Skip to main content
Utah's Foremost Platform for Undergraduate Research Presentation

Fine Arts

Pandemic Effects on the Work From Home Market

March 21, 2024 12:00 AM
Authors: Eve Christensen, Chase Redd, Bailey Uzzardo. Mentors: Elijah Neilson. Insitution: Southern Utah University. The advent of the Covid-19 pandemic in early 2020 brought with it a host of changes to the workplace. One change in particular was the wide-spread transition to remote work as opposed to in-person work as concerns with spreading the Covid-19 virus necessitated a shift in how the labor force performed their work. The Covid-19 pandemic created more opportunities for employees to work from home rather than working on site. This paper seeks to evaluate the correlation between working from home and earnings using an econometric model. By comparing an individual’s earnings before and after the Covid-19 pandemic, along with whether they work from home or on site, we hope to better understand the effect that remote work has on a person's decision to enter the job market and which fields the incoming labor force are pursuing. Our findings will also be relevant to employers as they evaluate what a competitive wage would be depending on the availability of work from home options for a certain job.

Bacterial Separation by poly-Dopamine Coated Magnetic Nanoparticles

March 21, 2024 12:00 AM
Authors: Camille Bryner, Alyson Camacho, Bowen J Houser. Mentors: William G Pitt. Insitution: Brigham Young University. In an attempt to combat a growing number of nosocomial infections related to medical devices, many studies have investigated the effect of polydopamine (pDA) coated surfaces on biofilm formation and found them to have antibacterial and anti-adhesive properties. However, we discovered that pDA coated magnetic nanoparticles (MNPs) display strong attractive interactions with many, but not all, species of bacteria. Fe3O4 MNPs were prepared using sodium acetate, ethylene glycol, and iron (III) chloride hexahydrate solutions and characterized by a variety of methods. XRD data confirmed a magnetite pattern characteristic of Fe3O4, then TEM characterization of MNP samples showed successful pDA coating onto iron oxide particles. Bacterial capture efficiencies (CE) by pDA-MNPs for 8 strains of bacteria were measured by optical turbidity and plate counts. We have found that CE is a function of exposure time to and concentration of MNPS; thus some experiments were done with constant exposure time and variable MNP concentration and others were done at variable exposure times and constant MNP concentrations. Additionally, these pDA-MNPs exhibit extremely efficient adhesion to some bacteria such as Staphylococcus epidermidis (S. epidermidis) while being ineffective at capturing some strains of Esherichia coli (E. coli). We propose that such capture ability of pDA-coated MNPs can be employed for detection and identification of bacteria in hospitals and for food science quality control.

An Analysis of the Neuroscience of Love and the Physiological Similarities it Holds to Addiction

March 21, 2024 12:00 AM
Authors: Audrey Wells. Mentors: Fredric Govedich. Insitution: Southern Utah University. This project is an interdisciplinary meta-analysis of literature across neuroscience, psychology, biochemistry, and biological anthropology. I am interested in comparing the neural physiology of love relationships to that of recreational drug use. I have cross referenced studies on the areas of activation and neurotransmitter level changes for each of these experiences. Both of these activities, specifically when comparing drugs to the infatuation stage of a relationship, show a dramatic increase in the reward complex within the center of the human brain, as well as an increase in risky behavior and obsession with the object of attraction/addiction. I then continued in an analysis of the termination from either positive stimuli, namely, rejection from a lover, and recreational drug withdrawal. I have found that within the motivational sectors of the brain, activation when viewing your rejector, as well as the heightened dopamine produced, show comparable similarities to those who are experiencing an active physiology drug withdrawal.

Bloom's and SOLO: A Comparison of Educational Taxonomies

March 21, 2024 12:00 AM
Authors: Spenser A Clark. Mentors: Acacia Overono. Insitution: Utah Valley University. It is not uncommon for a college student to see a list of learning objectives when skimming through a syllabus for a program or course. The goal of learning objectives is to set reasonable expectations for student learning and guide their study, as well as providing a framework for the development of teaching practices and assessment. Part of the inception of learning objectives as a means of organizing teaching and assessment in the classroom may be attributable to the Taxonomy of Educational Objectives, more commonly referred to as Bloom's Taxonomy. Another taxonomy similar to Bloom's, but much less well known, is the Structure of Observed Learning Outcome (SOLO) taxonomy. Bloom’s taxonomy organizes learning objectives into six categories: Remember, Understand, Apply, Analyze, Evaluate, and Create. The categories are structured as a cumulative hierarchy in which mastery of each level is assumed necessary for progressing to the next. The structure of Bloom’s is not derived from any specific learning theory, but a categorization of pre-existing learning objectives. Bloom’s therefore suffers from a lack of a strong theoretical foundation and may not accurately reflect how learning actually occurs. Additionally, although Bloom’s has been widely employed in the context of educational assessment, research has shown that it suffers from low interrater reliability and is inconsistent between educational contexts such as courses and topics. Unlike Bloom’s, SOLO is based upon Piaget’s Stage Development theory and categorizes learning into five distinct stages: Prestructural, Unistructural, Multistructrual, Relational, and Extended Abstract. SOLO does not suggest that learning is unidirectional or hierarchical. It also acknowledges internal cognitive processes rather than focusing solely on observable behaviors. Although very little research has investigated its reliability, it could be an attractive alternative to Bloom’s because it may more accurately reflect how learning occurs. The present work reviews the development and implementation of these two models and compares them.

Group Theory for Procedural Content Generation: Towards Generating Objects from Mathematical Description

March 21, 2024 12:00 AM
Authors: Jonas P Knochelmann. Mentors: Rogelio E. Cardona-Rivera. Insitution: University of Utah. Despite the highly technical nature of Procedural Content Generation (PCG), the holistic study of the discipline is minimal and qualitative. We argue that this gap exists because there is no formal framework to talk about PCG artifacts and algorithms and propose the mathematical field of group theory to serve as such a framework. Group theory is a well-established discipline that has been embraced in chemistry, physics, and art, with tools for analyzing, combining, and generating objects based on their structure. We outline a specific method for applying group theory to PCG and explore a number of case studies in the hopes of developing a more unified formal framework for future study.

The effects of stinging nettle oil on the vascular smooth muscle in frogs

March 21, 2024 12:00 AM
Authors: Tia Dudley, Ty Erickson. Mentors: Matthew Weeg, Mary Jo Tufte. Insitution: Southern Utah University. The pharmacological investigation of plant essential oils has been expanding due to their suspected health implications. Research supports that plant essential oils have cardiovascular benefits, including reducing blood pressure and managing hypertension. Our research centers on stinging nettle and its effect on the vasculature in frogs. Existing evidence shows that stinging nettle can be used to treat hypertension, a disease intensified by vasoconstriction. Our study aims to investigate if stinging nettle causes a relaxation in smooth muscle and vasodilation. We administered stinging nettle on the vasculature in frogs and measured the diameter of the blood vessels before, during, and after the application. Results show that the application of stinging nettle has a vasodilating effect on some of the smaller blood vessels. The vasodilation is a potential mechanism for the anti-hypertensive effects of stinging nettle. These findings illustrate a probable avenue in cardiovascular medicine and highlight the potential of plant oils in reshaping the landscape of modern health.

Chronic obstructive pulmonary disorder remote patient monitoring using spirometry: a systematic review

March 21, 2024 12:00 AM
Authors: Joseph Nielson, Ben Schooley. Mentors: Ben Schooley. Insitution: Brigham Young University. Chronic obstructive pulmonary disorder (COPD) affects an estimated 30 million Americans and is the third leading cause of death worldwide. A recent effort to curb deaths and hospitalizations involves remote patient monitoring (RPM). Of all possible monitoring parameters, spirometry presents itself as potentially accurate and helpful, but the exact effect and its size remain to be described. A systematic literature review is being performed to describe the current state and future opportunities in RPM systems that use remote spirometry for COPD patients. Only studies that specifically mention the use remote spirometry for monitoring COPD patients were included. The databases PubMed, Web of Science, Scopus, and EBSCO were searched in July and August 2023. Studies are being synthesized by tabulating the study sizes and designs, technological parameters, and interesting findings. Twenty-nine studies have been included spanning feasibility and pilot studies as well as one randomized clinical trial. Remote spirometry for COPD patients has generally been shown to be feasible. Many studies present systems in early stages of development that have yet to be tested thoroughly in large trials. It may be necessary to involve remote spirometry in more large-scale trials soon. Future studies could confirm the degree to which spirometry adds helpful information for monitoring COPD patients.

Conserving a keystone predator in the Americas: integrating phylogenomics, biogeography, and species-level taxonomy for a widespread army ant genus

March 21, 2024 12:00 AM
Authors: Megan DuVal, John Longino, Rodolfo da Silva Probst. Mentors: John Longino. Insitution: University of Utah. Army ants (Formicidae: Dorylinae) are top predators throughout most tropical and subtropical regions of the world. Their nomadic colonies and cooperative social hunting make them behaviorally and ecologically unique keystone species that are of conservation concern. Their status as nomadic top predators makes army ants vulnerable in areas affected by habitat fragmentation. An obstacle to conservation efforts is the outdated army ant species-level taxonomy, which hasn’t been updated since the 1950s for many genera. For Labidus, a widespread and ecologically important army ant genus in the Americas, there are currently seven valid species recognized solely based on morphology of workers and/or males. Three species are only based on males, which need to be associated with their respective workers, and within the four primarily worker-based species, there are likely cryptic species. To address these issues, we applied cutting-edge phylogenetics and phylogenomics to update the species-level taxonomy. To construct our phylogenetic tree, we used ultraconserved elements (UCEs, which use thousands of regions across the genome and can accurately infer evolutionary relationships across broad timescales) from 17 specimens, 66 COI barcodes from the Barcode of Life Database (BOLD), and 35 new COI barcodes obtained through in-house Nanopore sequencing. Through our analyses, we found that the genus Labidus contains at least 11 species and that all of the previously recognized wide-ranging species are made up of multiple cryptic species with more restricted ranges. We were able to associate all three previously identified male-based species with their respective workers. We have also found patterns of parallel and overlapping biogeography across multiple Labidus clades. Our UCE+Nanopore approach allows for an updated taxonomy of Labidus, leading to a better understanding of its evolutionary history and a better ability to promote its conservation.

The Transmission of National Identity: A Case Study of Japan's Memorialization of the Past

March 21, 2024 12:00 AM
Authors: Ashlyn Clark. Mentors: Lynnette Finau. Insitution: Brigham Young University. Festivals, museums, bookstores, and Shinto shrines might not seem to have a lot in common, but implicit Nationalist ideals find their way into each of these, leaving their mark in the transmission of Japanese identity. In this study of Yasukuni Jinja and the Yushukan Museum (the Tokyo National War and Peace Memorial shrine and museum), it becomes more clear how these relate to one another, how they relate to Japanese identity, and how exactly they are nationalist in nature. Honor, sacrifice, tradition, and war come together to create a beautiful, unifying narrative that links ancestors with descendants, maintaining national identity and continuing to transmit their traditional ideals.

Constant pressure untethered soft robotics: an adaptable solution to the limitations of soft robots

March 21, 2024 12:00 AM
Authors: James Wade, Chris Paul. Mentors: Nathan Usevitch. Insitution: Brigham Young University. Soft Robotics offer significant advantages when completing certain tasks compared to other robots and methods. Compliance, adaptability, and energy efficiency are a few of the major advantages. On the moon, where safety, volume and versatility are of high importance, soft robotics may find an innovative niche. NASA’s BIG Idea Challenge for 2024 incentivizes creating new innovative soft robot designs. Our research group is building our facility mentor, Nathan Usevitch’s, work at Stanford University. Doctor Usevitch and his cohort developed an octahedral, inflated robot composed of multiple tubes folded into triangular shapes in a truss-like structure. Each triangle consisted of a long inflatable tube and 3 motorized modules at the nodes of the triangle. The motorized nodes (consisting of a DC motor and rollers) roll along the length of the tube, lengthening one edge of the triangle while shortening the other. By attaching multiple triangles to each other in geometric shapes, flexible structures are created that can adapt their shape to the desired need. Because this system has a constant inflated volume, no external air compressor is necessary, allowing for untethered movement. The bulk of the mechanical work is performed by electric motors, providing a higher energy efficiency than a system of repeated inflation. Furthermore, this design is compactly stored when deflated, optimal for transport into space.To build on this design and optimize it for use on the moon, our research group will make the following changes and improvements:- Developing the physical prototype. This will enable robust and dynamic movement and the support of large loads- Develop a simulation tool that allows us to explore different configurations of the robot for different tasks- Develop a joint system that allows an astronaut to quickly reconfigure the triangles into different structures based on the required task - Develop a control approach that accounts for the underdamped dynamics of large inflatable structuresThrough our research, we hope to expand the possibilities of soft robotics. We are synthesizing the advantages of traditional robotics (robustness, untethered motion) with the unique strengths of soft robotics (flexibility, adaptability, cost efficiency).

Information-Gaining Moves in Game Theory

March 21, 2024 12:00 AM
Authors: Kevin Young. Mentors: Gretchen Ellefson. Insitution: Southern Utah University. The concept of competition is not new to humans, nor is it simple. Countless philosophers throughout the years have approached competition in many ways. One of the core subjects that philosophers have used to discuss competition is that of decision theory. Decision theory, in short, discusses the best things to do. Game theory, a subset of decision theory, discusses the same within the context of games, or in other words, strategy. Both of these subjects have been used to evaluate how best to win games of chance, games of choice, and games in between. I work to explore the concept of making moves to gain information, seeking to learn another person’s moves before you make your own. This subset of moves deserves recognition, especially within the modern eras of competition.

De novo genome assembly and annotation of Curculio sp. (Coleoptera: Curculionidae) provides insight into diapause evolution

March 21, 2024 12:00 AM
Authors: Daniel Davis, Paul B Frandsen. Mentors: Paul B. Frandsen. Insitution: Brigham Young University. The nut and acorn weevils of the genus Curculio (Coleoptera: Curculionidae) are a diverse group of beetles with a unique life history. A female weevil uses her rostrum (snout) that is about the length of her body to dig into the flesh of a developing hard-shelled seed and lay her eggs inside where they can safely develop into larvae. After the grown larvae exit their seeds, they spend one or more years burrowed in the soil near host trees. During this time they enter diapause, a state of suspended development to minimize the energy that they expend. Studies indicate that a major purpose of this behavior is to align their adult emergence with masting events (large scale seed production every 2-5 years) of their host trees. Between, and even within, Curculio species, there is significant variation in diapause lengths and behaviors (Higaki, 2016). This wide array of adaptive behaviors is a result of the coevolution between these insects and their various hosts. Here, we present a high quality genome of a Curculio species. With this genome, we discuss the genetic and evolutionary factors that have given rise to this unique life history of Curculio and future plans to compare the genomes of multiple Curculio to further unravel this mystery.

Diversity and community in macroinvertebrates of Timpanogos Cave, Utah

March 21, 2024 12:00 AM
Authors: Erika Frandsen. Mentors: C. Riley Nelson. Insitution: Brigham Young University. The Timpanogos Cave System consists of three caves in American Fork, Utah. In 2003, the National Park Service (NPS) commissioned Dr. Riley Nelson and laboratory students to conduct a survey of the diversity and abundance of terrestrial arthropod species found within the caves. Over the two years they sampled in Timpanogos Caves, they identified 55 species of macroinvertebrates in an unpublished report.In the 20 years since the last sampling, many environmental factors could’ve changed in these caves, contributing to an overall decrease in both abundance and biodiversity of fauna. Therefore, we repeated the sampling done by the Nelson lab in 2003-2004 for the duration of May 2023-October 2023 to compare the two time periods’ macroinvertebrate communities.The six taxonomic families found most abundantly in 2003-2004 continue to be the most abundant families found in 2023. Additionally, a new taxon of cave beetle Rhadine sp. not found 20 years ago was discovered early in our sampling of 2023. Despite the increase in visitation over the past 20 years, at this stage in the analysis, the macroinvertebrate community within the caves seems to have almost no loss of diversity. Additionally, the appearance of new taxa indicates that there is still more life and diversity within the caves left to discover.

The Portrayal Of Reality Through The Lens Of The Astonishing World Of Studio Ghibli

March 21, 2024 12:00 AM
Authors: Emma Manley. Mentors: Johnathan Chidester. Insitution: Southern Utah University. This presentation will be about the indescribable magical Studio Ghibli movies. Specifically, I will be analyzing how these movies are great at representing life. From the weird, outstanding world of Chihiro’s ghost town from Spirited Away, all the way down to the simple little Iron town of Princess Mononoke. These movies are amazing, not just for their remarkable art work and lovable characters, but for the relatability and symbolism of these stories. These stories are weird and strange, but so is everyone. We are human. A complex being that is evolving every single day. We have creative minds in all sorts of differing ways, and these movies are great at explaining this; they are complex, imaginative, and life-like. I will not be defining every single Studio Ghibli movie, but I have chosen a few movies I wish to expand on. My first one is The Wind Rises. This movie is based on a true story about Jiro Horikoshi, the designer of the A5M fighter aircraft. This story goes into detail about his life: his failures, his trials, and the hardships he endured. The second one is Spirited Away: this story is Studio Ghibli's most famous work. This is a story of a little girl who gets trapped in a spirit world all alone. Along her journey she makes new friends, discovers new ideas, and is able to discover who she is. The final movie is Princess Mononoke: Princess Mononoke is Studio Ghibli's masterpiece. The young warrior Ashitaka is strucken with a curse and will soon die. This story is about him getting rid of his curse, discovering how to make peace and stop hate.We should know and understand these movies, not because they are just films and that I like them, but because they are innovative and original. With these movies we jump into a creative world that we can make our own. These movies are relatable in every sense because they are just like us: weird, quirky, and just so compelling. We feel a connection to the trials that each character has because in a sense we all have been through something of the same. These movies represent life in a silly way that I wish to know more about. I will expand on the way these movies are made, the theme and writing, and the characters that we relate to.

Low Academic Self-Efficacy Predicts Higher Depression and Anxiety in Students of Color

March 21, 2024 12:00 AM
Authors: Nathaniel Call. Mentors: Chelsea Romney. Insitution: Brigham Young University. New college students may experience stressors like difficult academic work, new social environments, and living on their own for the first time. Students of color may experience additional stressors due to minority stress, experiences of racism, and unfamiliar social contexts. We collected self-reported depression, anxiety, and academic self-efficacy measures from 742 first-year college students. We found that students of color reported higher levels of depression, F(1, 733) = 11.04, p < .001, and anxiety F(1, 734) = 14.91, p < .001, compared to white students. Further, we found that white students reported higher academic self-efficacy, F(1, 742) = 9.97, p = .002, compared to students of color. This suggests that lower confidence in academic work is related to higher depression and anxiety in nonwhite students, r(661) = -.32, p < .001. Our study builds on previous research by providing a possible pathway through which students of color develop more depression and anxiety through lower academic self-efficacy compared to white students.

Adverse effects of Nr4a3 full body knockouts on adipose tissue

March 21, 2024 12:00 AM
Authors: Jared Carter. Mentors: Jeff Tessem. Insitution: Brigham Young University. Type 2 diabetes mellitus (T2D) is a chronic condition affecting nearly half a billion people worldwide. Symptoms of T2D include impaired glucose tolerance, decreased insulin secretion and significant weight gain. While the symptoms of T2D are well-documented, the underlying pathology remains unclear. Recent research has indicated the critical role of the nuclear receptor Nr4a3 in the development of glucose intolerance and weight gain. In individuals with T2D, the Nr4a3 promoter is hypermethylated, leading to decreased Nr4a3 expression. Elucidating the role of Nr4a3 in mitochondrial respiration in adipose will help define the mechanism of T2D onset and treatment. I studied mice with full body knockout (KO) for Nr4a3. These mice exhibited T2D-like symptoms, including impaired glucose tolerance, reduced insulin secretion and increased adiposity. I measured mitochondrial respiration in muscle, liver, kidney, and adipose tissue, with impaired respiration only observed in adipose tissue. This impairment in adipose tissue respiration correlated with an increase in the size of all adipose deposits, larger adipocytes, and expanded lipid droplets. Intriguingly, the analysis of electron transport chain and tricarboxylic acid complex proteins revealed no significant differences compared to control samples. Instead, the change in respiration was attributed to a reduction in active DRP1 protein, responsible for mitochondrial fission and maintenance. These findings have important implications for our understanding of T2D and its potential treatment strategies, which will be discussed in more detail.

Feminine versus Freakish: The Silence of the Lambs and TERF Rhetoric

March 21, 2024 12:00 AM
Authors: Kenna Johnson. Mentors: Nicole Dib. Insitution: Southern Utah University. My paper is an interpretative analysis of Thomas Harris’ 1988 novel The Silence of the Lambs as analyzed through the lens of feminist film critic Laura Mulvey’s concept of the masculinization of spectators. In her essay collection Visual and Other Pleasures, Mulvey discusses how cinema, as a traditional medium, has misogynistic, voyeuristic characteristics. Through camera angles and editing, the audience is subconsciously led to identify with the protagonist (who is typically male). As a result, we, the audience, follow his gaze to his object of desire: the woman. This phenomenon she deems the masculinization of spectators. In my paper, I have applied Mulvey’s theory to Harris’ novel and concluded that the masculinization of spectators is, in fact, subverted in The Silence of the Lambs. Here, the audience identifies with Agent Clarice Starling, a young FBI trainee. We follow her gaze to the man she has been tasked with hunting: Jame Gumb, who is referred to colloquially throughout the novel as “Buffalo Bill.” Throughout my paper, I analyze the stark differences in characterization between these two. While Starling is depicted as a pillar of feminine strength, Gumb, a male to female transgender character, is depicted as gaudy and grotesque. In comparing the notable differences in characterization, I determine these characters to serve as each other’s foils. Having been denied as a candidate for gender reassignment surgery, he creates a ‘girl suit’ out of his victims’ skins as an attempt to pass as a woman. Gumb’s atrocities paint the transgender population in a monstrous light; Starling’s actions, conversely, portray her as fiercely independent, and a hero for the feminist cause. Drawing from this analysis, I argue that The Silence of the Lambs is a stark support for the trans-exclusionary radical feminism, or TERF, movement. Through an in-depth analysis of the literary symbols present in the novel in conjunction with the two main characters’ characterization, I determine that TERF rhetoric beats strongly underneath the novel’s surface feminism.

Unlocking the Mechanism Behind Depotentiation: A Cellular Model for Forgetting

March 21, 2024 12:00 AM
Authors: Justin Webb. Mentors: Jeffrey Edwards. Insitution: Brigham Young University. Understanding the mechanisms underlying depotentiation in the context of previously induced long-term potentiation (LTP) is crucial for unraveling the processes of memory consolidation and forgetting. Our research is focused on synaptic plasticity in the hippocampus, the primary brain region responsible for mediating learning and memory. Using electrophysiology and neuropharmacological techniques, our goal is to elucidate the cellular mechanisms behind depotentiation, a reversal of the increase in postsynaptic response and overall synaptic strength characteristic of LTP. By doing this research, we hope to both fill existing gaps and resolve conflicting views about the processes and receptors involved in depotentiation. Experiments were performed on hippocampal brain slices of young mice. We induced LTP in hippocampal CA1 neurons using high-frequency electrical stimulation, and then elicited depotentiation in the same neurons via low-frequency electrical stimulation. This creates a cellular event analogous to learning and subsequently forgetting a new memory trace. Our preliminary findings show that depotentiation still occurs in the presence of MPEP, a metabotropic glutamate receptor (mGluR5) antagonist, suggesting that the depotentiation mechanism is independent of mGluR5. Additionally, because female rodent models have largely been ignored in prior electrophysiology experiments involving LTP and depotentiation, we investigated and observed gender-related differences, which show female mice exhibiting more pronounced depotentiation than their male counterparts. Building on these findings, our research will continue to identify gender-related differences in both juvenile and adolescent mice, as well as explore the role of NMDA receptors on depotentiation. We will also extend the temporal gap between LTP induction and depotentiation to explore the impact of early-phase versus late-phase LTP on subsequent depotentiation. This research aims to shed light on the intricate mechanisms of synaptic plasticity and its implications for learning, memory, and potential therapeutic modulation of these processes in the context of conditions like Alzheimer's disease, post-traumatic stress disorder (PTSD), and other disorders of learning and memory.

Bridging the Gaps: Geo-Coordinated Land Patent Linking for Socioeconomic Analysis

March 21, 2024 12:00 AM
Authors: Zachary Flynn, Britton Davis, Josh Nicholls, Bryson Mumford. Mentors: Joseph Price. Insitution: Brigham Young University. The United States has massive amounts of public data and land ownership stretching back to the early homesteading period of the American West. This data has been of limited use for economic research because it only includes the name of the ownership, thus making it impossible to study racial and gender differences in land on ownership. We develop an innovative method for linking individual land records to US census records. Our key innovation is that we start by linking individuals with unique names that we can make from land record to census record based on name and town. We then use the geo-coordinates in the land records and the proximity of households on the census sheets to link other individuals that have more common names. This two-step process allows us to link 36% of a sample of people in the land records in Colorado to a census record between 1880 and 1940. This new linked data will be a valuable resource for individuals doing research on the development of the American economy, and also people doing genealogical research.

Digging the Rabbit Hole: Jean Baudrillard and Mike Rothschild's "The Storm is Upon Us"

March 21, 2024 12:00 AM
Authors: Ezra Stein. Mentors: Nicole Dib. Insitution: Southern Utah University. In Simulacra and Simulation (1981), Jean Baudrillard lays out for stages through which a sign (an image or other representation of reality) becomes a simulacrum (a sign with no basis in reality). I argue that the followers of the Qanon conspiracy movement, as detailed in Mike Rothschild’s "The Storm is Upon Us" (2021), follow these four stages in their radicalization into the conspiracy. The first stage outlined by Baudrillard is when the image is a basic reflection of reality itself. We see this stage when Rothschild discusses how QAnon believers discuss the CIA. Adherents of QAnon will often point to the declassified MKULTRA documents released by the CIA for credibility, as this is something that was proven to have actually happened, the sign being a representation of actual reality. The second of Baudrillard’s stages is when a sign takes something from reality and twists and distorts it into something different than what it originally represented. An example of this in "The Storm is Upon Us" is seen in the way Q believers talk about adrenochrome, which is a real but harmless chemical compound, as an elixir of youth used by the elite. Stage three is when a sign claims to be based in reality but is actually based on nothing at all. The originator of QAnon, the man who goes by “Q,” fits within this stage. Rothschild lays out Q’s origins as an anonymous poster on the website 4chan who claimed to high-level military clearance. Q’s claims were supposedly based on real-life military intel, but were actually made up by an anonymous stranger on the internet. The fourth and final of Baudrillard’s stages is the simulacrum. This is when signs do not reflect anything in reality, but instead are based on other signs. The Storm is Upon Us shows that many QAnon beliefs, both major and minor, are based in pre-existing conspiracy theories like blood libel, flat earth, and global cabals that secretly control the world. Those who are completely indoctrinated into QAnon hold these beliefs that are based on other beliefs and are therefore existing in Baudrillard’s fourth stage of the precession of simulacra. My presentation will examine these four stages and demonstrate the overlap between this critical theory and the contemporary conspiracy movement that is taking up a considerable space in the American cultural imaginary.

Understanding the Effect of Printing Parameters and Prewetting on Binder Jetting Continuous Line Formation

March 21, 2024 12:00 AM
Authors: A. Kalani Brubaker. Mentors: Nathan Crane. Insitution: Brigham Young University. Binder Jetting is an exciting form of Additive Manufacturing in which a binding agent is selectively deposited on layers of powder to bind the powder together and create a 3D printed part. It is notable for its wide range of materials, energy efficiency, and built-in supports. Much research has been done on how to achieve desirable properties of binder-jetted parts and post-processing, but the fundamental principles of binder-powder interaction and the effects of changing printing parameters are still not fully understood. This research aims to increase that understanding. Each binder-jetted part begins by depositing individual binder droplets in a straight line, and the binder-powder droplets coalesce to form a single line. Adjacent lines are then printed to form a cross-section of the part, the next layer of powder is applied, and the process continues until a 3D part is printed. If the spacing between the droplets is too large or the inter-arrival time too short, the droplets form spheres on the surface of the powder (a phenomenon called balling), and a continuous line is not formed. This research determines how continuous line formation is affected by droplet spacing, inter-arrival time, and controlled misting of the powder bed prior to printing. To examine the effects of these parameters, lines were printed in dry and prewetted powder beds while varying the spacing and inter-arrival time between droplets. The beds were then examined using an optical microscope to determine whether continuous lines were formed. The results were recorded on a graph of inter-arrival time versus droplet spacing, and the “boundary line” for successful line formation was found for each bed. The results showed that the boundary on the prewetted data exhibited a different relationship than dry powder beds, suggesting that a different binder-powder principle may dominate after prewetting. The prewetting also shifted the boundary upwards, making it possible to form continuous lines at higher droplet spacings and shorter inter-arrival times. This increased ability to form continuous lines has the potential to significantly increase the throughput of binder-jetted parts.

Updated Third Generation Sequencing: Assembly Insights

March 21, 2024 12:00 AM
Authors: Danyon Gedris, Paul Frandsen. Mentors: Paul Frandsen. Insitution: Brigham Young University. Whole genome assembly has rapidly improved as third-generation sequencing technology like PacBio HiFi and Oxford Nanopore (ONT) have bridged the gaps of complex genomes by providing high-accuracy, long read data. The improvements in these technologies have resulted in long average read lengths (>15 kbp) and sequence quality scores above 99% (>Q20). They are particularly well-suited to assembling long, repetitive regions of the genome. Current assembly techniques combine reads with identical sequences to form longer, continuous sections. In repetitive regions, this process tends to condense the repeated sequences into one shorter read, instead of preserving the continuous nature of the repeats. Long reads avoid this issue by sequencing repeats together in one continuous read. Heavy chain fibroin (h-fibroin), the gene that encodes for the primary silk protein in Trichoptera and Lepidoptera, is long (often >20 kbp) and repetitive. Recent work showed that PacBio HiFi sequencing provided higher quality assemblies of h-fibroin when compared to the last generation of ONT pores (R9.4.1) and chemistry despite having a shorter average read length. Recent advances in ONT chemistry and nanopores (R10.4.1) have led to higher quality scores, perhaps allowing successful assembly of this gene region. To better understand the advances in ONT sequencing and its ability to provide high-quality, continuous genome assemblies of complex organisms, we assess the quality of assemblies of the h-fibroin silk gene for the Trichoptera species, Arctopsyche grandis and Parapsyche elsis, using the newest ONT chemistry.

Guiding Souls, Shaping Towns: Clergy's influence on Population Dynamics

March 21, 2024 12:00 AM
Authors: Seth Cannon. Mentors: Joe Price. Insitution: Brigham Young University. We use the occupation strings in the full-count US census files from 1880-1940 to create a new dataset of everyone during this time period that listed their occupation as a clergy (or related term). We use this data to identify the number of clergy located in each town in the United States in each census year. We find that towns with at least one person that identifies as clergy in the census record experience 5.4% greater population growth by the next census compared to towns without any clergy. This result is robust to various ways to control for the population and other characteristics of the town. We also focus on just the set of towns that had only one person in the census who identified as clergy. When we restrict the dataset to these towns, we find that the towns for whom that single clergy member died before the next census experienced an average population loss of 2.8%, while towns that didn’t have their clergy die experienced a population growth of 12.5%. These results highlight the ways in which access to local religious resources can help promote economic growth in small communities.

Musical Manipulation: Controlling Memory And Emotions Through Auditory Processing

March 21, 2024 12:00 AM
Authors: Kaerli Ringle. Mentors: Johnathan Chidester. Insitution: Southern Utah University. This presentation will discuss the way that music affects memory retention, memory recall, and how it can influence the memory of moments, moods, and emotions. The Public Broadcasting System produced an educational video about how listening to music boosts learning and memory. Research from Harvard noted that while neuro-imaging a patient, singing will help a patient during recovery with a brain injury or a stroke. This results because the left-brain region is majorly responsible for our speech function. Researchers also noted that because singing takes place in the right hemisphere, recovering stroke, Dementia and Alzheimer’s patients are able to regain their speech through singing and eventually being able to transition back into speaking. Having knowledge of how music affects the brain can help build great study habits and empower people to retain new information, recall old information, and have influence over their and other people’s emotions. This is important because music is around us all of the time, whether it is walking through the grocery store or playing through earbuds while studying, and if it has such power to influence these things, then why not use it to the fullest of its potential?

Isolation on Plant Growth promoting bacteria from the hybrid buffaloberry Shepherdia x utahensis ‘Torrey'

March 21, 2024 12:00 AM
Authors: Ty Wilson. Mentors: Amita Kaundal. Insitution: Utah State University. Climate-induced environmental stresses and the increased use of fertilizers to meet the increasing demand for food significantly threaten food production and soil health. In natural environments, microbes are vital to the growth and development of plants. Their presence in the soil allows for enormous flexibility and nutritional availability for plants, particularly those living in harsh conditions. A plant’s microbiome, especially the underground, plays a significant role in its growth and development and mitigates environmental stresses. Idaho and Utah are particularly challenging environments due to extreme temperatures and arid soil. However, despite these difficult environmental factors, the native plants of Utah and Idaho can thrive. Here, we are exploring the rhizosphere microbiome of Shepherdia x utahensis ‘Torrey,’ a hybrid of two highly drought-tolerant buffaloberry species, S. argentea and S. rotundifolia native to the Intermountain West region of the US to isolate plant growth promoting bacteria. In this study, we isolated drought-resistant plant growth-promoting microbes from the rhizosphere of hybrid buffaloberry. Root samples of hybrid buffaloberry were collected from three locations in Utah: the USU campus, Greenville Farm USU, and the USU botanical garden, Kaysville. The rhizosphere was removed from these root samples and pooled together. The bacteria were isolated on five different bacterial growth media twice. The isolated microbes were then purified using the streak plate method. Forty-six unique isolates were selected based on morphological characteristics and tested for four plant growth-promoting traits. Fourteen bacteria could show the ability to fix nitrogen fix, 18 produced a siderophore, 17 could solubilize phosphate, and 11 produced catalases. IAA production, ACC deaminase, and protease activity assays are in progress. All isolates will be identified by 16S rRNA Sanger sequencing.

Insane in the Membrane: Amino acid sequence evolution and conservation in vital protein complex in gram-negative bacteria

March 21, 2024 12:00 AM
Authors: Alexander Everett, David Bean, Jeremy W Bakelar, Randy L Klabacka. Mentors: Randy L Klabacka. Insitution: Utah Tech University. β-barrel assembly machinery (BAM) is a protein complex vital to cell survival in gram-negative bacteria that functions to insert proteins into the cell’s outer membrane. BamA, a protein composed of a membrane-bound beta barrel and several POTRA domains that protrude into the cytosol, is the primary subunit within BAM. It is suggested that BamA is conserved due to its widespread presence across the bacterial tree of life. Here we quantify the conservancy of BamA in 142 species of gram-negative bacteria from across the bacterial tree of life, with a focus on 120 species belonging to the order Enterobacterales. In addition, we compared the conservancy of BamA with other proteins with high and moderate levels of conservation in Enterobacterales. Lastly, we discuss regions of BamA that are of high conservation in the context of their potential as antibiotic targets.

Eolian Sediment as a Potential Soil Parent Material in Cache Valley

March 21, 2024 12:00 AM
Authors: Kylie Hansen. Mentors: Janis Boettinger. Insitution: Utah State University. Cache Valley, Utah, has unique soils due to environmental events such as Pleistocene pluvial Lake Bonneville. This lake extended about 20,000 square miles in Northern Utah, and its depletion left numerous shorelines, the most relevant being the Bonneville and Provo shorelines. These various water levels influence the geological formations in Cache Valley and the different characteristics of soil formation. An important soil-forming factor used to characterize varying soils is the parent material. Parent material is the original sediments the soil formed on and can be various things such as sediments deposited by gravity, streams, lake sediments, or wind. These different materials depend on the location and alter the soil properties. A dominant soil parent material in the Lake Bonneville area is sediment deposited by this lake. This type of parent material is identifiable by coarser-sized sediments, such as cobbles, gravel, and sand. This pattern is evident on terraces in Cache Valley’s lower soil layers, but the near-surface layers have fewer rock fragments and more fine sand, silt, and clay. This distinct difference in particle size leads to the question of what is the parent material source in the surface horizons of soil formed in Lake Bonneville deposits in Cache Valley. There is not much literature on this question and little documentation compares the soil profiles for different Lake Bonneville terrace levels (Bonneville shoreline compared to Provo shoreline). We hypothesize that the different particle sizes of parent material in the surface of soils formed dominantly in Lake Bonneville deposits is eolian sediment transported and deposited by wind. To determine this, we will sample soils across Cache Valley and analyze the fine and very fine sand sediments in plane-polarized and cross-polarized light. This process will identify various minerals within each soil horizon, showing possible differences in the upper and lower horizons. The minerals present in each soil will indicate the parent materials, allowing us to understand what is causing the different textured horizons in these soils and where the sediment originated from.

fr10 Evolution

March 21, 2024 12:00 AM
Authors: Reagan McKee, Vicente Fernández Lara, Jeremy Bakelar, Randy Klabacka, Dustin Kolste. Mentors: Randy Klabacka. Insitution: Utah Tech University. The capability to survive freezing temperatures is of crucial importance to ectothermic organisms inhabiting cold climates. The mechanisms that have evolved to minimalize the cellular damage incurred by freezing are of interest due to their applications in agriculture and medicine. fr10 is a gene identified in the wood frog (Rana sylvatica)that has been shown to reduce the cellular damage sustained in freezing temperatures. To date, fr10 has not been identified in any taxa beyond R. sylvatica and as such, the evolution of this novel gene remains ambiguous. Furthermore, the exact mechanism by which fr10 reduces freezing related damage has yet to be determined. We use bioinformatics scripts to scan 38 frog genomes to identify orthologs in divergent frog lineages across varying elevational and latitudinal gradients and examine the evolution of this novel gene. Understanding the evolutionary and ecological context of this gene can elucidate its function and may inform commercial and medical applications.

Using Technician Statistics For Productive Animal Care

March 21, 2024 12:00 AM
Authors: Grace Moore. Mentors: Aaron Olsen. Insitution: Utah State University. AbstractAnimal care technicians for research labs have many responsibilities in order to maintain the integrity of a research project. However, it is difficult to determine what tasks will require most of a technician’s time and effort. Thus, it is proposed that tracking what each individual does during a given shift can allow supervisors and technicians to create an efficient schedule of how they will work and provide a standard for individuals to meet every day. This project consists of tracking in detail what an animal care technician does in a given “shift”, including observation hours, handling and restraining, working in different biosafety levels, cleaning and prepping caging, and changing the caging. This data collection, over several months of work, finds relationships between tasks, the frequencies of being completed, and the time they take. The key tasks of an animal care technician are observing, providing nourishment, maintaining clean environments for both the researchers and the subjects, and maintaining supplies and accurate records. Additionally, many hours are dedicated solely to observing the animals to ensure their health and safety. Moreover, cleaning and prepping of caging or supplies are completed more than half of the time during a given shift. Finally, working with a given species may require more time to complete a task (such as cage changing or cage preparation) compared to another species despite the task being the same. If each technician were to track their tasks and create a profile of personal statistics, they would be able to easily determine how long a task should take. Moreover, a supervisor would be able to determine if a technician is working more efficiently or even falling behind during daily tasks. Overall, these findings could be used to incorporate better time management or planning for institutions to know what more time or resources may need to be devoted to in order to maintain a safe environment, provide exceptional care for the subjects, and follow every protocol.

Apatite (U-Th)/He dating of Andes Mountains near Sierra de Chango Real, Argentina

March 21, 2024 12:00 AM
Authors: Justin Hawkins, Charley Beck. Mentors: Alex Tye. Insitution: Utah Tech University. This study aims to address a critical gap in our understanding of the geological history and tectonic evolution of the Andes mountain range in Argentina. The Andes were formed due to a convergent boundary between the Nazca and South American plates. We are interested in the history of this boundary and how these mountains were formed. To better constrain the history of crustal deformation in NW Argentina, we collected samples from the Sierra de Chango Real, located south and along-strike of the Eastern Cordillera, and conducted new apatite (U-Th)/He dating on these samples. We combined new apatite (U-Th)/He data with the existing apatite fission-track data to gain a more comprehensive perspective on the geological evolution of the region.Apatite (U-Th)/He ages for new samples from the Sierra de Chango Real are between 6.3 and 17.6 Ma. These ages indicate Miocene exhumation of the Sierra de Chango Real due to tectonic deformation. Also, the distribution of these ages within the samples offers valuable information regarding variations in uplift rates and thermal events, which contribute to a better understanding of the geological processes that have shaped the Andes mountains. Published apatite fission track ages from the same locations have ages of 38 Ma to 30 Ma. Together, the thermochronometric ages suggest a history of tectonic exhumation from 38 Ma until ca. 6 Ma. In conclusion, our current study and analysis of samples taken from Sierra de Chango Real, Argentina, in conjunction with published apatite fission-track data, contributes to a more comprehensive understanding of the region's geological history.

Computational analysis of cyclic aminoborane complexes that exhibit potential to act as hydrogen storage molecules

March 21, 2024 12:00 AM
Authors: Amy Richards, Caleb Shelton, Jordan Colmenero, Mason Warenski. Mentors: Diana Reese. Insitution: Utah Tech University. Hydrogen gas has potential to be an excellent form of clean energy; unfortunately, hydrogen gas is difficult to store safely in its elemental form. Consequently, this research project investigated cyclic aminoborane complexes in which hydrogen (H2) can be safely stored. Utilizing computational methods, molecular dynamics simulations of four cyclic aminoborane compounds were performed using Q-CHEM 6.0, with a t-HCTHh density functional and cc-pVDZ basis set. Results were visualized using Molden 6.7 and VMD 1.9.3 then plotted using Gnuplot 5.2.8. Molecules selected for the investigation involve two constitutional isomers for both the 3- and 4- membered ring cyclic aminoborane complexes. The four molecules studied were (CH2)2NHBH3, (CH2)2BHNH3, (CH2)3NHBH3, and (CH2)3BHNH3, (hereafter 3N-B, 3B-N, 4N-B, 4B-N). Motions inherent in these molecules exhibited surprising differences. Specifically, in the 3-membered rings, the terminal borane (3N-B) exhibited more motion than the terminal amine (3B-N); however in the 4-membered rings (4N-B and 4B-N) the opposite occurred. Differences in these and other motions were quantified and qualified with respect to each molecule to gather data relevant to hydrogen storage potential.

University Course Timetabling: From Sticky Notes to Automation

March 21, 2024 12:00 AM
Authors: Alyssa Muller, Russ Ross. Mentors: Russ Ross. Insitution: Utah Tech University. University course timetabling assigns rooms and times to courses, considering instructor availability, curriculum conflicts, and quality of life considerations. Computing an optimal solution is computationally intractable. Researchers have refined approximation algorithms that yield far better results than the conventional pencil-and-paper approach used at many universities, including our own. Transitioning to an automated system can be disruptive and poses both real and perceived risks to an institution. The implicit knowledge that humans bring to the problem is hard to fully capture within formal rules that a computer can understand. Our research addresses the impedance mismatch between abstract solutions and the messy real world.In this project we build on prior research to fit the specific needs of our university. We will pilot our system with a set of departments in parallel with the traditional by hand process. We will analyze outcome quality through subjective assessment and quantitative comparison between human and machine generated timetables.

Synthesis and Characterization of Novel Pterostilbene Derivatives for Potential use as Therapeutics​

March 21, 2024 12:00 AM
Authors: Ashley Staten. Mentors: Jennifer Meyer. Insitution: Utah Tech University. Pterostilbene, a natural product found in blueberries and nuts, has been shown to be multifunctional. In low doses, it has been shown to be a potent antioxidant, while in higher doses, it has been shown to reduce cell proliferation, induce autophagy, and increase apoptosis. Recent literature has indicated that derivatives of pterostilbene can improve the functionality of pterostilbene in both cancer cell viability (reduction) and antioxidant capacity (increase). Previously, our group has synthesized and characterized the antioxidant capacity of a select group of pterostilbene derivatives, which have been functionalized to contain an additional alcohol and amine group. Most recently, we have synthesized a derivative containing benzylamine as the amine. This amine was chosen as benzylamine and drugs functionalized with benzylamine groups have been shown to have antiapoptotic properties. Currently, we aim to further characterize this novel pterostilbene derivative as we believe it has the potential to be utilized as a therapeutic in various disease states such as cancer and type 2 diabetes.

Rock Column Displacement in Zion National Park: A statistical Analysis

March 21, 2024 12:00 AM
Authors: Michael Orr. Mentors: Md Sazib Hasan, Alex Tye. Insitution: Utah Tech University. Every year Landslides claim lives and cause billions in property damage. Zion National Park in Southwestern Utah has been monitoring a precarious rock column contained within the parks borders since 2019. The results of this rockfall will be damage to the land and historical structures located in the fall area. The data are collected by two instruments called vibrating-wire crackmeters that are connected from the cliff face to the pillar—these are electronic and provide a continuous feed of distance measurements. The project will be focused on analyzing a 4-year record of displacement of a precarious rock pillar from the adjacent cliff face from which it will eventually separate and topple onto a slope below. We will also be analyzing the environmental factors causing the movement of the rock column. Results of this modeling will help us better understand the driving forces behind rockfalls, possibly helping to mitigate future damage.

Introduced population of a unisexual lizard species in Southern Utah

March 21, 2024 12:00 AM
Authors: Vicente Fernández Lara, Reagan McKee, Randy Klabacka, Angelina Romero. Mentors: Randy Klabacka. Insitution: Utah Tech University. Aspidoscelis (family: Teiidae) is a genus of lizards with many parthenogenic species found in North America. The parthenogenic species reproduce asexually, meaning all individuals in these species are female. The native range of Aspidoscelis neomexicanus (the New Mexico whiptail) is within the Rio Grande basin in New Mexico and Trans Pecos Texas. It has been reported outside its foreign range in northern Utah (Salt Lake area) as an introduced/invasive species, but has never been reported in southern Utah. We captured three individuals in Washington County that have the superficial diagnostic characters of Aspidoscelis neomexicanus. Using molecular genetics, we will test the taxonomic identity of this species and use phylogenetic analysis to determine the source population from its native range.

Hollow hair and how its structure helps big game animals thermoregulate

March 21, 2024 12:00 AM
Authors: Taylor Millett, Wendy Schatzberg, Samuel Tobler. Mentors: Wendy Schatzberg. Insitution: Utah Tech University. This study delves into the intriguing world of hollow hair strands in animals, focusing on their role in thermoregulation, and the ability to maintain a stable body temperature in the face of fluctuating external conditions. While the Pronghorn antelope is widely known for having hollow hair strands among hunters and conservationists, little is known about their internal structure. Employing scanning electron microscopy (SEM), we explored the inner composition of these hollow hair strands and their contribution to thermoregulation. Our investigation centered on several notable North American big game animals, including Mule deer, Rocky Mountain elk, and Pronghorn antelope, all of which exhibit a unique adaptation: the transition between summer and winter coats. Through SEM analysis, we measured and compared the winter and summer coats of these animals to gain insights into how they effectively regulate their body temperatures during the extremes of hot summers and cold winters. These seasonal changes manifest in alterations in fur and hair thickness and length. Under the microscope, we unveiled the distinct topography of the inner structure of individual hair strands. Notably, our findings revealed that the inner hair structure contains larger hollow pockets in the winter coats of these animals. Our research thus sheds light on the role of these hollow structures in heat transfer and their pivotal contribution to the thermoregulation abilities of these remarkable creatures, expanding our understanding of their unique adaptations.

Optimization of Subcritical Water Hydrolysis of Microalgae Biomass for Clean Meat Production

March 21, 2024 12:00 AM
Authors: Bradley Lawson, Lukas Keller, Marshall Burrows, Sam Perkins, Emery Wheeler. Mentors: Ronald Sims. Insitution: Utah State University. Subcritical water hydrolysis (SWH) is a developing method of processing organic materials/waste without the use of acids and alkali materials. SWH lyses peptides differently than acid hydrolysis and can produce Maillard products, which have various effects in cell culture. In this study, a batch-mode pressure vessel with a semi-continuous sampling apparatus will be used to optimize temperature and retention time for the hydrolysis of Chlorella vulgaris biomass for the development of serum-free (or low-serum) cell culture media. Hydrolysis will be done at temperatures from 140°C to 300°C and retention times from 5 minutes to 30 minutes. The SWH products will be assessed for their general protein content, lipid content, bioactivity, and carbohydrate content. These efforts will be of use to Upside Foods in its efforts to create sustainable and ethical cultured meat products.

Cloning of ORC2 and ORC4 from HeLa Cells

March 21, 2024 12:00 AM
Authors: Austin Meyer, Gavin Grimmett, Martina Gaspari. Mentors: Martina Gaspari. Insitution: Utah Tech University. DNA can form non-canonical base pairings, resulting in structures distinct from the conventional double helix. One such example is the Hoogsteen base pairing, which can give rise to triple helix DNA. Triple helix DNA plays essential roles in regulating DNA metabolism and gene function, but its unusual nature is inherently mutagenic, sometimes leading to conditions like cancer. Recent research has uncovered that colorectal tumors exhibit significantly higher activity of triplex DNA binding proteins compared to their normal tissue. To explore this correlation, this study aims to employ cell and molecular biology techniques to investigate the relationship between the rise in triple helix DNA binding proteins and the presence of DNA triple helices. We initiated our study by extracting total RNA from HeLa cells, followed by the design and synthesis of specific primers for cloning ORC2 and ORC4 by RT-PCR. The experiment is further designed to analyze the potential consequences of ORC2 and ORC4 overexpression in human cell lines. Expression vectors containing ORC2 and ORC4 will be transfected into WI-38 cell lines comparing them to untransfected ones with hope of observing an increase of the proteins of interest and of triple helix DNA. The cell lines will be lysed, the total protein will be extracted, and Western blot will be conducted for comparison. Triple helix DNA will also be measured by calorimetric melting and high-speed centrifugation.

mitochondrial genes of hybrid whiptail parthenogens

March 21, 2024 12:00 AM
Authors: Dante Celani, Erin Bunch, Randy Klabacka. Mentors: Randy Klabacka. Insitution: Utah Tech University. Hybrid parthenogenic whiptail species have lower endurance capacity and mitochondrial respiration than their sexual parental species. These differences in aerobic performance may be due to reduced compatibility of variable gene products between the divergent parental genomes that are present in the hybrids. If this is the case, we expect to see genetic variation in mitochondrial-targetting genes. We performed whole-genome sequencing for four sexual whiptail species that are parental species to hybrid parthenogenetic species, and we mapped those samples to an annotated whiptail genome. We call gene variants and classify them as coding, non-coding, synonymous, and non-synonymous to understand which variants might contribute to phenotypic variation, and we discuss approaches to further elucidate the genetic mechanism behind the lower aerobic performance in hybrid parthenogens.

Thermochronometry dating of apatite (U-Th/He) of Andes Plate Tectonics from the Sierra de Altohuasi

March 21, 2024 12:00 AM
Authors: Charley Beck, Justin Hawkins. Mentors: Alex Tye. Insitution: Utah Tech University. Thermochronometry dating of apatite (U-Th/He) of Andes Plate Tectonics from the Sierra de Altohuasi Charley Beck, Justin Hawkins, Alex TyeDuring the Cenozoic time period plate tectonics caused uplift in the Eastern Cordillera. We constrain the geologic evolution of the southernmost Eastern Cordillera through (U-Th/He) dating. Our results advance our understanding of the convergent plate boundary of the South American Plate and the Nazca Plate. The exhumation event caused the formation of the mountain range found in the Sierra de Altohuasi. Four samples were collected in the Sierra de Altohuasi near the town of Corral Quemado, Catamarca Province, Argentina. The samples were then analyzed using an apatite (U-Th)/He) system. The results indicated exhumation of the Sierra de Altohuasi from 28.6-13.3 Ma. This suggests an episode of exhumation during the Miocene and Oligocene, due to subduction of the Nazca Plate under the South American Plate. These apatite (U-Th/He) ages better constrain the exhumation history of the Eastern Cordillera. Further studies will show correlation of uplift events of the surrounding areas of Corral Quemado. Due to the compressed South American Plate, our data suggests the large mountain range formed under movement of the Nazca Plate.

The Gender Pay Gap in FinTech: An Analysis of Womens Compensation in the Industry

March 21, 2024 12:00 AM
Authors: Rachel Bi, Chong Meng. Mentors: Rachel Bi. Insitution: Utah Valley University. The full proposal is available upon request. This research project is sponsored by the Bonnie Ballif-Spanvill Endowed Fellowship, which provides $10,000 in funding.Abstract:Over the past decade, the financial technology (FinTech) industry has experienced remarkable growth and innovation, with new products and services designed to meet the evolving needs of consumers. This rapidly expanding force is challenging and disrupting traditional financial industries in terms of product innovation, customer satisfaction, and employer demand in the labor market. In fact, global FinTech investments have soared from less than $2 billion to an impressive $142 billion in 2021, and this upward trend is expected to continue (Balyuk, Berger, and Hackney, 2020). While previous studies have focused on the impact of FinTech on income inequality, little is known about the potential of this digital technology to address gender inequality (Loko and Yang, 2022).This proposal seeks to address a specific aspect of gender inequality: the gender pay gap in finance. This term refers to the wage disparity between male and female executives in the industry. Our objective is to analyze women's compensation within the FinTech sector, identify factors contributing to the gender pay gap, and develop recommendations to address this issue. Specifically, we have the following hypotheses:H1: Gender pay gaps among executives should shrink in the FinTech industry.Public FinTech firms are typically younger and smaller than other publicly traded companies. Because managers in smaller firms are generally less risk-averse and have a stronger preference for taking risks, we hypothesize that the gender pay gap between female and male executives could widen due to differences in risk-aversion.H1a: Gender pay gaps among executives should enlarge in the FinTech industry.Our second hypothesis centers on comparing gender pay gaps in the pre- and post-initial public offering (IPO) stages of the same company. The public market is widely recognized as crucial in overseeing and limiting managers' pursuit of risk (Asker, Farre-Mensa, and Ljungqvist, 2015). If executives' risk aversion changes with access to the public market, we anticipate that gender pay gaps will decrease following IPOs. Therefore, H2: Gender pay gaps among executives should shrink in FinTech firms after their initial public offerings. Institutional investors in the public market can shape the internal corporate governance structure (Dasgupta, Fos, and Sautner, 2021). We anticipate that board diversity, measured by the percentage of female executives on the board, will increase after IPOs. Consequently, we predict that the changes in gender pay gaps between the pre-IPO and post-IPO periods will be more noticeable when the board is less diverse prior to IPOs. H2a: The decrease in gender pay gaps should be more pronounced when the board of a Fintech firm is less diversified before IPOs.

What Makes a Legend: Characterization’s Role in Arthurian Universality

March 21, 2024 12:00 AM
Authors: Em Hart. Mentors: Nicole Dib. Insitution: Southern Utah University. The legend of King Arthur has withstood the test of time unlike any other work of literature. Not only is a tale originating from a post-Roman Britain still known today, it is influential and pervasive, impacting the building blocks, themes, and motifs of contemporary stories in genres ranging from fantasy to superheroes to propaganda pieces. Given the legend’s undeniable influence, it sparks the question of what characteristics have allowed this tale to transcend the standard literary lifetime. One theory attributes the legend’s universality to the romantic narrative structure that it gained during the French Vulgate Cycle in the thirteenth century. Though undoubtedly a contributing factor given the structure’s popularity at the time, this theory neglects to consider more common and proven factors of audience appeal, particularly the appeal that similarly transcends temporary trends and tastes. When considering Arthurian legend’s universality, it is important to acknowledge what elements remain consistent over the centuries as opposed to what has more freedom to change with the shifting tastes of the cultures it touches. Arthurian legend, despite the massive changes it has undergone, maintains elements that allow audiences across time to accurately identify it as Arthurian legend. Though stories can carry elements popularized or introduced by Arthuriana in the modern day, those elements do not necessarily make that story Arthurian in the perception of the reader. However, there are stories that change narrative structure, medium, time, place, and even popular plot points, that are still recognized as Arthurian. A similar phenomenon can be seen outside of Arthuriana in more contemporary stories that outlast their expected literary lifetimes. With this in mind, this presentation will consider the ways that Fan Studies explore the communities, individuals, and passions that have replicated this phenomenon. When engaging with this area of study and the elements that source it, a pattern emerges, showing a characteristic that commonly fuels the burgeoning universality of these celebrated stories. In fan works, things like narrative structure, medium, time, and plot all change freely, allowing for the consistencies to become clear. The characters, their bonds, their flaws, and their dramatic needs remain consistent across ever-changing landscapes, be it in fandom circles or the centuries and cultures touched by Arthurian legend. With this guide from other stories and their early universality, my paper will make it clear that an audience appeal substantial enough to transcend centuries is ultimately accessed through characterization, an essential element of the Arthurian legend.

Assessing Plant Adaptability to Wildfire Impact and Drought

March 21, 2024 12:00 AM
Authors: Clista Galecki. Mentors: William Anderegg. Insitution: University of Utah. This project will determine whether exposure to wildfire impacts a plant's ability to acclimate to summer drought. This is important because with rising temperatures and droughts there is an increase of wildfires (Diffenbaugh et al., 2015). This question will be address by comparing drought physiological traits of a native tree species, Utah juniper, in burned versus unburned sites in central Utah. The goal of the project is to determine whether plants that survive wildfires are more or less drought resilient. This research may provide insight into whether various tree species are better adapted to survive droughts and wildfires which will help in future ecology predictions of the future landscapes.There are multiple factors in why forests respond differently to drought. The factors include elevation, prior exposure to fire, prior exposure to drought, clade, and species (Anderegg et al., 2020). Severe drought or heat from a fire can result in hydraulic failure (McDowell et al., 2008). This means that the plant has loses its ability to sufficiently move water from the roots to the leaves. Which could indicate that trees burned in wildfires will not be better adapted to summer drought. Whereas there is a possibility that if the tree has had sufficient amount of time to recover from a stressing event that it could be better adapted for future droughts (Anderegg et al, 2020). My project will focus specifically on the effects of prior exposure to fire on Utah juniper (Juniperus osteosperma) drought acclimation ability.

Subconscious Comprehension of Structural Forms: An Eye-Tracking Study

March 21, 2024 12:00 AM
Authors: Jared K Bradshaw. Mentors: Brandon Ro. Insitution: Utah Valley University. This research seeks to analyze if there exists an understanding of structural design principles among untrained humans. Building forms and styles have evolved since the earliest structures. For thousands of years buildings were limited by naturally occurring materials. Designs of those periods reflected the structural principles of those materials. In the last few hundred years technological advances have provided structural methods which radically altered how buildings can be designed. An example is the difference in column spacing between historic and modern buildings, where the former has much tighter spacing due to natural material’s spanning limitations. To analyze the understanding of untrained humans an eye-tracking study was conducted using A.I.-3M-VAS eye-tracking software. This technology utilizes artificial intelligence to graphically display eye gaze sequences, patterns, and durations of focus. The software reflects the first few seconds of eye-tracking, providing insights into subconscious reactions before a logical response is formed. Images of structural elements were designed digitally to reflect a variety of forms, maintain cohesiveness, and remove visual variables. Each image was individually processed through the software providing isolated results. The results of the study show consistent patterns of focus on locations of structural significance, such as bearing points, connections, and material loads. The consistency by which these concepts received focus concludes that there is an innate human ability to locate structural methods of building. Of note the structural forms which adhered to the limits of natural materials registered different eye tracking patterns than the modern manipulated material forms. The historic methods displayed even tracking throughout the structure, whereas the modern methods created hot spots at the points of greatest structural significance. The differences further emphasizes that untrained people are not limited to just understanding familiar structural forms. This will allow for further research on the physiological effects between form types.

Crafting Secure System Messages

March 21, 2024 12:00 AM
Authors: Spencer Thompson. Mentors: Sayeed Sajal. Insitution: Utah Valley University. The widespread use of Large Language Models (LLMs) in various industries raises critical concerns about user data privacy and security. This research focuses on two key vulnerabilities: prompt attacks and unauthorized retrieval of sensitive training data. We employ a straightforward methodology to craft effective system messages that neutralize malicious queries in real-time, thereby mitigating prompt attacks. To prevent the unauthorized extraction of sensitive information, we build on the concept of strong system messages. We aim to identify a system message that minimizes computational overhead while maximizing effectiveness. Our results demonstrate that a strategically-crafted system message can guide an LLM's output in a manner that enhances data security without compromising computational efficiency.

‘I Want to Destroy Public Education’: A Critical Case Study of School Choice in Utah

March 21, 2024 12:00 AM
Authors: Ann Day, Shawn Coon. Mentors: Shawn Coon. Insitution: Westminster College. The decades long movement to discredit, defund, and de-professionalize public education has taken many forms. Since the COVID-19 pandemic, policymakers have increasingly attempted to undermine public education through state specific programs (Bacher-Hicks et tal., 2023; Peele & Riser-Kositsky, 2020; Friedman & Young, 2022; Perera, 2023; Vasallo, 2023; Walker, 2022). These policies have taken many forms and attempted to address multiple perceived problems. However, the one commonality between all of these policies is that they perpetuate a trend of educational policymaking that tacitly or actively attempts to de-professionalize teachers and teaching (Apple, 2004; Milner, 2013). The state of Utah, and it’s 2023 legislative session, offers a compelling case study into why this legislation continues to emerge, the rationale behind this movement, and the impact these policies have on educators.

Designing a Non-Invasive Molecular Assay to Detect Batrachochytrium dendrobatidis Infection in Invasive Bullfrogs

March 21, 2024 12:00 AM
Authors: Gabriella Proctor, Luke Alder. Mentors: Marcos Corchando Sonera. Insitution: Southern Utah University. The chytrid fungus Batrachochytrium dendrobatidis (Bd) is known to cause the disease chytridiomycosis and is notorious for its role in decimating anuran populations worldwide. A highly prevalent invasive species, the American bullfrog (Lithobates catesbeianus), is understood to play an important role in the transmission of this disease in invaded regions. Notably, American bullfrogs are often largely immune to the effects of Bd, making them important reservoirs of the pathogen. Within southern Utah, this species has successfully invaded the Virgin River watershed, yet this population has not been the subject of prior study regarding its potential as a reservoir for Bd. We hypothesize that the Utah population has also been infected with Bd, potentially endangering native amphibian species. We sampled 46 bullfrog specimens from eight distinct aquatic habitats within the Virgin River basin in southwest Utah. Skin swabs will undergo purification and quantification, followed by PCR and gel electrophoresis to visualize and confirm results. We hope that our findings will be valuable in comprehending the impact of invasive American bullfrogs on amphibians within the Colorado River basin, particularly in relation to the spread and effects of chytridiomycosis.

NIQUE: Evolution of Contemporary Ballet

March 21, 2024 12:00 AM
Authors: Andy Sefcik. Mentors: Jamie Johnson. Insitution: Utah Valley University. Utah Valley University's Repertory Ballet Ensemble (RBE) has made it a priority to expose students to contemporary ballet techniques. In the Summer and Fall of 2023, Complexions Contemporary Ballet (CCB) Former Ballet Master, Christina Johnson, and Répétiteur, Jourdan Epstein visited the university to teach NIQUE classes and set repertoire on RBE for the February 2024 concerts. CCB was founded in 1994 by Master Choreographer Dwight Rhoden and Desmond Richardson with the intent of reinventing dance by fusing a variety of styles and techniques. Based on phenomenological field research, gathered during the CCB Winter Intensive, I intend to illuminate the hallmarks of the CCB generated “NIQUE” technique in comparison to Vaganova approaches to ballet technique. In this presentation, I will present phrasework in the style of classical Vaganova ballet technique in comparison to NIQUE technique to create a clear visual difference between the two movement styles. This research shares the fundamentals of NIQUE technique to highlight how it is connected to and how it has developed beyond classical ballet technique.

Foreign Textiles at the Early Christian Fag el-Gamous Cemetery in Egypt

March 21, 2024 12:00 AM
Authors: Jenna Norris. Mentors: Kerry Muhlestein. Insitution: Brigham Young University. In the hot and dry climate of the Fag el-Gamous Cemetery in Egypt, a wide range of elaborately woven textiles have been preserved, each with unique characteristics and technical elements. Through analyzing technical elements, this research aims to reveal evidence of foreign textile production or materials incorporated in Fag el-Gamous burials. The BYU Egypt Excavation Team has been excavating at the cemetery for over 40 years, uncovering important information about the region’s ancient inhabitants. Due to their exceptional preservation, textiles can provide significant insights into the lives and identities of the individuals buried at the site. While studies have been conducted in the past to address how socioeconomic status and religious affiliation are reflected in textiles, more remains to be learned about how foreign connections and trade affected textile production in the Fayoum region. This research aims to utilize both technical and design analysis to identify foreign textiles—including analyzing weaving techniques, thread manipulations, and woven motifs. It will also aim to use these forms of analyses to detect potential indications of immigration, providing a foundation for future research into connections between immigrant status and funerary practices.

Income Inequality for Women in the Psychology Field

March 21, 2024 12:00 AM
Authors: Jacob Willoughby. Mentors: Joshua Price. Insitution: Southern Utah University. Gender pay inequality remains a persistent and widely discussed issue across various professions and industries. I was curious about the extent that this issue affects the field of psychology as it is an industry that is quite significantly dominated by woman. This econometrics paper delves into the complex landscape of possible gender-based wage disparities within the realm of psychology. By employing rigorous statistical analysis and econometric techniques, I aim to uncover the underlying factors contributing to the pay gap between male and female psychologists. Understanding the intricacies of this phenomenon is not only essential for promoting fairness and equality in the workplace but also for fostering a more inclusive and diverse community within the field of psychology. This study endeavors to shed light on the extent of the pay gap, its determinants, and potential policy implications to address this critical issue in the profession.