2015 Abstracts Skip to main content
Utah's Foremost Platform for Undergraduate Research Presentation

2015 Abstracts

Trends in Birds Communities in Red Butte Canyon ov er the Past 22 Years

January 01, 2015 12:00 AM
Kylynn Parker, University of Utah Life Sciences Red Butte Canyon (RBC) is a Research Natural Area administered by the US Forest Service in Salt Lake City, Utah. RBC is an undisturbed area and a haven for all types of birds. Most of the avian species found in this area are migratory, and either pass through or breed in the area. The overall aim of this project is to determine if there have been any notable changes in populations of species in the area over the past 22 years. The research question that is covered in this summary are the following: has the density and relative abundance of the top five most commonly detected avian species in Red Butte Canyon notably changed through time in Transect 1? Data was collected by Mark Leppert, PhD and Sherwood Casjens, PhD of the University of Utah. They recorded the number and species of birds that were both seen and heard in 10 different transects within RBC over the past 22 years (1991-2013) and 457 survey days. In 2013 and 2014, I compiled and entered all of the data into a database with the guidance of the researchers. For analysis, I focused on the five most commonly detected species in Transect 1. These species are Black-Capped Chickadee (Poecile atricapilla), Warbling Vireo (Vireo gilvus), Yellow Warbler (Dendroica petechia), American Robin (Turdus migratorius), and Lazuli Bunting (Passerina amoena). Detection trends were found by graphing the number of individual birds seen or heard in Transect 1 over the days since surveys began in 1991 and statistical evidence was found showing significant changes in species population size of these five most commonly detected species, especially in the case of the American Robin which exhibits a decline in detections in recent years.

Yeast PAS Kinase as a Model for Cellular Metabolic Control

January 01, 2015 12:00 AM
Katherine Harris, Brady Evans and Thomas Andros, Brigham Young University Life Sciences Metabolic diseases, such as obesity and diabetes, have become endemic and the need for better treatments is rising. Mutations in PAS kinase, a recently discovered sensory kinase, have been shown to cause Maturity Onset Diabetes of the Young (MODY) in humans (Semplici et al., 2011). In addition, PAS kinase deficient mice display many phenotypes related to diabetes including resistance to weight gain, insulin insensitivity and triglyceride accumulation in response to a high-fat diet (Hao et al., 2007). Despite its importance in metabolism, little is known about the regulation of PAS kinase. PAS kinase consists of a sensory PAS domain that binds to and inhibits a protein kinase domain (Amezcua et al, 2002). We are currently engaged in several yeast genetic screens which will allow identification of regions in the full length PAS kinase that are essential for activation or for binding its substrates. The first screen is based on the finding that PAS kinase overexpression rescues a temperature-sensitive mutation in Tor2, the tor2(ts). We have isolated both point mutations and truncations in PAS kinase which alleviate the tor2(ts), suggesting they are hyperactive alleles. These mutations identify novel regions involved in PAS kinase regulation. Our second screen uses the yeast 2-hybrid to select for both point mutations and truncations that increase the ability of PAS kinase to bind its substrates. These mutations will help identify key regions of PAS kinase utilized in substrate recognition. Finally, we have identified regions of PAS kinase that are well-conserved throughout evolution and will compare these regions with the regions affected by our mutations. This study will be the first reported mutagenic analysis of PAS kinase. Analysis of these specific genetic regions will help elucidate the molecular mechanisms involved in the regulation and function of PAS kinase, a key player in the development of metabolic disease.

ATP Production in Serpentinization-Driven Ecosystems

January 01, 2015 12:00 AM
Alex Hyer, University of Utah Life Sciences Geochemical reactions associated with the process known as serpentinization can generate copious quantities of organic carbon and chemical energy that support life, but these reactions also greatly increase the pH of serpentinization sites. High-pH environments hinder ATP production because the low proton concentrations at high pH can result in a reversed proton gradient across cell membranes. Organisms present at serpentinization sites are not well-characterized, and adaptations to their alkaliphilic lifestyle are unknown. Bacillus pseudofirmus OF4 was not isolated from serpentinization sites, but it is a well- studied alkaliphile that has several distinct adaptations for ATP production in high pH environments. Its sequence for ATP synthase, the molecular motor responsible for ATP generation in the cell, contains several distinctive mutations including an AXAXAXA motif that increases the C-ring stoichiometry, a P51XXE54XXP57 motif that creates a distinct kink in the outer helix of the C-subunit, and a V21 mutation granting rotamer freedom to E54. In this study, we search for similar mutations in metagenomic databases containing DNA sequences collected from serpentinization sites. Analysis of alignments from the programs BLAST and Exonerate indicate that V21 is present in several alignments, but P51 is found in only a single alignment from serpentinization sites. The AXAXAXA motif is non- existent in our databases, but the more common GXGXGXG motif is present with alanine replacements occurring periodically. In general, these results indicate that our DNA sequences from high-pH sites of serpentinization are more reminiscent of typical neutrophiles than of the alkaliphile B. pseudofirmus OF4. Therefore, serpentinization- adapted organisms may harbor other adaptations to high pH such as local pmf regulation. Future work will test for quantitative correlations between environmental pH measurements and the incidence of mutations in ATP synthase in order to identify novel adaptations to high pH in serpentinization-driven ecosystems.

Patterns of Urban Forest Composition in Utah’s Growing Mountain Communities

January 01, 2015 12:00 AM
Anne Thomas and Richard Gill, Brigham Young University Life Sciences Providing water for expanding urban communities in the western United States is a growing concern for city planners and governmental agencies. Landscaping can claim up to 50% of the urban water budget but also has the most potential for water conservation. Landscape water use is highly variable, however, because of species-specific differences in tree water use and because of decision-making by city planners and residents in maintaining trees. The objective of this study is to improve our ability to predict urban forest water use by identifying differences in tree basal area and diversity between neighborhoods that have arisen at different periods of development in Heber Valley, Utah. We classified neighborhoods as established, exurban (rural housing), commercial, or new tract based on age, location, and lot size. We performed a stratified random survey with twenty lots in each category and collected diameter and species data for each tree in the lot. Some of the patterns we observed were easily anticipated, such as higher basal area per hectare in the older, established neighborhoods relative to newer tract housing. Surprisingly, the number of individual trees per hectare in tract and established neighborhoods is very similar. Perhaps of more interest is the low species richness of tract housing compared to exurban communities. Because exurban communities are being replaced by tract housing there is evidence that tree diversity will be lost. Another important aspect of community structure in urban forests is the ratio of conifers to broadleaf trees because of fundamental differences in water use patterns. Conifers comprised twenty-five percent of the basal area in exurban and thirty-five percent in established neighborhoods, as opposed to five percent in tract. Our data suggest that tree diversity is likely to decrease while water demand is likely to increase with changes in urban forests in the coming decade.

The Impact of Maternal Ssri Use on Serotonin Synthesis and Protein Transporters in the Placenta and Newborn Serotonin Levels

January 01, 2015 12:00 AM
Simranvir Kaur, University of Utah Life Sciences The placenta is the major source of fetal serotonin during pregnancy, which is essential for fetal brain development. In Utah, approximately 13% of pregnant women take Selective Serotonin Reuptake Inhibitors (SSRIs) to treat depression, the use of which has been correlated to significantly lower serotonin levels in cord blood for newborns. Studies suggest association between maternal SSRI use and adverse outcomes such as preterm birth, cognitive deficit, and disruption of serotonergic systems. However the effect of SSRIs on placental gene expression, serotonin synthesis and transport in the placenta, is not known. This study evaluates the impact of maternal SSRI use on placental gene expression and levels of serotonin in the cord blood using a nested case-control observational study model. Biological samples will be collected until 20 cases (women taking SSRIs during pregnancy) and 20 appropriately matched controls have been enrolled into the study. Participants also complete an online questionnaire to measure depression and anxiety levels as well as document any medication they have taken during pregnancy. Data and sample collection for this study is still in progress. Once enough samples have been collected for batch analysis, we will complete RT-PCR and ELISA, expected in Spring 2015. Upon complete data analysis, we expect this study will help in targeting mothers who are at risk for adverse pregnancy outcomes and further provide suggestions for intervention.

Engineering High Affinity T-Cell Receptors Specific for Listeria Monocytogenes

January 01, 2015 12:00 AM
Bryce Anderson, Kemais Ehlers, Deborah Johnson, and Stephen Persaud, Brigham Young University Life Sciences Antigen presenting cells digest and display foreign proteins from infected cells on the major histocompatibility complex (MHC) that is recognized by T cells via their T cell receptor (TCR). LLO56 and LLO118 are CD4+ helper T cells with TCRs specific for the same Listeria monocytogenes epitope. Despite differing by only 15 amino acids, these TCRs have dramatically different primary and secondary responses to infection. TCRs have very low affinity for peptide MHC. We determined to generate high affinity T cell receptors to test if T cell activation would be improved. We reasoned that the single chain LLO118 and LLO56 TCRs (Vβ2-linker-Vα2) could be subjected to directed evolution to generate mutants that are more stable and then used as a template for engineering high affinity T cell receptors. Single chain LLO118 and LLO56 were fused to the yeast surface protein Aga-2 and error prone PCR was used to generate mutagenic libraries. Stabilized single chain TCRs (scTCRs) were selected for using biotinylated Vβ2 and Vα2 antibodies and anti-biotin beads. First generation clones with increased stability compared to wild type were isolated for both LLO118 and LLO56. A second mutagenic library using the first generation mutants as templates was produced and the most stable clones were selected after temperature denaturation, permitting isolation of clones with increased stability. We are currently engineering high affinity T cell receptors by generating affinity libraries using site directed mutagenesis of the CDR3 regions. These libraries are sorted for their ability to bind to MHC tetramers and individual clones are tested using flow cytometry. Generation of pathogen specific high affinity TCRs will increase our understanding of how T cells are activated and could also provide infection specific diagnostics and therapeutics.

Entomophilic Nematode Distribution and Diversity in Beaver Dam Wash

January 01, 2015 12:00 AM
Westen Archibald, Trevor Smart, and Emily Forsyth, Brigham Young University Life Sciences The Beaver Dam Wash National Conservation Area is considered an important biodiversity hotspot for the Western United States. The wash is an ecotone on the Northeastern edge of the Mojave Desert and is directly adjacent to both the Colorado Plateau and the Great Basin. Thus, this area contains various species of flora and fauna from each of the surrounding biomes. Prior research of the Beaver Dam Wash has documented high aboveground biodiversity for a desert ecosystem however no research has been conducted on belowground diversity. For this reason we chose to characterize the diversity and distribution of entomophilic nematodes, as they are commonly used as a biological indicator to the surrounding ecosystems. We hypothesized that because plant and insect biodiversity is high here, we would also find a diversity of entomophilic nematodes that is higher than the surrounding areas. To test this hypothesis we collected soil samples from 15 sample sites representative of the diversity of the different ecological communities. We tested for patterns of codistribution between entomophilic nematodes and environmental variables, such as plant cover, proximity to water, presence of organic matter, elevation, ecosystem classification, and soil chemistry. We extracted nematodes from the soil samples and sequenced the 28s rDNA region of representative individuals from each sample. Nematode diversity was low; one species was broadly distributed, X others were more patchily distributed. No correlation was found between above ground factors or soil chemical properties (ppm phosphorous, percent organic matter, and percent soil moisture). We conclude that the distribution of entomophilic nematodes in this ecological confluence is to some degree stochastic and uncoupled from aboveground diversity or belowground soil conditions.

Changes in Urine pH: A Time Series Study

January 01, 2015 12:00 AM
Michael Hinckley and Cayden Westwood, Dixie State University Life Sciences Clinical laboratory standards state that urine samples should be tested within 2 hours of collection. If testing is delayed beyond that time frame the sample needs to be refrigerated to inhibit urea conversion to ammonia and an increase in urine pH. Here medical lab science students investigated whether urine samples left at room temperature for 48 hours resulted in significant increases in urine pH with concomitant microbial growth. Five clean-catch urine specimens were obtained and promptly tested for pH levels using a sterile pH meter (EcoTestr, Oakton Instruments). Samples were then aliquoted into capped and uncapped containers that were left at room temperature. Samples were tested at 0, 8, 20, 24, 32 and 48 hours. The pH values from the uncapped and capped samples from these time periods were analyzed using a paired two tailed t-test. Results indicated one sample out of five was significant (P = .05). Initial samples were gram stained, then read to determine the presence of bacteria. Specimens were cultured on 5% Sheep Blood and MacConkey agar plates. Plates were read for bacterial growth at 24 hours incubation and growth was identified on two samples. At 48 hours, both uncapped and capped urine cultures were plated again and three samples demonstrated bacterial growth the following day. Microbial testing identified normal urogenital flora and pathogenic bacteria. Urine with pathogenic bacteria demonstrated significant increases in pH, while additional cultures with bacterial growth also increased but not with significance. Future studies could employ a larger sample size from both healthy and diseased individuals. Furthermore, identification of microbes that will thrive in acidic and alkaline pH would be of interest.

Neuroregeneration: Potentiation of Nerve Growth Factor Receptor in Peripheral Nerves

January 01, 2015 12:00 AM
Austin Thompson and David Walton, Brigham Young University Life Sciences When we sustain a traumatic injury to the peripheral nervous system (PNS), our bodies elicit a series of responses to try to heal the acquired damage, including inflammation and repair processes. One of these responses is the increased expression of nerve growth factor receptor (NGFR), which helps to stimulate regeneration of the nerve. In a normal, healthy PNS, NGFR is rarely found. Following damage to the nerve, NGFR can be found in high levels around the damaged area. In our study, we are simulating traumatic injury to the sciatic nerve of rats in order to study the effects of regeneration after a local application of nerve growth factor (NGF). We are using both a physical crush model and a focal demyelination model to simulate the nerve injury. In the crush model, we are examining the effect of a crushed extracellular matrix (ECM) on degeneration and subsequent regeneration. In the focal demyelination model, we are investigating the effects of local demyelination with an intact ECM on degeneration and regeneration. In two additional experimental groups, we will perform an intraneural injection of NGF into the damaged sciatic nerve one week after the crush or a lysolecithin injection at the damaged site. We are examining the nerve both qualitatively using SEM and immunohistochemistry and quantitatively using electrophysiology. This allows us to understand the role of the ECM in regeneration, and its effect on the rate of regeneration. We hypothesize that the addition of NGF in combination with the increase of NGFR after injury will increase the rate of nerve regeneration. We expect regeneration to be faster in the focal demyelination model due to the presence of intact ECM than in the crush model where the ECM is damaged.

Potential Toxicity of Synthetic Administered Pitocin

January 01, 2015 12:00 AM
Amanda Johnson, Rian Farr, and Autumn Woodfall, Dixie State University Life Sciences Autism affects approximately 1 in 68 children, and is one of the fastest growing developmental disorders in the United States. Studies suggest that autism may be a result of processes that occur during labor and delivery. Although Pitocin is widely used during labor and delivery in the United States, there is a paucity of research on the developmental outcomes of Pitocin use during labor and delivery in young children. Additionally, the components and metabolic fate that make up the compounded Pitocin are widely varied between suppliers. Samples of Pitocin were extracted to isolate the chemicals that comprised commercial available products. These were then analyzed by chemical and biological methods to determine the composition and chemical breakdown products. Understanding the components and breakdown of commercial Pitocin will help to determine the compounds potentially transferred to fetuses with Pitocin use during labor and delivery and the potential developmental outcome.

The Role of Pas Kinase in NAD Homeostasis

January 01, 2015 12:00 AM
Daniel Barnett, Brigham Young University Life Sciences Approximately one-third of US adults have metabolic disease, increasing their risk for diabetes, cancers and neurodegenerative disease (www.ADA.org). At the heart of these diseases are imbalances in the cellular redox state. The cofactor NAD(P), commonly known as niacin, is required for over 300 essential reactions in the cell and is largely responsible for the cellular redox state. NAD kinase regulates the NAD to NADP ratio, an important ratio for controlling cellular redox state and central metabolism. Herein we provide evidence that PAS kinase, a nutrient sensing kinase required for glucose homeostasis, phosphorylates NAD kinase. We are currently investigating the effect of this phosphorylation on the function of NAD kinase both in vitro and in vivo by measuring NAD kinase activity and associated phenotypes. This research will increase our understanding of how cells regulate central metabolism. In addition, because PAS kinase is a nonessential protein, it may prove to be an invaluable treatment target for regulating NAD(P) levels and controlling cellular redox state. This may lead to therapeutic targets for cancer and metabolic diseases such as diabetes.

The Putative Cannabinoid Receptor GPR55: Expression, Modulation of Hippocampal Plasticity and Behavior

January 01, 2015 12:00 AM
Jacob Welch, Brigham Young University Life Sciences Learning and memory occur due to adaptive brain changes in response to our environment. These changes are mediated by synaptic plasticity, particularly within the hippocampus. Plasticity can either strengthen or weaken synapses, known as long-term potentiation (LTP) or long-term depression (LTD) respectively. While many forms of plasticity are NMDA-dependent, recently endocannabinoids were identified to mediate several new forms of hippocampal synaptic plasticity through the CB1 and TRPV1 receptors. However, research has demonstrated a non-CB1/TRPV1-dependent endocannabinoid synaptic plasticity in the hippocampus. Several potential candidate receptors that bind the endocannabinoid anandamide have been identified. These are among the orphan G-protein coupled receptors (GPRs) whose distribution in the brain and/or function is less well known. GPR55 is of particular interest as it activates second messenger systems. Using quantitative RT-PCR, electrophysiological and memory behavioral tasks we examined hippocampal GPR55 expression and function. GPR55 is expressed in hippocampus of both rats and mice. Cellular expression is currently being examined and appears to be rare in interneurons and more likely expressed by pyramidal cells. Interestingly, application of the GPR55 agonist LPI (2 μM) to wild-type mice demonstrates a significant enhancement of LTP in brain slices. This LPI effect was not noted in GPR55 knock-out (KO) mice, which exhibit significantly (p < 0.05) smaller LTP (146%) than wildtype (WT) (181%). GPR55 also appears to increase release probability (Sylantyev et al., PNAS, 2013), denoting a presynaptic role. Paired-pulse ratios are now being analyzed between GPR55 KO and WT mice to confirm this finding; however we did not note a change in EPSCs in CA1 in response to 2μM LPI. These data suggest GPR55 is expressed and physiologically relevant in the hippocampus. Because enhanced LTP is usually associated with better memory performance in rodents, this provides a potential target to enhance the cellular mechanism associated with memory formation.

Construction of a Weighing Lysimeter on the SUU Green Roof

January 01, 2015 12:00 AM
Bryce Taylor and Ian Kesler, Southern Utah University Life Sciences Green infrastructure is the use of natural processes to manage stormwater runoff and has many positive effects on evaporative cooling, building energy demand, and wildlife habitat. Very little green infrastructure research has been conducted in arid environments such as Southern Utah. The scope of this research project is to establish a complete water budget of the green roof using a lysimeter (an acrylic box resting on a high-resolution weighing scale). The water budget will help in determining whether the cost of irrigating the green roof is off- set by the potential benefits to biodiversity and decreased energy demands.We have constructed a working lysimeter and will collect the required data by using: a high resolution scale, a tipping bucket to measure drainage, two soil moisture and temperature sensors and weather data from the campus weather station. A collection of mixed Sedum species vegetation will be planted in the lysimeter using a special green roof media to accurately simulate a greenroof environment. Both pitfall (used to capture grounded insects) and combination traps (used to capture airborne insects) will be used to measure the biodiversity. Data collection will begin during the winter of 2014 and continue indefinitely.

Investigation of a Recent Rise of Dual Amantadine-Resistance Mutations in the Influenza A M2 Sequence

January 01, 2015 12:00 AM
Matthew Durrant and Dennis Eggett, Brigham Young University Life Sciences The drugs amantandine and rimantadine were previously used to treat influenza A infections in humans. In 2005, a mutation in the Influenza A M2 channel conferred resistance to these drugs, rendering them obsolete against treating influenza. The S31N amantadine-resistance mutation in the influenza A M2 sequence currently occurs more frequently in nature than the S31 wild type. Overcoming this mutation with new drug compounds is the focus of Influenza A M2 channel researchers. However, there are several other identified mutations that have also been shown to confer resistance to these drugs. These other mutations are thought to occur only in small frequencies in nature. A statistical analysis of 1,007 unique M2 protein sequences shows an enhanced frequency for the S31N/V27A dual amantidine resistant mutation in recent years, especially in swine, compared to expected frequencies based on the occurrence rates of individual mutations in wild type (S31) M2. The development of the S31N/V27A variant in the Midwestern US swine may be a harbinger of novel human strain development. At the same time, the different propensities for the V27A as compared to the V27T dual mutant may reflect differences in viral fitness or protein energetics, and this information could be exploited to focus drug development so as to reduce further drug insensitivity. V27A/S31N is a possible path forward for the evolution of M2, which may convey a new level of drug resistance and should receive attention in drug design.

Variance in Stomatal Size and Density between Triploid and Diploid Quaking Aspen (Populus Tremuloides) in Utah

January 01, 2015 12:00 AM
Brianne Palmer, Utah State University Life Sciences Quaking aspen (Populus tremuloides) are declining in the interior west. Aspen are critical for the maintenance of wildlife habitat and are one of the few broadleaf trees in the western forest ecosystem. In western landscapes, it has recently been determined that a large proportion of aspen trees are triploid (three copies of each chromosome) and the remaining trees are diploid (two copies of each chromosomes). In this study we attempted to find differences in the physiology between the two cytotypes to determine future management strategies The size and density of stomata trees is likely to influence the survival of the species in water- and heat-stressed environments, since stomata control both photosynthesis rates and rates of water loss. Individuals with larger stomata or greater stomatal density may be efficient photosynthesizers but may be at risk for water loss during transpiration in environments with low precipitation and hot temperatures, such as those often seen during summers in the intermountain west. To determine if there is physiological differences between the cytotypes we measured the variation between stomatal sizes and densities between the cytotypes using cellulose acetate leaf impressions and microscope imagery. We collected leaves from twelve aspen stands (eight diploid and four triploid) representing the two cytotypes in Swan Flats and Fish Lake, Utah. From these analyses, we deduced that the variation in stomatal size and density is primarily among clones rather than among cytotypes. Further data collection and analyses will occur in the spring of 2015.

RRMS Patient Genotype Correlated with Copaxone-Induced Hepatotoxicity

January 01, 2015 12:00 AM
Tielle Gallion, Brigham Young University Life Sciences Quality of life is highly dependent on how well the liver functions. Increases in liver-enzyme levels, such as alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), and gamma-glutamyl transferase (GGT) are associated with liver damage. A common treatment for Relapse-Remitting Multiple Sclerosis (RRMS) is Copaxone. This treatment has shown to be effective in reducing the number of relapses (periods of disability), but despite its effectiveness there is a prevalence of side effects, including increased liver enzyme activity. The aim of this pharmacogenetic project is to look at the effects of Copaxone, a drug therapy used in treating RRMS, on a patient’s liver-enzyme levels. I will determine if a correlation exists between increased liver levels and a specific genotype present in RRMS patients. I also plan to utilize medical record extraction. We have identified clinic visits in which 1,050 patients are recorded as currently using Copaxone by creating an algorithm to extract this data from electronic medical records (EMRs). This records are part of the Vanderbilt University Medical Center BioVU database. With this information, I have determined the period of time when patients are taking the drug. I accomplished this by manually calculating start and stop dates of Copaxone and created a table with information for each individual. Laboratory values are stored in a database, and we are currently extracting liver levels for ALT, AST, ALP, and GGT during the identified time frames for respective patients. Once extraction of lab values is complete, I will perform a linear regression analysis in R, a statistical computing program, to determine if any correlation exists between RRMS patient genotypes and liver-enzyme levels. Patients have previously been genotyped on the ImmunoChip, which contains 196,524 SNPs and has undergone stringent quality control.

The Role of Cdk2, Cy lclin E1, and CIP/K IP Inhibitors in Aged Islets

January 01, 2015 12:00 AM
Brent Wright, Brigham Young University Life Sciences Diabetes is one of the leading causes of death among Americans and is a major health concern worldwide. Nearly one in four Americans aged 65 or older are diabetic. Type 1 and Type 2 diabetes both result in reduced functional β-cell mass, which regulates the storage and secretion of insulin. Increased functional β-cell mass could essentially cure diabetes. We have shown that Nkx6.1 overexpression induces proliferation of 2-month-old primary rat β-cells but fails to induce replication of 8-month-old primary β-cells, as measured by 3H- thymidine incorporation is age-dependent. Cell cycle activator and inhibitor mRNA levels were measured in young and aged untreated islets and islets transduced with AdCMV-BGal or AdCMV-Nkx6.1. This data demonstrated a significant increase in mRNA expression of cell cycle inhibitors p21 and p57 of the CIP/KIP family in young islets transduced with Nkx6.1. However, p21 and p57 mRNA showed no significant increase in aged islets. Cdk2 and cyclin E1 mRNA expression showed a similar trend for young and aged islets. The increased expression of Cdk2, a necessary factor for transition from G1 to S phase, could provide possible explanation for increased proliferation in young islets. Fluctuating mRNA levels of key cell cycle components in aged islets, provides a possible explanation for the decreased effectiveness of Nkx6.1 in inducing proliferation in aged islets.

Optimization of the pET9a Vector

January 01, 2015 12:00 AM
Brooke Linney, Brigham Young University Life Sciences Recombinant DNA technology has become one of the most critical fields of research relating to biotechnology. Recombinant DNA can be used to obtain certain proteins or examine the effects of genes that we engineer, with many applications in medical research. As part of our lab’s use for recombinant DNA, we create a gene sequence to code for a certain protein, and then use heat-shocking transformation to stimulate Escherichia coli bacterial cells to incorporate the mutated DNA from the surrounding solution. As the bacterial cells then grow, they replicate the mutated plasmid that we introduced. This DNA can later be extracted from the bacterial cells and used for further synthesis, usually protein synthesis in our lab. The process of transforming bacterial cells with mutated DNA is directly affected by plasmid size. Transformation efficiency is maximized with smaller plasmids. One of the DNA plasmids we use to introduce mutations is the pET9a vector. This plasmid is a sequence of 4,341 base pairs, but by reducing the length of the plasmid, we can increase transformation efficiency. By restricting the size of the pET9a vector, we will also be able to introduce larger foreign DNA sequences than we would with the original pET9a vector. This presentation will explore the different methods of reducing sequence length to optimize the pET9a vector, mainly focusing on site-directed mutagenesis coupled with the use of restriction enzymes.

Understanding the Periprosthetic Microenvironment Surrounding Percutaneous Devices: Use Of Simple Immunohistochemical Techniques to Predict Healing Outcomes

January 01, 2015 12:00 AM
Alysa Edwards, University of Utah Life Sciences Percutaneous devices (PDs) constitute foreign materials that penetrate through the protective skin barrier to provide connection between internal and external environments. It has been previously shown that the periprosthetic tissue at the PD-skin interface is under a continuous state of wound healing, which often results in epidermal downgrowth. This continuous downgrowth is detrimental to the long-term survival of these devices. To date, there are no effective methodologies available to either prevent or quantify the degree of epidermal downgrowth indicating a need to find effective markers to document the healing response around these devices. In this study, periprosthetic tissues from a previous pig- back study were subjected to two different evaluations: (1) standard histology (HandE) and (2) immunohistochemical staining (IHC). Healing responses around PDs made with different material types were examined using cytokeratin 6 and collagen 4 to determine the degree of wound healing and granulation tissue maturity. Varying exposure time and concentration of stains, staining procedures were optimized. The interfacial tissues were then analyzed using either a photo or a confocal microscope. Preliminary data (Figure 1) indicated that there were noticeable differences in the periprosthetic regions between the material types used. The IHC data confirmed that the periprosthetic tissue is a hyper cellular region with a high density of blood vessels (collagen 4) and migrating keratinocytes. This data further confirmed the morphological differences observed between implant types using standard histology. Continued analysis will quantify the amount of collagen 4 within the periprosthetic tissue using imageJ software. Semi-quantitative data from each implant type will then be compared to predict biocompatibility. This research has demonstrated that IHC staining could be a potential tool for understanding the healing cascades around the percutaneous device.

The Evolutionary Hourglass of an Herbivore Induced Transcripto me in N. Attenuate

January 01, 2015 12:00 AM
Matthew Durrant and Shuqing Xu, Brigham Young University Life Sciences Researchers at the Max Planck Institute for Chemical Ecology have recently sequenced the Nicotiana attenuata (wild tobacco) genome. This genome affords researchers new opportunities to understand the evolution of this organism. One method for analyzing the evolution of specific genes in a given genome is referred to as phylostratigraphy, which makes use of large-scale BLAST sequence similarity searches. I designed a pipeline using the python programming language that implements a phylostratigraphic analysis to estimate the evolutionary age of all ~35,000 genes belonging to N. attenuata. By analyzing the large amounts of data produced by this BLAST search, each gene was assigned an estimated age through comparing the taxonomies of all other organisms that share similar protein sequences. This effectively answers the question “How old is this gene?” for each gene in the entire N. attenuata genome. Previous studies have produced microarray data that tracks the transcriptomic response of N. attenuata to an herbivore attack. By comparing the newly gathered gene evolutionary age information with this previously gathered microarray data, several new insights into the molecular signaling pathways of N. attenuata were made. It was found that at 1 hour following an herbivore attack, the transcriptome of N. attenuata is evolutionarily young, suggesting that the initial response to an herbivore attack recruits genes that have evolved more recently in the organism’s evolutionary history. At 5 hours after attack, however, there is a distinct decrease in the overall age of the N. attenuata transcriptome, suggesting that the organism is recruiting more ancient genes that are used to reconfigure the transcriptome of the organism. Beyond 5 hours, the transcriptome is once again relatively young, and it is clear that it has indeed been reconfigured to provide a more herbivore-specific defense response. This demonstrates a novel, evolutionary approach to analyzing signaling pathways in plants.

Biodiversity Mapping of North America: A Comparison of Datatypes

January 01, 2015 12:00 AM
Kari Norman, Utah State University Life Sciences The identification of important areas for biodiversity is essential for affective allocation of limited conservation resources. Since Myers’ seminal biodiversity hotspot paper in 2000, great strides have been made in more accurate global mapping. While global mapping identifies important patterns in large-scale biodiversity, conservation management rarely if ever occurs on the same scale. Finer scale mapping is therefore essential to make research applicable for on the ground decision-making. This project focuses on North America, a continent that holds no priority areas when included in a global analysis. Using citizen scientist data of multiple vertebrate and plant taxa, we created maps of species richness and significantly rare species. In addition, we created similar maps based on range map data and compared to determine if the two data types produced different biodiversity priority areas. The results of this study provide informative maps about the locations of species, their vulnerability, and how human action may impact them, as well as underline the importance of understanding the data behind their construction.

Comparison of Dust Mite Antigen Levels in Utah Homes with Swamp Coolers versus Homes with Air Conditioners

January 01, 2015 12:00 AM
Morgan Christiansen, Taylor Hoybjerg, and Ryan Cook, Brigham Young University Life Sciences Asthma is a chronic allergic disorder manifest by airway restriction due to inflammation, bronchoconstriction, and increased respiratory mucous secretion. As many as 300 million people worldwide are affected by asthma. It is becoming increasingly prevalent, especially in countries experiencing urbanization and Westernization. Asthma is currently the most common chronic illness among children in the U.S. and the third leading cause of hospitalization for children aged 0 – 15 yrs. Reservoir dust collection and area air sampling are the two primary methods of measuring allergen levels in house dust. Allergen sensitization leading to asthma is thought to occur prior to age six while the immune system is still naïve. In the case of the dust mite allergen Der p1, the exposure window may be as early as age two. However, little evidence is available to establish a dose–response relationship between inhalation exposure and early immunological sensitization to allergens. Temperature and relative humidity play a major role in dust mite survival and proliferation—indoor humidity above 50-60% in arid environments has been shown to support dust mite populations. Evaporative “swamp” coolers add moisture to cool the air and this increased humidity can create favorable environments for dust mite survival. The purpose of this research is to quantify the levels of dust mite antigen in homes with air conditioners and homes with swamp coolers in Utah Valley to determine the role humidity plays in the abundance of dust mite antigens. We are testing the hypothesis that homes with swamp coolers exhibit higher levels of antigen due to heightened humidity levels.

Radon Testing

January 01, 2015 12:00 AM
Breanna Torgersen, Hailey Seaver, Abigail Gunn, Siena Davis, and Jim Johnston, Brigham Young University Life Sciences Exposure to radon gas (222Rn) is the second leading cause of lung cancer in the U.S. Because 222Rn is a colorless, odorless, and tasteless gas, it must be tested for to recognize its existence in a home. Studies show that many homeowners know little about radon, and do not test their homes as recommended. This study was undertaken to measure Utah County residents’ knowledge about radon, and to understand factors associated with radon testing. Utah County residents (N = 200) are currently being surveyed as they exit the vital records office at the Utah County Health Department (UCHD). Subjects complete a 51-item survey measuring demographics, radon knowledge, and social cognitive theory-based constructs related to radon testing. Preliminary data (n = 65) shows subjects’ mean radon knowledge score was 1.68 (33%, SD = 26.24%) on a 5-item test. There was a significant relationship between radon testing and self-efficacy (OR 1.76, 95% CI: 1.2–2.6, p = 0.007). Subjects with higher self-efficacy for radon testing were more likely to report that they had tested their home at least once. Data collection is still underway on this study, and all results reported here are preliminary.

Resveratrol as a Chemotherapeutic

January 01, 2015 12:00 AM
Jeff Mecham, Brigham Young University Life Sciences Breast cancer is diagnosed in one of every eight American women. But, a safe, effective treatment for cancer has yet to be developed. Resveratrol, a naturally occurring phenol found in the skin of grapes, shows promise to be a powerful but safe chemotherapeutic in a sea of otherwise damaging and toxic treatments. However, the mechanisms by which resveratrol operates are yet to be fully understood. Our project focuses on the mechanisms by which resveratrol induces cell death in breast cancer cells. We will focus on the mechanisms of the p53 pathway. The protein p53 operates as an internal housekeeper of the cell. When DNA is damaged, p53 assesses the damage and can cause cell death when needed to prevent the spread and replication of the damaged cells. Cancer cells often decrease the amount of p53, allowing them to replicate without hindrance. Cancer cells treated with resveratrol show an increase of the amount of intracellular p53 restoring the cells’ ability to induce cell death. Our project focuses on two apparent mechanisms by which this increase occurs: calcium signaling and the decrease of ubiquitination of P53. Ubiquitin is a protein used to mark other proteins for degradation. Other papers and studies have shown that resveratrol inhibits key players in the process of ubiquitinizing p53. We will focus on resveratrol’s effect on both the ubiquitinizing and deubiquitinizing machinery, including G3BP1, USP10, and MDM2. A better understanding of the mechanisms by which resveratrol leads to the targeted death of cancer cells is an important step towards better cancer treatments.

Bacterial Biofilm Disruption with the Utilization of Ionic Liquids

January 01, 2015 12:00 AM
Aimee Newsham, Dixie State University Life Sciences Millions of people are infected yearly with resistant pathogens, including MRSA (methicillin- resistant Staphylococcus aureus), a biofilm-forming pathogen that is often transferred to patients from contaminated surfaces. Therefore, improved methods to destroy biofilm- encapsulated pathogens or to prevent their initial formation are required. This research is focused on the development of a safe treatment against biofilms by integrating organic salts, or ionic liquids (ILs), into different surfaces. Textiles were integrated with ILs to prevent formation of biofilms/bacterial growth, and were also treated post-exposure to determine if the biofilms could be destroyed post-contamination. Effectiveness of newly designed ILs were tested via inhibition zone studies on LB agar plates, and post-treatment samples were analyzed via scanning electron microscopy for presence of bacteria. The bacteria tested included Pseudomonas aeruginosa, Staphylococcus epidermidis, and Escherichia coli. These microbes are similar to MRSA in that they form biofilms comprised of extracellular proteins, DNA and polysaccharides. Bacterial colonies encapsulate themselves with biofilms to provide protection from threats, including antibacterial drugs. By integrating ionic liquids into textiles, formation can be prevented by IL solvation and sequestering of the extracellular biofilm components, including the proteins and DNA. This research could have tremendous implications regarding defeating bacteria that are resistant to existing treatments due to biofilm encapsulation. Additionally, the results could lead to new antimicrobial textiles and new approaches to prevent adherence and growth resistant biofilm-encapsulated pathogens.