpose of precipitation-associated vocalizations, an understanding of which could provide further insight into A. palliata's behavioral interaction with climatic events.
overrideBackgroundColorOrImage=
overrideTextColor=
promoTextAlignment=
overrideCardHideSection=
overrideCardHideByline=
overrideCardHideDescription=
overridebuttonBgColor=
overrideButtonText=
promoTextAlignment=
data-content-type="article"
Probiotic Survival in Non-Dairy Fermentation
Smith, June; Mishra, Niharika (Weber State University)
Faculty Advisor: Oberg, Craig (Weber State University, Microbiology); Culumber, Michele (Weber State University, Microbiology)
Non-dairy food options have become a growing cultural necessity, however, providing fermented or probiotic supplemented non-dairy alternatives is difficult. Little is known about the activity and survival of probiotic cultures in dairy alternatives. We evaluated the activities of several probiotics at various concentrations and in different combinations in oat, almond, and coconut beverages. Probiotic culture strains of Streptococcus thermophilus (YFLO1), Lactobacillus rhamnose (LGG), L. casei (Casei 431), and Bifidobacterium animalis subsp. lactis (BB12), and commercial probiotic mixtures, YFLO2, and Fresh Q, were inoculated in MRS broth, transferred to MRS agar plates, and incubated anaerobically for 24 hours at 37_. BB12 was grown anaerobically in MRS + cystine broth and agar. Isolated colonies were assayed on API 50 CH panels, and a carbohydrate use panel was developed for each organism. Oat, almond, and coconut beverages were inoculated in duplicate with the isolated strains and incubated in a water bath at 40_. The pH was recorded at regular intervals for up to 41 hours. The oat beverage had the most rapid and significant pH change, when incubated with either YFLO1, casei431, and LGG, dropping between 1.5 to 3 pH units over 3 hours depending on the culture. The almond and coconut beverages did not show rapid pH change with the organisms tested. Due to the quick decrease in pH change, further tests on the oat beverage. It was inoculated with Lactobacillus casei 431, LGG, and YFLO1. Organisms were tested at 0.5%, 1.0%, and 2.0% concentrations in oat beverage in triplicate. These inoculations were again incubated at 40°C and pH monitored after 5 hours, then plated on MRS agar plates after 24 hours. Final ranged between 1.0 x 109 - 1.8 x 109 for the 1% inoculum. It appears that these organisms survive, and may even grow in the oat beverage. This research demonstrates that probiotic cultures can grow in non-dairy beverages and can ferment the available carbohydrates and decrease pH. These results provide insights that can be used for beverages, yogurt, ice cream, and other fermented food production.
Faculty Advisor: Oberg, Craig (Weber State University, Microbiology); Culumber, Michele (Weber State University, Microbiology)
Non-dairy food options have become a growing cultural necessity, however, providing fermented or probiotic supplemented non-dairy alternatives is difficult. Little is known about the activity and survival of probiotic cultures in dairy alternatives. We evaluated the activities of several probiotics at various concentrations and in different combinations in oat, almond, and coconut beverages. Probiotic culture strains of Streptococcus thermophilus (YFLO1), Lactobacillus rhamnose (LGG), L. casei (Casei 431), and Bifidobacterium animalis subsp. lactis (BB12), and commercial probiotic mixtures, YFLO2, and Fresh Q, were inoculated in MRS broth, transferred to MRS agar plates, and incubated anaerobically for 24 hours at 37_. BB12 was grown anaerobically in MRS + cystine broth and agar. Isolated colonies were assayed on API 50 CH panels, and a carbohydrate use panel was developed for each organism. Oat, almond, and coconut beverages were inoculated in duplicate with the isolated strains and incubated in a water bath at 40_. The pH was recorded at regular intervals for up to 41 hours. The oat beverage had the most rapid and significant pH change, when incubated with either YFLO1, casei431, and LGG, dropping between 1.5 to 3 pH units over 3 hours depending on the culture. The almond and coconut beverages did not show rapid pH change with the organisms tested. Due to the quick decrease in pH change, further tests on the oat beverage. It was inoculated with Lactobacillus casei 431, LGG, and YFLO1. Organisms were tested at 0.5%, 1.0%, and 2.0% concentrations in oat beverage in triplicate. These inoculations were again incubated at 40°C and pH monitored after 5 hours, then plated on MRS agar plates after 24 hours. Final ranged between 1.0 x 109 - 1.8 x 109 for the 1% inoculum. It appears that these organisms survive, and may even grow in the oat beverage. This research demonstrates that probiotic cultures can grow in non-dairy beverages and can ferment the available carbohydrates and decrease pH. These results provide insights that can be used for beverages, yogurt, ice cream, and other fermented food production.
overrideBackgroundColorOrImage=
overrideTextColor=
promoTextAlignment=
overrideCardHideSection=
overrideCardHideByline=
overrideCardHideDescription=
overridebuttonBgColor=
overrideButtonText=
promoTextAlignment=
data-content-type="article"
Protein Pens: A New Diagnostic Instrument
Armitstead, Annie; Grether, Lara; Creech, Kealani (Brigham Young University)
Faculty Advisor: Watt, Richard (Brigham Young University, Biochemistry)
Lateral Flow Immunoassays (LFI) are simple tests that detect specific levels of antigens or antibodies in patient samples. Requiring only a few minutes, small sample sizes and no read-out equipment, LFI�s are an invaluable and time efficient testing technique. Made up of multiple layers they facilitate the capillary flow of a sample through protein detection zones and can be developed to detect virtually any disease or condition.
Despite the attractive attributes of these tests, the assembly of an LFI strip requires expensive machines, trained personnel, and materials not easily accessible to low-resourced labs or clinics. Developing an innovative point-of-care platform designed to be streamlined, low-cost, and intelligible to the unskilled would open the door of medicine to even the most underprivileged clinics in the world.
We are currently developing a paper LFI that uses a single sheet of copy paper with the ability to filter whole blood as well as replacing high-priced machines with stencils and pens which can still deliver detection proteins to the designated test zones. This avenue of testing is supported by previous experiments we have done with protein pens and tagged antibodies. Using anti-mouse and anti-hCG antibodies as our control and test lines respectively, we spike our sample with hCG mouse antibodies tagged with nanoparticles, and we are able to see binding of both proteins with their respective antibodies. We have seen results in our new testing technique that is easily comparable with currently commercialized LFI's: visual results of binding within 1 min, successful transformation of printer paper into a functional binding platform, and consistent protein binding at a 1/10^5 concentration. Once this concept can be translated to different inks in order to diagnose a plethora of varying conditions, we'll be able to detect diseases and other important biomarkers no matter the limiting low-resource circumstances.
Faculty Advisor: Watt, Richard (Brigham Young University, Biochemistry)
Lateral Flow Immunoassays (LFI) are simple tests that detect specific levels of antigens or antibodies in patient samples. Requiring only a few minutes, small sample sizes and no read-out equipment, LFI�s are an invaluable and time efficient testing technique. Made up of multiple layers they facilitate the capillary flow of a sample through protein detection zones and can be developed to detect virtually any disease or condition.
Despite the attractive attributes of these tests, the assembly of an LFI strip requires expensive machines, trained personnel, and materials not easily accessible to low-resourced labs or clinics. Developing an innovative point-of-care platform designed to be streamlined, low-cost, and intelligible to the unskilled would open the door of medicine to even the most underprivileged clinics in the world.
We are currently developing a paper LFI that uses a single sheet of copy paper with the ability to filter whole blood as well as replacing high-priced machines with stencils and pens which can still deliver detection proteins to the designated test zones. This avenue of testing is supported by previous experiments we have done with protein pens and tagged antibodies. Using anti-mouse and anti-hCG antibodies as our control and test lines respectively, we spike our sample with hCG mouse antibodies tagged with nanoparticles, and we are able to see binding of both proteins with their respective antibodies. We have seen results in our new testing technique that is easily comparable with currently commercialized LFI's: visual results of binding within 1 min, successful transformation of printer paper into a functional binding platform, and consistent protein binding at a 1/10^5 concentration. Once this concept can be translated to different inks in order to diagnose a plethora of varying conditions, we'll be able to detect diseases and other important biomarkers no matter the limiting low-resource circumstances.
overrideBackgroundColorOrImage=
overrideTextColor=
promoTextAlignment=
overrideCardHideSection=
overrideCardHideByline=
overrideCardHideDescription=
overridebuttonBgColor=
overrideButtonText=
promoTextAlignment=
data-content-type="article"
Patients' Perceptions of Stress During Hospitalization
Larson, Rebecca; Jimenez, Misty (Utah Valley University)
Faculty Advisor: Jensen, Francine (Utah Valley University, Nursing)
Stress is a known barrier to patient recovery. Patients experience increased emotions, such as stress, while hospitalized due to high stakes from risks to life, health and well-being. Patients' emotions can affect their perceptions, future intentions, and behaviors. In pediatrics, the way parents react to their child's illness may affect the children's compliance, emotional response to medical treatment, and even some development processes, demonstrating the premise that there are many possible stressors that can have significant impacts on patients. Hospitals have taken several measures to evaluate patient stress, such as encouraging hospital staff to discuss patient satisfaction surveys with their patient. However, not all patients recognize their own stressors, and some patients may not initially feel comfortable sharing them. For example, a study showed specific stressors that may experienced by patients of different demographics. These stressors may not always be apparent to nurses. Patients' stress can be reduced if the hospital environment fosters perceptions of control, social support and positive distraction. A change in patient environment can promote healing, as evidenced by a hospital, Navicent Health, that demonstrated in their neonatal intensive care unit that reducing stress and anxiety for both newborns and their parents facilitated healing growth and bonding. Nurses can improve the care they provide to patients by learning how to recognize and reduce stressors during the hospital stay.
Faculty Advisor: Jensen, Francine (Utah Valley University, Nursing)
Stress is a known barrier to patient recovery. Patients experience increased emotions, such as stress, while hospitalized due to high stakes from risks to life, health and well-being. Patients' emotions can affect their perceptions, future intentions, and behaviors. In pediatrics, the way parents react to their child's illness may affect the children's compliance, emotional response to medical treatment, and even some development processes, demonstrating the premise that there are many possible stressors that can have significant impacts on patients. Hospitals have taken several measures to evaluate patient stress, such as encouraging hospital staff to discuss patient satisfaction surveys with their patient. However, not all patients recognize their own stressors, and some patients may not initially feel comfortable sharing them. For example, a study showed specific stressors that may experienced by patients of different demographics. These stressors may not always be apparent to nurses. Patients' stress can be reduced if the hospital environment fosters perceptions of control, social support and positive distraction. A change in patient environment can promote healing, as evidenced by a hospital, Navicent Health, that demonstrated in their neonatal intensive care unit that reducing stress and anxiety for both newborns and their parents facilitated healing growth and bonding. Nurses can improve the care they provide to patients by learning how to recognize and reduce stressors during the hospital stay.
overrideBackgroundColorOrImage=
overrideTextColor=
promoTextAlignment=
overrideCardHideSection=
overrideCardHideByline=
overrideCardHideDescription=
overridebuttonBgColor=
overrideButtonText=
promoTextAlignment=
data-content-type="article"
Mapping the Potential Distribution of an Invasive Plant, Lythrum salicaria, using Crowd-Sourced Survey Data.
Wertz, Parker (Weber State University)
Faculty Advisor: Dorsey, Bryan (Weber State University, Geography)
Prevention and predicting spread is the best method of control against invasive species. Land managers require accurate and reliable methods for containment and eradication to prevent land cover change and loss of biodiversity. Ecological niche models exist and are used by ecologists to map habitat suitability, but many rely on presence-absence samples which are difficult to obtain. Maximum entropy species distribution modeling (Maxent) is a popular model that has been increasingly used since it can make valid predictions using presence-only data. Many studies have used Maxent to model species distributions, but few have done so with crowdsourced data since it is more likely to be bias and unreliable. The purpose of this study is to test the robustness of Maxent using crowdsourced presence-only data on Lyrthum salicaria, a perennial herb that invades wetlands and pushes out native flora. The study is set in northern and central Utah, and uses environmental variables in climate, landcover, and topography, with landcover being the most contributive factor to the model. Model performance was very good, even with species data being bias towards areas of higher population, proving Maxent as a worthy method to use in species distribution modeling with crowdsourced species presence data. This results of this study show promise for use in modeling other invasive plants in the future.
Faculty Advisor: Dorsey, Bryan (Weber State University, Geography)
Prevention and predicting spread is the best method of control against invasive species. Land managers require accurate and reliable methods for containment and eradication to prevent land cover change and loss of biodiversity. Ecological niche models exist and are used by ecologists to map habitat suitability, but many rely on presence-absence samples which are difficult to obtain. Maximum entropy species distribution modeling (Maxent) is a popular model that has been increasingly used since it can make valid predictions using presence-only data. Many studies have used Maxent to model species distributions, but few have done so with crowdsourced data since it is more likely to be bias and unreliable. The purpose of this study is to test the robustness of Maxent using crowdsourced presence-only data on Lyrthum salicaria, a perennial herb that invades wetlands and pushes out native flora. The study is set in northern and central Utah, and uses environmental variables in climate, landcover, and topography, with landcover being the most contributive factor to the model. Model performance was very good, even with species data being bias towards areas of higher population, proving Maxent as a worthy method to use in species distribution modeling with crowdsourced species presence data. This results of this study show promise for use in modeling other invasive plants in the future.
overrideBackgroundColorOrImage=
overrideTextColor=
promoTextAlignment=
overrideCardHideSection=
overrideCardHideByline=
overrideCardHideDescription=
overridebuttonBgColor=
overrideButtonText=
promoTextAlignment=