Fine Arts
Role Models v. Knowledge: Should we Use Different Evolution Teaching Strategies for Students with Varying Levels of Scientific Reasoning Skills?
Authors: Grant Rousseau, Kenneth Harrington, Jamie Jensen. Mentors: Jamie Jensen. Insitution: Brigham Young University. We know that evolution acceptance is low in the United States, and a perceived conflict between evolution and religion is a big predictor of whether someone accepts or rejects evolution. Helping undergraduates accept evolution involves multiple teaching strategies, including teaching evolution with a reconciliatory approach, increasing their knowledge of evolution, and introducing role models (scientists who maintain religious beliefs) to the students. However, because some students have higher scientific reasoning abilities than others, they may find certain evolution teaching strategies more beneficial than others. In our study, we assessed scientific reasoning ability, change in evolution acceptance, and teaching strategy rankings with surveys before and after evolution instruction. We predicted that students who possessed more scientific reasoning skills would rank evolution knowledge above role models when asked which strategy was most influential in helping them accept evolution. However, we saw that scientific reasoning did not appear to moderate the effect of evolution knowledge. Role models were more important in increasing evolution acceptance, regardless of scientific reasoning skills. This reinforces the importance of having a role model present when teaching evolution to religious audiences.
Using Transfection as a Annotation-free Ground Truth for Training Noninvasive Metastatic Cancer Mapping Methods
Authors: Drew Allred, Vern Hart. Mentors: Vern Hart. Insitution: Utah Valley University. Surgery remains one of the most common and effective treatments for a variety of cancers, especially those that form solid, localized tumors such as breast and colorectal cancers. During these treatments, the palpable lesion is surgically resected with the assumption that cancerous cells have metastasized to nearby tissues. As such, surgeons will excise a tissue margin surrounding the tumor in hopes of removing any additional cancer, thus preventing further spread of the disease. However, this process is time-consuming and requires specialized expertise from a trained pathologist to verify that all cancer has been removed. Furthermore, if the pathology report indicates that not all cancerous cells have been extracted, additional follow-up visits and surgeries are typically required. In recent years a number of non-invasive technologies have been developed which seek to map cancerous cells in whole tissues. Training and validating these methods still requires a reliable ground truth, typically provided by an annotated pathology report. We propose a simpler model in which two cell species were co-cultured to provide a heterogeneous training sample. One of these species (PANC-1) was transfected with a vector coding for a fluorescent marker to represent healthy tissue, while the other species (COS-7) remained untreated, representing cancerous cells. An experiment was then conducted using a coherent diffraction imaging (CDI) system, in which laser light incident on the cells was used to quantify phase shifts produced by each cell type. Fluorescent microscopy was then used to create a map of transfected and non-transfected cells for comparison. Results will be presented demonstrating a correlation between the phase shifts produced by the two cell types and the corresponding fluorescent images, potentially facilitating optical cell identification without the need for pathology.
Demonstration of Chloride Induced Spreading Depolarizations Using Halorhodopsin
Authors: Hunter Morrill, Ryley Parrish. Mentors: Ryley Parrish. Insitution: Brigham Young University. Spreading depolarizations (SDs) are slow propagating waves of depolarization that move through the brain and have been associated with a wide variety of neuropathologies including the termination of seizures, the cellular correlate of aura in migraines, traumatic brain injury, and ischemic stroke. Though first characterized by Aristides Leão in the 1940s, only a very limited understanding of the mechanisms of SD induction has been achieved. SDs have been induced in mouse models using a variety of techniques, however regardless of the method of induction, high extracellular potassium and/or a strong cellular depolarization have been largely hypothesized as necessary conditions for SD induction. Interestingly, we have recently demonstrated that using a light-induced chloride pump (Halorhodopsin) to drive chloride ions into the neurons can reliably induce SDs even in the absence of high extracellular potassium levels (Parrish, 2023). It was also demonstrated that the triggering of archaerhodopsin, which removes protons from the cell and therefore hyperpolarizes the neuronal membrane without affecting chloride levels, did not induce SDs, suggesting the implication of chloride loading as a primary mechanism in SD induction. This challenges the prevalent hypothesis regarding the induction of SDs and results in a novel method of induction that allows for more characterization of the mechanisms involved. The use of genetically expressed light-gated ion channels or pumps is referred to as optogenetics. Using zebrafish, a common model for electrophysiology recordings that is also cost-effective to genetically manipulate, we have established an optogenetically induced model of SD induction. We are currently characterizing mechanisms that result in optogenetically induced SDs with pharmacology to further our understanding of SD initiation and propagation.Parrish, R. R.-G.-T. (2023). Indirect Effects of Halorhodopsin Activation: Potassium Redistribution, Nonspecific Inhibition, and Spreading Depolarization. The Journal of neuroscience: the official journal of the Society for Neuroscience, 43(5), 685-692.
Panic Disorder Lesion Network Mapping Abstract
Authors: Zach Moore, Owen Benzley, Austin Flitton, Frederic Schaper, Jared Nielsen. Mentors: Jared Nielsen. Insitution: Brigham Young University. Objective: Identify neural networks that are associated with panic disorder symptoms through lesion network mapping.Background: Panic Disorder is a neurological disorder in which one experiences unexpected and reoccurring panic attacks. Panic attacks can be characterized by the following symptoms: trembling, racing heart, excessive fear and worry, weakness, tingly hands, chest pain, or a feeling of unreality. A proposed circuit for panic disorder includes the amygdalofugal pathway, which deals primarily with the amygdala. The lesion network mapping method uses functional connectivity to identify neural networks associated with symptoms arising from brain lesions. This is a benefit compared to previous studies done on panic disorder because it relates brain circuits to symptoms rather than individual regions.Methods: 21 lesions causing Panic Disorder were found in the literature, traced on a standard template, and analyzed using lesion network mapping. Specifically, lesion networks for each lesion were calculated using a large cohort of healthy control resting state scans (N = 1000). In our sensitivity analysis, overlap between lesion networks was observed. Results: Of the 21 lesion networks, 14 (67%) positively overlap on the parahippocampal gyrus in the sensitivity map; 13 (62%) positively overlap at the ventral tegmental area in the sensitivity map.Discussion: Symptoms of panic disorder may be associated with the parahippocampal gyrus and ventral tegmental area of the brain. These results found are unique compared to previous studies, but do have general connections.
Effects of Methamphetamine on Microglia through Reactive Oxygen Species
Authors: James Blood, Nathan Sheets, Chase Seiter, Lydia Hawley, Erin Taylor, Eliza White, Hillary Wadsworth, Jason Hansen, Jordan Yorgason. Mentors: Jordan Yorgason. Insitution: Brigham Young University. Microglia are the immune cells of the brain and are activated by many drugs of abuse. One drug of abuse of interest is methamphetamine, which is known to increase reactive oxygen species (ROS). Microglia are sensitive to ROS. Methamphetamine changes microglia morphology. To determine if the effects of methamphetamine on microglia are through ROS, glucose oxidase, which reacts with glucose to form hydrogen peroxide, was applied. Glucose oxidase increased ROS production and decreased dopamine release but had little-to-no effect on ATP release. Glucose oxidase has similar effects on microglia morphology compared to methamphetamine. This suggests that methamphetamine effects on microglia are due to ROS production. Methamphetamine locomotor sensitization behavioral experiments were run to mimic repeated methamphetamine exposure. Along with voltammetry experiments to measure dopamine and ATP release, methamphetamine treated animals were used to detect microglial morphology changes using confocal microscopy. Our methamphetamine treatment was able to change microglial morphology compared to saline treated controls. Methamphetamine injected animals also had attenuated glucose oxidase effects on dopamine release. By understanding how neuronal outputs affect microglia activity in the context of psychostimulant use we can better parse out how the mechanisms of addiction are connected to immune system function.
Does Sonographically Measured Articular Cartilage Thickness Correlate With Knee Pain in Senior Athletes?
Authors: Noah Bezzant, Mikayla Kimball, Ashley Allan. Mentors: Brent Feland. Insitution: Brigham Young University. BACKGROUND: General knee pain is a common complaint among both athletes and older adults. Osteoarthritis is a common etiology for knee pain that can interfere with function during aging and can be assessed by validated questionnaires. It remains unclear whether there exists a dose–response relationship between cartilage loss and pain worsening. Articular cartilage thickness of the femoral condyles can be measured by ultrasound imaging and few studies utilizing this form of measurement exist. It is currently unknown if articular cartilage thickness measured ultrasonographically correlates with pain related ratings in aging athletes. PURPOSE: The aim of this study was to assess whether articular cartilage thickness at the femoral condyles as measured by ultrasound imaging has any relationship to knee pain as rated by the modified KOOS (Knee Injury and Osteoarthritis Outcome Score) survey in senior athletes over the age of 50.METHODS: Data was collected from 35 volunteers (participants in the Huntsman World Senior Games) in St. George, Utah, 2023. All subjects (22 females: mean age = 64.9 ± 6.6 yrs, Ht = 158.7 ± 35.6 cm, Wt= 66.3 ± 10.0 kg; 13 males: mean age = 67.3 ± 8.3 yrs, Ht = 179.3 ± 10.7 cm, Wt= 84.3 ± 13.4 kg) signed an approved consent and completed a modified KOOS survey before being seated on a table, with their back flattened against the wall directly behind them. They were then asked to bring either knee as deeply into flexion against their torso as possible; approximating 120°-140° of knee flexion, depending on the range of motion the subject was capable of. In flexion, the patella was shifted inferiorly enough to expose the femoral condyles so that a short axis image of the articular cartilage was obtained and the thickness of the cartilage was assessed at 3 points.ANALYSIS: All data were analyzed using JMP ver16.2 with a Pearson product pairwise correlations to determine if a relationship between average cartilage thickness correlates with pain subscale scoring from the KOOS in males and females. Correlation between age and thickness was also examined.RESULTS AND CONCLUSION: There were no significant correlations between the pain subscale score and cartilage thickness in males (p=.6998, r=0.1316), females (p=.8733, r=0.0392), or combined (p=.7308, r=0.0655) in this group of senior athletes. Age and thickness was not significantly correlated (p=.1232, r= -0.2877), but did show a trend of decreasing cartilage thickness with age. The addition of more subjects should show age and thickness to be negatively correlated with each other.
The Relationship Between Thiamine and Drosophila Melanogaster Preference for Dietary Yeast
Authors: Dean Peterson. Mentors: John Chaston. Insitution: Brigham Young University. The microbiota of Drosophila melanogaster fruit flies can be observed to study their effects on fly phenotypes. This paper will focus on the microbiota’s effects on fruit fly dietary preference for yeast (DPY), to determine if specific nutritional molecules produced by the microbiota control DPY. Previous studies have unsuccessfully sought to identify such small molecules by testing for roles of essential amino acids (Leitao-Goncalves 2017). A study completed in our lab suggested that bacterial thiamine biosynthesis/metabolism genes influence fly DPY because mutations shifted the preference from a diet with less yeast to a diet with more yeast (Call 2022). In our first efforts we found that raising flies on thiamine supplemented diet influenced their DPY. I want to determine if supplementing thiamine specifically causes this shift, and if the shift observed in the mutants is seen due to a lack of dietary thiamine. Here, I will perform the same tests with flies given diet supplemented with other B vitamins to test specificity. I will then confirm the role of bacterial thiamine on these phenotypes by rearing flies colonized with bacterial thiamine biosynthesis/metabolism mutants on thiamine supplemented diets. If these flies raised with increased dietary thiamine prefer a diet with less yeast, and the experiment with other B vitamins does not show a similar shift as thiamine, then the specificity of thiamine as the small molecule involved in yeast preference is confirmed.
The overexpression of Stx1A and its effects on glucose stimulated insulin secretion in pancreatic beta cells
Authors: Jakob Lenker, Trevor Kendrick. Mentors: Jeff Tessem. Insitution: Brigham Young University. Diabetes is characterized by a loss in beta cell function within the pancreas and the subsequent inability to produce sufficient insulin to regulate blood glucose. While current diabetes treatments focus on delivering pharmaceutical insulin to diabetic individuals, such treatments are temporary solutions and do not address the root of the issue. Instead, our research focuses on potential mechanisms for inducing greater insulin secretion within the pancreas of the individual. NK6 Homeobox 1 (Nkx6.1) is a major transcription factor in beta cells and its overexpression in beta cells is associated with higher insulin secretion. We have shown that Syntaxin 1A (Stx1A) interacts with Nkx6.1; Stx1A is of particular interest due to its role in mediating insulin granule fusion at the beta cell plasma membrane, directly impacting insulin secretion. We hypothesize that the interaction between Nkx6.1 and Stx1A may play an important yet understudied role in insulin secretion. Here, we present the results of Stx1A overexpression on glucose-stimulated insulin secretion within pancreatic beta cells, as well as the effect on the Nkx6.1 interaction. Understanding more about the role of Stx1A in beta cells could provide therapeutic targets to induce greater insulin secretion, which could aid in the effort toward finding a cure to diabetes.
Meta-Analysis Of 58 Human RNA-seq Datasets To Predict Mechanisms and Markers for Resistance in ER+ Breast Cancer Treated with Letrozole (an aromatase inhibitor)
Authors: Brett Pickett, Lincoln Sutherland, Jacob Lang. Mentors: Brett Pickett. Insitution: Brigham Young University. Introduction: Breast cancer is one of the most prevalent types of cancer present in society today, and is the second leading cause of cancer death for women. Approximately 13% (1 in 8) of women will develop invasive breast cancer, with 3% of women (1 in 39) dying from this type of cancer. Three important classifications used when formulating a treatment plan for breast cancer are the presence or absence of Estrogen Receptor (ER), Progesterone Receptor (PR), or Hormone Receptor (HR). Treating Estrogen Receptor Positive (ER+) breast cancer with aromatase inhibitors, such as Letrozole, is the current standard treatment for all postmenopausal women. A prior study by Lee et. al. identified PRR11 as the only gene that was significantly overexpressed in resistant vs non-resistant cancers among the 51 genes in chromosome arm 17q23. The goal of the current study is to perform a secondary analysis of this valuable dataset to identify genes, signaling pathways, and biomarkers across the whole human transcriptome that are significantly associated with treatment resistance in ER+ patients.Methods: We retrieved, preprocessed and analyzed 58 ER+ breast cancer samples from patients who had been treated with Letrozole, which are publicly available in the NCBI Gene Expression Omnibus (GEO) database. The Automated Reproducible MOdular Workflow for Preprocessing and Differential Analysis of RNA-seq Data (ARMOR) was used to process our data downloaded from NCBI. This workflow trimmed low quality reads from the RNA-sequence reads, mapped and quantified our data to generate a DEG list. Gene ontology enrichment with camera was also performed. Next, the genes were mapped to common gene identifiers and input to the signaling pathway impact analysis (SPIA) algorithm to identify intracellular signaling pathways that were enhanced by our DEGs. With that information, Pathway2Target was used to identify known drug targets within our identified pathways. Finally, a decision tree-based machine learning approach was used to predict features/expressed genes that could be used to most accurately classify responders vs nonresponders to Letrozole. Results: Our comparison of 36 responders versus 22 non-responders detected a total of 18,735 genes and identified 105 that were statistically significant (p-value < 0.05) after applying a false-discovery rate (FDR) correction, including SOX11, S100A8/S100A8, and IGLV3-25. We then used the Signaling Pathway Impact Analysis (SPIA) algorithm to determine whether any known intracellular signaling pathways were significantly enriched in DEGs (Bonferroni-adjusted p-value < 0.05). This analysis identified 4 pathways that were statistically significant in Non-Responders to Letrozole Treatment. We then used the pathway results to predict 60 existing therapeutic targets that could be repurposed to treat the resistance phenotype. Notably, the predicted targets for the non-response phenotype included VEGFA, a current target for solid tumors as well as ESR1, an Estrogen Receptor. We next wanted to determine whether we could predict transcriptional biomarkers that could aid with identifying patients that do not respond to treatment. To do so, we used the read counts for all samples as the input for this analysis and identified 278 transcriptional biomarkers. Performance metrics for all biomarkers identified yielded an area under the receiver-operator characteristic (AUROC) curve of 0.972 (Figure 2), indicating an exceptional ability to classify Letrozole responders vs non-responders by the transcriptional profile. Sensitivity for all transcriptional biomarkers was measured at 100%, and specificity at 94%. We used the top two biomarkers from our first analysis as input for a second analysis to determine the performance of a smaller subset. Our second analysis determined that PRDX4 and E2F8 together yielded an AUROC of 0.823 and an overall accuracy of 88.2%. Discussion:Our results identify additional DEGs, pathways, targets and biomarkers for further exploration in the treatment and categorization of ER+ breast cancer.
Exploring the bioactivity of flavonoid metabolites on beta cell function under GLT conditions
Authors: Eden Beazer, Aubree Bench, Ethan Jones, Jared Carter. Mentors: Jeffrey Tessem. Insitution: Brigham Young University. Incidence of diabetes worldwide has grown from 108 million people in 1980 to 422 million people in 2014, nearly tripling in just thirty-four years. Type 2 diabetes (T2D) is characterized by the loss of pancreatic beta cell mass and the failure of the remaining beta cells to provide adequate insulin. Contributing to the development of T2D is glucolipotoxicity (GLT), a condition characterized by the harmful elevation of glucose and fatty acid levels within beta cells. While there are existing treatments for symptoms of diabetes, much remains to be understood about its underlying causes and effective preventative measures. Flavonoids are naturally occurring phenolic compounds found in many fruits and vegetables that have various anti-inflammatory health benefits. Previous studies suggest that epicatechin, a flavonoid present in cocoa, can reduce the effects of diabetes by diminishing insulin desensitization and increasing glucose stimulated insulin secretion (GSIS). Interestingly, the bioavailability of epicatechin is poor, while its metabolites are more easily absorbed in the small intestine. Further studies demonstrated that under non-stressed conditions in beta-cells, hippuric acid, homovanillic acid, and 5-phenylvaleric acid, metabolites of epicatechin, stimulate insulin secretion at concentrations more realistically found in the body. However, the effects of these metabolites in glucolipotoxic conditions are unknown. Here, we present the effects of epicatechin and its metabolites hippuric acid, homovanillic acid, and 5-phenylvaleric acid on beta cell insulin secretion and mitochondrial respiration under GLT culture conditions. This study aimed to contribute to the limited body of knowledge on the bioactivity of flavonoid metabolites on beta cell function under damaging conditions observed with T2D, offering crucial insights for developing effective strategies to harness the health benefits associated with flavonoids.
Determining the binding partners of orphan nuclear receptor Nr4a3 and their effect on proliferation and insulin secretion in the beta cells
Authors: Owen Damitz. Mentors: Jeffrey Tessem. Insitution: Brigham Young University. Type one and two diabetes affect the everyday lives of millions of people worldwide. These diseases are characterized by decreased functional beta cell mass. Functional beta cell mass is defined by the beta cell’s ability to proliferate, secrete insulin, and resist apoptosis. Wehave shown that the orphan nuclear receptor Nr4a3 is sufficient to induce beta cell proliferation. We have sought to define compounds that can interact with and modulate Nr4a3 activity. Using AutoDock Vina we have defined a number of compounds that interact with Nr4a3. Here wepresent data demonstrating the ability of these compounds to modulate Nr4a3 mediated proliferation, survival, and insulin secretion in the beta cell. Furthermore, we demonstrate the effect of these compounds to modulate Nr4a3 transcriptional control. These findings are the basis for developing interventions to increase functional beta cell mass as a treatment for type 1 and type 2 diabetes.
Ultrasonic analysis of patellar tendon thickness in active older athletes
Authors: Mikayla Kimball, Noah Bezzant, Ashley Allan, Josh Sponbeck. Mentors: Brent Feland. Insitution: Brigham Young University. Ultrasonic analysis of patellar tendon thickness in active older athletesBACKGROUND: Recent research has suggested that patellar tendon loading through exercise and resistance training can help maintain and increase patellar tendon thickness in older adults. Limited research exists that identifies the average thickness of patellar tendons in younger athletes, however, it is unknown if this thickness remains or is maintained in older adult athletes who have maintained a very active lifestyle.PURPOSE: This study aimed to determine how gender correlates to patellar tendon thickness in the proximal and middle patellar tendon of active older athletes participating in sporting events at the Huntsman World Senior Games.METHODS: Data was collected from 59 volunteers (participants in the Huntsman WorldSenior Games) in St. George, Utah, 2022. All subjects (34 females: mean age = 61.09 ± 7.00 yrs, Ht = 162.41 ± 25.73 cm, Wt= 66.29 ±11.38 kg; 25 males: mean age = 68.68 ± 7.03 yrs, Ht = 178.21 ± 8.63 cm, Wt= 84.42±10.90 kg) signed an approved consent form and then sat on a treatment table with their legs relaxed and dangling off. The probe was placed vertically below the kneecap and an ultrasonic image was taken. Each image showed a small section of the patellar for reference. Each ultrasonic measurement showed the middle and proximal thickness of the patellar tendon. ANALYSIS: All data were analyzed using JMP ver16.2 with a stepwise multiple regression analysis to determine the effect of age, height, wt and gender on patellar tendon thickness. A sex*location mixed model was used to determine differences in middle and proximal thickness between gender. Data were normally distributed, not requiring transformation.RESULTS & CONCLUSIONS: Proximal tendon measurements were thicker than middle tendon measurements on both sides (p=0.0001). There was no significant difference either proximal tendon thickness (p=0.9323) or middle tendon thickness (p= 0.3993) between left and right sides. No significant difference between male and female tendon thickness at either location (p=0.7700). Proximal tendon thickness was greater and this has been found to be greater in younger athletes with a history of patellar tendinopathy. Aging athletes may also have a history of knee pain episodes that could have contributed to this finding. The lack of gender differences in thickness measures was surprising, but may be a result of the level of activity of senior athletes. In the future studies should look to compare active vs non-active aging athletes, more specific age range differences, and how knee replacements and other injuries affect patellar tendon thickness.
Glutamine as an Acetyl-lysine Mimic in Nucleosome Positioning Studies
Authors: Michael Mann, David Bates, Steven Johnson. Mentors: Steven Johnson. Insitution: Brigham Young University. Nucleosome positioning, or the placement of nucleosomes along DNA, is known to be a significant factor in determining gene expression in eukaryotic cells. Further, post-translational modifications (or PTMs) help modulate gene expression by acting as an intermediate to other factors. The extent to which PTMs directly affect nucleosome positioning is poorly understood, however. Since gene expression is known to be affected by several coincident PTMs on each histone, the goal of this research is to evaluate the suitability of a Lys-->Gln mutation as a substitute for histone lysine acetylation. If successful, this research can be used to support future combinatorial studies on PTMs and nucleosome positioning without the difficulty of combining several forms of PTMs simultaneously.
Neural Networks associated with Gait Apraxia
Authors: Zach Fiore. Mentors: Jared Nielsen. Insitution: Brigham Young University. Gait apraxia is a type of apraxia that affects lower limb use in walking. It is characterized by difficulty initiating gait, freezing of gait, and other gait disturbances that cannot be attributed to complications affecting sensory, motor, or cerebellar function, psychiatric disease, nor ataxia. Symptoms often present following brain trauma. Previous research has indicated that gait apraxia may be linked to lesions in the frontal lobes, basal ganglia and supplementary motor area. However, the specific cerebral location has been debated with minimal research done on the symptom’s implicated neural circuits. The purpose of this study is to determine the networks in the brain that are involved in the pathophysiology of gait apraxia. To determine this, we used the lesion network mapping method. A systematic literature review was performed, with specific inclusion criteria, to find case studies of patients presenting with gait apraxia stemming from acquired brain injury (n=15). Lesion network mapping analysis (Fox et al., 2018) was performed on 15 cases with a large cohort of healthy control resting-state scans (n=1000). The analysis showed that lesions exhibited functional connectivity to the bilateral medial dorsal and pulvinar nuclei of the thalami (n=15), which supports previous associations of basal ganglia damage contributing to gait apraxia. A novel region, the cingulate cortex (n=15), was also found to be functionally connected to the lesion networks. This region is a part of the cingulo-opercular network, responsible for many functions, including action. This network has recently been found to display strong functional connectivity with the somato-cognitive action network, responsible for coordinating movements with cognitive processes. Further research is necessary to determine the mechanism of how these networks interact in contributing to gait apraxia.
Salt-Water Acclimation in Atlantic Salmon sheds light on claudin shifting and tight junction membrane proteins composition
Authors: Joshua Hutchins, Kevin Wong. Mentors: Dario Mizrachi. Insitution: Brigham Young University. Tight junctions (TJ’s) are composed of mainly three types of cell-adhesion molecules (CAMs) that regulate paracellular permeability in epithelial and endothelial cells. These are claudins (CLDNs), occludin (OCLN), and junctional adhesion molecules (JAMs).There are, however, several (27) isoforms of the claudin molecule, all of which are suspected to have different strengths and other properties in cell adhesion. Currently, the comparative strength of the interactions between different CAMs are unknown and no easily replicable model of a TJ has been created. To address this question we resourced to bacterial expression of these mammalian proteins. MG1655 E. coli cells (with flagellum) were transformed to express claudins 1, 2, 3, 5, and 10 as well as occludin and plated on 0.2% agar plates, allowing them to swim overnight. This allowed for a qualitative spectrum of strengths of the CAMs based on how far the cells were able to spread throughout the plate. Cells that interacted strongly swam less. This technique was applied to the case of the Atlantic Salmon. It swims both in fresh and ocean water. As it transitions, the TJs in its skin changes its composition of claudins. We were able to determine that the set of claudins employed during ocean water swimming are capable of stronger strength. This is consistent with the changes in osmolarity dictated by the amount of solute in the ocean water.
Investigating Intraspecific Temporal Behavior in Mule Deer (Odocoileus hemionus) across Life Stages: Fawning and Non-Fawning.
Authors: Danielle Terry, Seth Helton, Michael Creer. Mentors: Austin M Green. Insitution: University of Utah. With anthropogenic influence increasing worldwide, it is important to understand how wildlife behavior changes in response to urbanized landscapes. Urban ecosystems represent relatively novel landscapes with unique threats and opportunities that can completely restructure species’ population composition and dynamics. Mule deer (Odocoileus hemionus) have been shown to alter their temporal activity in response to urbanization across their range of the Intermountain West of the United States. In this study, we will investigate the effects of anthropogenic influence on mule deer temporal activity behavior across two distinct life stages: fawning and non-fawning. Data for this study will come from the citizen science camera trapping project, Wasatch Wildlife Watch. The full project area is separated into two study sites: “Rural” and “Urban”. This study will be based around the wild-to-urban interface of the Central Wasatch Mountain Range and the Bear River Mountain Range, which composes some of the most highly recreated portions of the Uinta-Wasatch-Cache National Forest, receiving approximately 9,000,000 visitors annually (U.S Forest Service). We will investigate the proposed differential effects of anthropogenic influence and urbanization on mule deer diel activity patterns in the fawning vs. non-fawning life stages. Also, we will inquire whether intraspecific responses in mule deer diel activity alter interspecific interactions, especially with fawning predators, and how these responses might interact with environmental factors. We predict that anthropogenic influence and urbanization alter the diel activity patterns of fawning mule deer more than non-fawning deer and that the presence and activity of fawn predators (e.g., coyote [Canis latrans]) would have a stronger effect on fawning deer activity than non-fawning deer activity.
The Grieving Process
Authors: Becca fabis. Mentors: Alexandra Giannell. Insitution: Utah Valley University. On December 2nd my friend was killed by a hit and run driver while going on a run at night. It was right before finals. I was involved with the police and helped her family pack up all of my beloved friends belongings and watched as her daddy cried in her room. Words can’t express the agony I saw. Two months later I learned that another roomate (in a different apartment) her cousin had committed suicide. And we were the place everyone gathered. I held her cousin’s (who committed suicide) sister in my arms as she cried. Words cannot express the agony I felt for them.Then on the first day of school this semester (a month ago) my father suddenly passed away from a brain aneurysm. He was at the peak of health. My mom puked from sickness and shock, later got sick with other illnesses, (she’s doing a little better now) then my sister got sick and I was left to care for them on my own. There’s no words to express my exhaustion. The late nights of wandering my house making sure we were safe. Words have no ability to express my agony I’m in. After my roomate passed I created a painting. It’s called my grieving process because it’s of a house, the house represents me. In it through color you can see the process that grief can have on a person. I’m only 25, people say I’m too young to lose this many people. Perhaps they’re right. It’s an eerie painting and pretty odd when you look at it. I have had now three losses that have taught me that sometimes words aren’t enough. That it’s through art I can scream and it is documented. I would love to present on how creating art can be the breathe of fresh air one desperately needs in order to continue on in this fight we call life.
Genomic Characterization and Mass Spectrometry Analysis of Gordonia Phage SummitAcademy
Authors: Sierra M Mellor, Madilyn Brandt, Nathaniel Eberhart, Samuel Flor, Julianne H Grose. Mentors: Julianne Grose. Insitution: Brigham Young University. Continued use of antibiotics has driven the evolution of antibiotic-resistant bacteria, which cause infections that prove difficult to treat. Therefore, it is crucial that alternative treatments for bacterial infections are developed. One such promising method, known as phage therapy, utilizes viruses that infect bacteria. However, compared to the high abundance of bacteriophages, relatively few have been isolated and sequenced, with little known about their gene products. Here we have isolated two phages, SummitAcademy and AJGecko, against the host bacteria Gordonia rubripertincta. Gordonia belongs to the Actinobacteria class containing many pathogenic bacteria, including Mycobacterium tuberculosis, and so analysis of SummitAcademy and AJGecko can provide insight into the evolution of this family. Genomic comparison of conserved genes between SummitAcademy and other Gordonia phages identifies 14 hypothetical proteins as unique to SummitAcademy. Subsequent liquid chromatography mass spectrometry (LC-MS) of CsCl-purified SummitAcademy confirms expression of many predicted gene products, verifying the annotation. Several peptides generated through mass spectrometry also provide evidence for extending predicted start sites of gene products. Further characterization of virion proteins and gene products of SummitAcademy can add to the overall knowledge of this cluster of phages and potential phage therapies against Gordonia or related infections.
Analysis of Estrous Cycle in POMC-deficient mice
Authors: Isaac Gillins, Zoe Thompson. Mentors: . Insitution: Utah Valley University. The pro-opiomelanocortin (POMC) gene is expressed in the hypothalamus and pituitary and is cleaved into several peptide hormones. One of these is melanocyte-stimulating hormone (MSH), which is involved in food intake and energy expenditure. A mutation in the POMC gene can result in a rare condition in which the subject displays early-onset obesity characterized by severe hyperphagia (i.e. excess hunger). Affected subjects may also show a lack of pubertal development. In this experiment, we will study mice with a mutation in the POMC gene. They show some of the same symptoms as humans with a POMC mutation, including hyperphagia, obesity & infertility. Specifically, we will investigate the estrous cycle in female mice to determine if they are cycling normally. The estrous cycle, similar to the menstrual cycle in humans, is characterized by changes in reproductive hormones, and can be divided into four stages: proestrus, estrus, metestrus, and diestrus. Cells lining the surface of the vagina have been previously collected using a pipette smear technique. Each stage can be characterized by the proportion of three cell types: epithelial cells, cornified cells, and leukocytes. These cells correspond to the fluctuating hormone levels during the estrous cycle. Images of these samples will be assessed for the composition of cells to determine the stage of the estrus cycle, and whether or not the cycle displays normal patterning. Because POMC-deficient mice are infertile, we hypothesize their estrous cycles may be atypical. For example, the estrous cycle of the POMC-deficient mice may appear in irregular order or with one stage being predominant over the rest. If the estrous cycle is atypical, then we will measure the hormones directly to confirm that the infertility is caused by changes in hormonal regulation. This will help us to understand more about how the POMC gene affects reproductive function.
Enhancing Emotional Resilience among American Samoan Children: Lessons from a Community-Based Intervention
Authors: Lexi Todd, Jessica Jespersen, Isabel Medina Hull, Mary Crawford, Taylor Powell, Ashley Roberts, Melia Fonoimoana Garrett, Kris Urbina, Elizabeth A Cutrer. Mentors: Elizabeth A Cutrer. Insitution: Brigham Young University. Background: American Samoan children face significant mental health challenges, including high levels of depression and anxiety, often escalating to suicidal thoughts and behaviors during adolescence. Addressing this issue, our study collaborated with community leaders in American Samoa to develop and implement five tailored lesson plans aimed at teaching 35 elementary school children resilience strategies for emotional self-regulation. Method: Employing Multimodal Interpretative Phenomenological Analysis (MMIPA), we examined students' drawings depicting their emotions of sadness, anger, and fear before and after the intervention. The analysis focused on understanding the impact of the lesson plans on students' emotional regulation strategies. Results: Post-intervention, our findings indicated a notable improvement in students' ability to regulate their emotions, particularly fear. Through the lesson plans, students acquired practical skills and coping mechanisms, allowing them to better manage their emotions. This positive shift in emotional regulation suggests that the intervention played a significant role in enhancing students' resilience, specifically in dealing with fear-related emotions. Conclusion: Our study underscores the effectiveness of a community-based intervention approach in addressing the mental health challenges faced by American Samoan children. By providing targeted resilience-focused lessons, students demonstrated improved emotional self-regulation, particularly in managing fear. These findings highlight the importance of culturally sensitive interventions and community collaboration in promoting mental well-being among vulnerable populations.
Crest Factor Analyses for Launch Vehicle Noise
Authors: Zach Hendry, Carson Cunningham. Mentors: Micah Shepherd, Kent Gee. Insitution: Brigham Young University. The number of rocket launches per year has been increasing dramatically since 2015, with more rockets launched in the year 2022 than had ever been launched. With the increase in the number of launches per year, it has become increasingly important to understand the impact of rocket launches on the greater environment and community. One important aspect of a rocket launch is the level of acoustical energy that is produced during liftoff. Instantaneous pressure values have been regularly recorded up to 180 dB. Due to these high levels, it’s become important to be able to accurately predict the noise produced by a rocket. One powerful tool used in predicting this sound is the crest factor. The crest factor is an acoustical measurement that shows the difference between the maximum sound pressure (i.e. the crest) compared against the averaged value of the sound pressure. Additionally, this information is vital for planning acoustical equipment in order to avoid measurement clipping. This presentation will be about crest factor analyses performed on the Antares NG-19 rocket launch from August 2023.
Glucose concentration’s effect on binding interactions beta cell transcription factors Nkx6.1 and Pdx1 and subsequent transcriptional regulation of downstream targets
Authors: Nathan Vaughan. Mentors: Jeffery Tessem. Insitution: Brigham Young University. Diabetes Mellitus is a chronic disease characterized by a loss of functional beta cell mass, and impaired glucose homeostasis. Elevated glucose levels in the body are known to be the cause of a plethora of debilitating illnesses. Hyperglycemia negatively effects beta cell function, resulting in impaired insulin secretion and cell death. Two key transcription factors involved in beta cell development, function, and proliferation are Nkx6.1 and Pdx1. We have shown a binding interaction between these Nkx6.1 and Pdx1 and have shown that they co-regulate various genes necessary for beta cell maturity and function. Preliminary data indicate that elevated glucose concentrations downregulate Nkx6.1 mRNA and protein, as well as Pdx1 mRNA. However, the effect of elevated glucose concentrations on Pdx1 and Nkx6.1 binding interaction and subsequent function remains largely unexplored. Here we demonstrate the effect of hyperglycemia on the Pdx1-Nkx6.1 interaction, and the effect on expression of Pdx1 and Nkx6.1 downstream target genes. Understanding the effect of hyperglycemia on this interaction will allow us to better understand the stress that a beta cell is under during diabetic conditions, and to develop interventions to ameliorate these effects.
Actitudes, Barreras, y Cambios: Adapting Prehabilitation for Latino Patient Populations
Authors: Quinn Gerber, Lucas Carpenter, Jacob Clemons, Cindy Kin. Mentors: Cindy Kin. Insitution: Brigham Young University. Introduction: It is vital that patients are adequately prepared for surgical intervention. To meet this need, many medical centers have adopted prehabilitation protocols. The aim of this study was to establish an in-depth comprehension of the attitudes towards surgery and barriersand preferences to prehabilitation for patients identifying as Latino, in order to develop a preliminary framework for adapting prehab programs to best meet the needs of this specific patient population.Methods: We conducted qualitative semi-structured in-person one-on-one interviews with Latino patients who had recently undergone major abdominal surgery. The interviews, conducted at an academic medical center, were audio-recorded, transcribed verbatim, translated into English (as needed), iteratively coded, and discussed by four researchers to reach consensus. We used thematic analysis to identify shared attitudes held by patients and common barriers to the adoption of prehabilitation programs. Analysis of these attitudes and barriers, along with stated patient preferences, led to the development of several ideas that physicians can implement to increase prehab adoption among Latino patients.Results: We interviewed 16 patients, at which point we reached thematic saturation. The patients were on average 52 years old (range 20 to 79) and 50% were women. Our pooled kappa score was .92, indicating a very high degree of concordance among the coding researchers. We identified five common attitudes held by Latino patients regarding surgery: anxiety associated with hospitalizations and surgical procedures, deep trust in physicians, reliance on positivity, tight-knit families/communities, and prominent religious and cultural beliefs. A lack of understanding, physical limitations, a reactive/delayed approach to healthcare, dietary barriers, and mental barriers emerged as obstacles to prehabilitation adoption. These attitudes and barriers, along with direct patient feedback, led us to identify several programmatic priorities that may increase adherence to prehab. These components consist of face-to-face interaction, increased communication, patient and physician collaboration in program development, and family/support group engagement in surgical preparation.Conclusion: Our study provides physicians preliminary insight into customizing prehabilitation programs to best meet the needs and customs of the Latino community, including anxiety associated with hospitalizations, strong social support, and a dominant role of religious faith in coping with illness. We identified several critical components that may make prehab more culturally competent and thus more likely to be adopted by patients. These include in-person coaching, increased information about the upcoming operation and recovery, and engagement of family members. We recommend that healthcare teams committed to prehabilitation consider these needs to make their programs more attractive and accessible to their Latino patients.
Dance and Music: Pathways for Success
Authors: McKayla Pehrson, Emily Hyde. Mentors: Lyndsey Vader. Insitution: Utah Valley University. Emily Hyde and McKayla Pehrson acknowledge that social factors and life circumstances can provide barriers to success, defined as the ability to implement life skills such as self-discipline, creativity, and perseverance. They address how practitioners and educators can use dance and music to reduce barriers. Hyde and Pehrson engage in discourse analysis of recent scholarship, analyzing trends and outcomes in the cognitive, emotional, physical, and social benefits of arts-based interventions. Their research asks: What cognitive benefits are identifiable through dance and music training? What life skills are taught through the study of both music and dance? What are the benefits of dance and music in advancing different learning styles? What is the importance of administrative support and community-academic partnerships when it comes to arts-based learning? Importantly, their research examines specific national and international training programs that use music and dance as a Life Coaching methodology. The presentation of their discursive findings foreshadows field work and data collection that they will undertake in the summer of 2024. Hyde and Pehrson’s research focuses on the impact of teaching essential life skills through dance and music education. While dance education scholarship addresses positive learning outcomes of arts access, contemporary research does not adequately address how dance educators can receive training as life coaches to enhance their teaching practices. Their research will provide valuable discoveries advancing the conversation about how dance and music are beneficial to the development of life skills and crucial for the success of young learners. Simultaneously, they will offer insight around training programs that help prepare future dance educators to teach these life skills in the classroom.
Association of Cyclooxygenase 1 (COX-1) rs4648298 and Cyclooxygenase 2 (COX-2) rs20417 Polymorphisms and Prostatic diseases Among Lebanese Males
Authors: Brock Sheehan, Bryson Edwards, Ivanna Soto, Justice Vance, Tyler Haywood, Jefferey Goddard, Logan Seegmiller, Mohammed A. El Saidi, Wissam R Zaidan , Asmahan El-Ezzi , Dr. Ruhul Kuddus. Mentors: Dr. Ruhul Kuddus. Insitution: Utah Valley University. Association of Cyclooxygenase 1 (COX-1) rs4648298 and Cyclooxygenase 2 (COX-2) rs20417 Polymorphisms and Prostatic diseases Among Lebanese MalesBrock J Sheehan1*, Bryson Edwards1, Ivanna Soto Medrano1, Justin Vance1, Tyler Haywood1, Jeffrey Goddard1, Logan Seegmiller1, Mohammed A. El Saidi2, Wissam R. Zaidan3, Asmahan A. El-Ezzi3, 4, Ruhul Kuddus11Department of Biology, 2Department of Strategic Management and Operations, Utah Valley University, Orem UT; 3Radioimmunoassay Laboratory, Lebanese Atomic Energy Commission, Beirut Lebanon; 4Department of Chemistry and Biochemistry, Lebanese University, Hadath, Lebanon. *- presenting author.Background: COX-1 and COX-2 genes encode prostaglandin-endoperoxide synthases (PTGS) isoenzymes, involved in inflammation and possibly neoplasms. The genes are expressed in the prostate gland. Both genes have several polymorphisms. Here we examine the association of rs4648298 (A-G transition) and rs20417 (G-C transversion) polymorphisms and prostatic diseases. This research was approved by the Utah Valley University IRB.Materials and Methods: DNA was extracted from a blood sample of 56 healthy volunteers, 51 volunteers with benign prostate hyperplasia (BPH), and 61 volunteers with clinical prostate cancer (PCa). Genotyping was conducted through PCR-RFLP analyses. The restriction enzymes used were BaeGI (for rs4648298) and AciI (rs20417), respectively. Alleles with the restriction site were considered recessive. The association was inferred through statistical analyses of the distribution of the genotypes (BB, Bb, and bb or AA, Aa and aa), and allele frequencies among the controls and the affected groups. A p-value of ≤0.05 was considered significant.Results: The distribution of the genotypes is in Hardy-Weinberg equilibrium for all three groups. The b allele of the COX-1 gene is extremely rare (less than 3%), and no significant association between the B or b allele or BB, Bb, and bb genotypes and prostatic disease was observed. The a allele of the COX-2 gene is more common in the BPH group (p=0.011), but not the PCa group (p= 0.472) or the combined affected group (p=0.068) compared to the control group.Conclusions: There is no association between the rs4648298 polymorphisms of the COX-1 gene and prostatic diseases. The a allele of the rs20417 polymorphisms of the COX-2 gene is associated with higher risks of BPH and possibly PCa. The small sample size, sampling from one ethnic group, and the low distribution of the b allele in the Lebanese population are limitations of this study.
Using Snapshot Camera Trap data to evaluate the extent of the “weekend effect” across varying climatic regions of the contiguous United States.
Authors: Austin Green, Gaby Karakcheyeva. Insitution: University of Utah. As the world’s human population continues to concentrate within urban areas and these landscapes continue to expand worldwide, wildlife is under pressure to adapt to novel environmental disturbances. Along urban-wildlife gradients, and especially within less developed areas, human recreation can affect wildlife behavior. These effects may be most apparent during peaks in human recreational activity. In addition, climatic conditions such as aridity and precipitation can also alter wildlife behavior. Understanding the interactions between these two pressures, human activity and climate, can help us understand how wildlife behavior will be affected as human populations grow and climate warms. In this study, we will use data from a large-scale citizen science camera trapping project to assess whether periodic increases in human recreational activity paired with arid climates will elicit behavioral responses across multiple mammal species in northern Utah, U.S.A. Specifically, we will assess whether increases in human recreational activity during the weekend affected mammalian temporal activity patterns at the community-wide and species-specific level, taking into consideration if these trends are amplified in areas that are arid and low in precipitation. I hypothesize that increased human recreational activity will alter wildlife behavior, in general, however this change in behavior will be amplified in drier, hotter areas. I predict that during the weekends human activity will increase, leading to general decreases in activity, mobility, and breeding behavior across species, and this will be amplified in hotter and less vegetated areas. However, I predict that naturally diurnal species will be more affected than nocturnal species as they attempt to avoid overlap with humans, leading to changes in species-species interactions.
Ballet, Film, and Mythology: A Focus on Persephone
Authors: Samantha Marx, Jessa Wright, Nathan Dobbin. Mentors: Christa St John. Insitution: Utah Valley University. Goddess of Spring and Death(2023) is a dance for film co-created by three Utah Valley University undergraduates focusing on retelling of the Ancient Greek myth of Persephone and Hades through a new perspective. Throughout time, stories are often retold; however, this myth has rarely been told from Persephone’s point of view. With a collaboration between the two disciplines of ballet and film, there was opportunity for a more intimate viewing of narrative-based choreography with creative camerawork and post-production editing. The purpose of this presentation is to disseminate research from the dance for camera: Goddess of Spring and Death(2023) in addition to how this collaboration affected both disciplines. The traditional myth tells of the story of Hades kidnapping Persephone to the Underworld and marrying her, typically focusing on the actions of Hades and Demeter. However, the researchers’ collective focus of this narrative was to include Persephone’s agency. The narrative still follows a similar plot to the original myth however, Persephone’s character was more developed as she was given the agency to go into the Underworld and eat the pomegranate of her own free will. An unlikely format for this narrative, the respective areas of ballet and film have become a popular collaboration, especially post-COVID. Stereotypically, narrative ballets are commonly performed on a proscenium stage while film works with verbal narratives. Both disciplines were challenged to explore and collaborate together in a field that is not yet standard. The experience for all on the project, including the dancers and crew, was that of gaining new learning that can be applied in the post-graduate fields.
Assessment of the Use of Phragmites australis as a Biomarker for Trace Metal Pollution
Authors: Aljexi Olsen, Hali Lukacs. Mentors: Eddy Cadet. Insitution: Utah Valley University. Utah Lake is the third-largest freshwater body west of the Mississippi River and serves as a vital resource for just over 600,000 Utah Valley residents through agriculture, residential and recreational purposes. In addition to its utility, Utah Lake provides a haven for biodiversity for numerous species within its wetlands. Despite its utility and importance, the lake faces two significant challenges in the form of Trace Metal (TM) pollution and the encroachment of invasive plant species known as Phragmites australis (P. australis). Despite considerable investments of time, money, and resources by various state agencies to address these concerns, their success has been limited due to the agency’s isolated efforts for these large multifaceted issues. TM, though naturally occurring in the environment, has been found to be toxic to both people and the ecosystem when at elevated levels. P. australis, is a robust and fast-growing macrophyte, possessing remarkable adaptability to and tolerance for poor soils, enabling it to rapidly outcompete native species. Due to P. australis resilience and aggressive nature, many colonies have grown around the lake regardless of soil conditions. Studies have shown that P. australis has been utilized for remediation purposes around water bodies by extracting TMs from sediment. While P. australis must be addressed, can it be used as part of the solution by identifying TM polluted areas? This study aims to discern the variety in TM absorption by P. australis in both unpolluted and polluted sites in the wetlands surrounding the hyper-eutrophic Utah Lake. We selected nine sites around Utah Lake, considering their land use and proximity to pollution sources. At each site, three replicate samples encompassing P. australis, soil, and water were collected. These samples underwent a meticulous process, including washing, weighing, grounding, sieving, acid digesting using a CEM MARS 6, and analysis for TM content within an ICP-MS. Our preliminary findings reveal that in both unpolluted and polluted sites, soil concentrations of As and Cd exceeded background levels (11.73, 1.53 in unpolluted sites, and 27.47, 6.63 in polluted sites, respectively). Notably, in select polluted sites, such as UVU, P. australis displayed a remarkable capacity to hyper-accumulate As, with a transfer factor of 167.14% compared to the lowest unpolluted sites, like Lindon, which showed a rate of about 10%. Across all sites, the accumulation of Cr was relatively consistent (ranging from 17.13 to 19.7 ppm), irrespective of biomass. The examination of TM concentrations, transfer factor rates, and TM accumulation based on biomass suggests that P. australis may serve as a valuable biomarker for identifying TM-polluted sites. This research holds significant relevance, as it could offer state agencies a swift and effective means to pinpoint TM-polluted areas. Moreover, the areas where P. australis is thriving may be leveraged for phytoremediation efforts in TM-contaminated sites, providing an environmentally friendly solution to address this pressing concern.
DID
Authors: McKayla Ridenour. Mentors: Alex Giannell. Insitution: Utah Valley University. "DID" is a painting that delves into the concept of duality within myself. The painting explores my vulnerability as its subject matter. As someone with Dissociative Identity Disorder (DID), I am displaying myself and another personality in the artwork. I aim to shed light on those suffering from DID and other mental conditions. I used a lot of glazing and subtractive methods to achieve the desired effect during the painting process, such as complex darks and layering of paints.
Revealing the Unknown
Authors: Emily Barber. Mentors: ALEXANDRA GIANNELL. Insitution: Utah Valley University. I am presenting on the process of subtraction with oil or acrylic paint. I have loved this process and have found to be impactful to me and my practice. This process can show you art in a whole new way. It's the opposite of what we are told to do. It gives you the chance to reveal something that maybe was lost or hidden. Maybe you go into the painting with an agenda, maybe not. Both ways will most likely show you more then you expected. This process creates depth, and a feeling that is very different to translate by traditional addition.I have found it exciting to use different kinds of tools to create. Instead of a pallete knife and paint brush it's rags, Q Tips, and maybe any kind of scraping object you find. Because of the nature of this process it is also fighting the clock. You must pull and drag away unwanted value before the paint dries. The timing and planning are very critical, yet when I create this way I find it calming and rewarding. Sometimes when creating you have to pull out of your normal strokes, and methods. When you can do that, it helps you focus more on concept, and feeling rather then aesthetic and style. By pulling and scraping the information away, you might have the chance to reveal the unknown.
Female Allegory
Authors: Olivia Mard Oquist. Mentors: Alexandra Giannell. Insitution: Utah Valley University. “Female allegory” encompasses two oil paintings that together explore the complex, multifaceted nature of womanhood, using metaphorical imagery, specific handling of paint and the traditions of oil painting.The first painting depicts a blurred face of a woman symbolizing the complex and often misunderstand aspects of a woman’s identity. The soft blurry quality invites the viewer to contemplate what is below the surface. In addition, it challenges societies ideas of beauty and pointing to the sometimes forgotten truth that a womans true essence transcends her physical appearance.The blurriness also serves as a mask to hide feeling and emotions that tend to be categorized as typically female and often viewed in a negative light. Parts of the face will be more blurry than others, symbolizing times when as a woman I and every woman I know have felt invisible or powerless.The second painting is a still-life of objects that each symbolizes the female body (both contemporary symbols as well as historically) Seashells, pears, mimosa flowers are some objects that represent womanhood and the female form. The objects represent the diverse nature and the layers of the female spirit. The history of a still-life deals with the ideas of perfection and stillness that long have been expectations of women. The paintings will connect through a visual language of color palette and handling of paint and together, the paintings invites the viewer to explore the intricate layers of womanhood and to go beyond physical appearance. It celebrates the culmination of experiences, emotions, and symbolism of what being a woman means and what the expectations around us have been and still are today.
Understanding Panic
Authors: Rebekah Victoria Still. Mentors: Alexandra Giannell. Insitution: Utah Valley University. We all experience panic. For many people it is a rare experience, while for those diagnosed with panic disorders, it can be a regular and debilitating occurrence. Oftentimes, it’s embarrassing and difficult for those living with such a disorder to explain to friends, family, coworkers, supervisors, and peers what they’re feeling and why it affects their lives so thoroughly. In this project, I approached various strangers to ask them about their experiences with panic in an effort to develop a unique and universal language, which would enable viewers to better understand panic and open an empathetic dialogue between those with such a disorder and their loved ones.Based on the answers I received, I was able to sort the data and create multiple visual recipes which I used to develop a series of preliminary works. With each rendition, I asked for feedback from those with and without panic disorders, so as to assess the effectiveness of my color palette, symbology, and mark making techniques. Through this process of creation and criticism, I arrived at a composition which successfully encapsulates the feelings, sounds, and appearance of panic.As someone who lives with PTSD, I believe that it’s important to foster empathy for those around us and earn how to effectively communicate our feelings. My objective is that through this work, people who previously didn’t have the words to discuss their mental health will be able to use this piece to start an open and honest conversation with their loved ones. Furthermore, by using a universal, visual language, those who don’t have panic disorders will be able to begin the process of opening their minds and hearts to understand the people who do. In this sense, my final painting is not an answer, but a question meant to inspire further research and exploration.
Unlocking Your Creativity: The Power of Painting for Fun and Purpose
Authors: Rayne Beau Vanderpool. Mentors: Alexandra Giannell. Insitution: Utah Valley University. For this upcoming UCUR art presentation, I will be showcasing two paintings that I created during a previous painting class under the guidance of my mentor. Both artworks are landscape portraits inspired by the breathtaking Utah mountains. Through these paintings, I experimented with new techniques and aimed to express myself uniquely. I had a lot of fun experimenting with my color palette and visual mixing techniques while creating both of these paintings. Through this presentation, I aim to demonstrate how you can find purpose in your artwork while also enjoying the creative process.
Oneness in diversity
Authors: Nawres Al Saud. Mentors: Alexandra Giannell. Insitution: Utah Valley University. My work beautifully embodies the concept of oneness in diversity by seamlessly blending various elements, perspectives, and voices into a harmonious whole. Like a symphony of colors, my art celebrates the rich tapestry of human experience and the interconnectedness of all things. It serves as a powerful reminder that despite our differences, we share a common humanity. My work is a testament to the idea that diversity is not a source of division but rather a source of strength, resilience, and creativity. It encourages us to embrace the uniqueness of each individual and culture while recognizing the threads that unite us, ultimately emphasizing that we are all part of a larger, interconnected whole.
Nuestra Virgen Tonantzin
Authors: Kessley Durrant. Mentors: Alexandra Giannell. Insitution: Utah Valley University. I am doing research on Our Lady of Guadalupe, her significance to Mexican culture, and the Aztec goddess she was transformed from. As a Mexican who grew up Catholic, Guadalupe is an important symbol to me, and such an integral part to Mexican culture. Before she was Guadalupe she was known as Tonantzin. She presented herself to Juan Diego when he was lost in the desert and hopeless. She told him that she would change to save her people. Tonantzin means Our Mother, Mother Earth. The giver of life and she changed in order to save her people. She became Guadalupe. She told Juan Diego that her robe would be the night sky and she would protect all her children from the misdeeds that were being forced on them. So, her symbol is a sign of safety, where people would go when they had nowhere else to turn. It was a way for the Aztec culture to live on in secret and for our culture to grow in the only way it could. I want to be able to represent her as a Goddess before she transformed into Our Lady Guadalupe. I want to open up the conversation with my fellow Mexicans and start getting closer to our roots and understanding our culture better before the conquistadors. I also want to be able to teach others of our culture and the changes that occurred.
Contrasting elements in visual art
Authors: Ripjaw lemus. Mentors: Alexandra Giannell. Insitution: Utah Valley University. This presentation will explore a selection of artworks which exemplify varying aspects of visual contrast, honing in on the implementation of the principles and elements of art and design. The presentation will include chosen works to show my personal understanding and exploration of these image-making strategies, including the juxtaposition of realism and abstraction, positive and negative space, 2 dimensional and three dimensional, large and small scale, light and dark value, complementary hues, and oposing painting techniques.As an artist and researcher, I am continuing to study how these elements operate in my work and am building an awareness of how a deep investigation of contrasting elements creates a more stimulating experience for the viewer. The three paintings that will be displayed in conjunction with my poster will allow the viewer to experience the work physically as well as participate in discussion with me around artistic decision making and image possibilities.
Playing Games
Authors: Silvia Medina. Mentors: Alexandra Giannell. Insitution: Utah Valley University. Often times growing up we tend to go through different phases or versions of ourselves until we find one that we truly resonate with. We always retain the older versions, as they still tend to peek out from time to time in different aspects of ourselves. With this piece, I wanted to demonstrate my growth and progress, and how it takes all versions of myself and all my experiences when it comes to being who I am today.
The Process of Trying and Failing
Authors: Jessica DeWeese. Mentors: Alexandra Giannell. Insitution: Utah Valley University. I have made it my goal to try as many mediums as I can, both because it's exciting, and to improve and find my artistic passion. As I have started this journey with the few mediums I have tried, I have learned some things about failing. You always fail in the beginning, but the faster you fail, the faster you learn a better way. I will be sharing failures and successes in various mediums.
The Human-Nature Connection: Exploring Metaphorical and Physical Landscapes
Authors: Jessica Downs. Mentors: Alexandra Giannell. Insitution: Utah Valley University. My work is rooted in the observation of landscapes, both metaphorical and physical, internal and external, as well as the ecopsychological connection between identity and environment. Whether closely examining living organisms like root systems and trees, studying the topographies of rock formations, or reconstructing internal structures of the body, I combine these forms into abstract images that are both foreign and familiar, conveying the vast range of thought and emotion within the human experience.In investigating this human-nature connection, my work reflects these ideas through the creation of multifaceted abstract landscapes and psychological spaces. The close examination of natural materials and patterns experienced in nature allow me to form connections between environment and self, often causing natural forms to transition from external imagery to the internal topographies of the body. Utilizing multiple mediums like painting, drawing, printmaking, and digital collage, carefully rendered contours of forms and the use of colors found in nature are both observed and intuitive, built using transparent layers that are constantly added and subtracted, as a way to describe the constant evolution of nature and the search for the understanding of its connection and influence on the human psyche.I am interested in the liminal space between observation and introspection as a means of creating a repository for experiences, feelings, memories, and exploration that elicits an emotional response, seeking to expand on the perception of self and foster a healthier relationship between humans and nature that ultimately promotes overall health and economic sustainability.
Spatiotemporal Continuity Capture through Cyanotyping
Authors: Brittney Weiland. Mentors: Alexandra Giannell. Insitution: Utah Valley University. The cyanotype process is a slow time-based method that uses a chemical mixture, water, and UV light to capture instances of spacetime. Cyanotype translations of the body, whether by directly laying a body down on fabric or through the use of translated photographs inherently capture slices of spatiotemporal continuity by nature of its time-based development. Directly placing one's body on chemically treated fabric undergoes only one translation of form: body to image. However, this direct method fails to capture figural resemblance, but rather captures movement through time, leaving traces of 4th dimensional worms. This method draws a closer comparison to temporal continuity but not to recognizable figure. Photographs, long past captured, undergo a process of camera translation, digital translation, printed negative translation, and then finally cyanotype translation but more directly relates to figural recognizability than a direct capture method. However, this photographic process fails to capture more than a few spatiotemporal moments, less in tune with temporal imagery. Through a series of works, Brittney Weiland explores identity through a perdurantist view by capturing moments of body degeneration and drastic physical form changes over the last year as she has battled nearly life-ending illness through the use of cyanotype and photography.
Sculpting Dichotomies to Evoke Reflective Emotions
Authors: Brittany Cowley. Mentors: Meaghan Gates. Insitution: Utah Tech University. Art, to me, is an experience, one in which an object, sound, or movement has the ability to evoke an emotion in the viewer, taking them from spectator to participant. Since the first time I laid hold of a ball of clay, I could feel its life and ability to be transformed. This organic material has the potential to become whatever someone can dream up. For the true meaning behind the art piece to come forth and pass to the viewers, a sculptor must fully understand what they are trying to convey and how to best accomplish that. Through sculpting and directing the clay, a form takes place. This is just the first step on the path of creating a sculpture that can evoke emotion in the onlooker. Gestures, textures, and glazes are all added to enhance the feelings of the creator.Franz Xaver Messerschmidt created a series of “Character Heads”. I first came across his work at the Getty Museum when I came face to face with The Vexed Man. Mesmerized by this face, I became fully aware that I had become a participant in his sculpture. The bust of this man is elegantly carved with great care yet reveals the most unusual expression. The nose is scrunched up, eyes tightly shut, and mouth drown into an almost pouty frown. On display at this museum of elite, prestigious sculptures, is a piece that at first glance seemed unsuited to occupy the space, yet through the dichotomy displayed it evoked lasting emotions within me. I have discovered a joy in portraying dichotomous relationships in my own work. This relationship is the marriage of two opposing concepts in one piece. A brightly colored, playful child in the process of self-harm or two decomposing hands embraced in a tender touch can speak emotional volumes to the viewer. The thought-provoking questions that run through their minds allow viewers to start participating in the sculptures. Working alongside my mentor, an expert in the field of emotional sculptures, Professor Gates, I seek to more fully explore the world of conflicting emotions in my sculptures. I will be looking into what dichotomies in different forms produce strong emotions when placed alongside one another. Additionally, I am exploring what glazes and textures can be added to enhance the emotional exchange between the creator and the participant. Within the world of ceramics, glazes are used to add texture, color, sheen, and durability to the fired clay. I believe they can also enhance emotions as well. Through creating sculptures that demand the viewer to stop, take a second look, and question, I hope to enable people to reflect on what they are viewing and see their reality more clearly.
Desert Water
Authors: Maddalena Willis. Mentors: Alexandra Giannell. Insitution: Utah Valley University. Water is the most essential ingredient for life. In the desert, it is much more valuable. As Utah’s population rises, its high desert climate that provides beautiful scenery and fun recreational activities is running on a limited amount of water. Therefore it is vital that our reservoirs, lakes, streams and groundwater supply are in good condition, but this is impossible without our own efforts to help. As such, it is imperative that we avoid water contamination and negligent overconsumption. Displayed are the two paintings titled Churned and Drought. They are commentaries on the observable effects humans have had on the water condition in Wasatch and Utah County. The painting titled Churned uses the imagery of a boat prop agitating the picture plane of the painting. The serene blues and greens have been mangled and torn apart. The painting titled Drought uses the imagery of abstracted storm drains, pipes and fishing lures to illustrate the alterations humans have made on the waterways. It is very grid-like and inorganic. Combined, these two paintings are a reflection on the current state of our marine desert ecosystem.
Using Machine Learning to Control Soft Robotics
Authors: Jacob Adams, Larry Catalasan. Mentors: Tianyi He. Insitution: Utah State University. Soft robotics is a field of robotics involving the controlled movement and manipulation of soft materials to fulfill tasks that standard robots cannot. In this project, we aim to create a soft robotic arm capable of movement by using a machine-learning algorithm to generate its subsequent moves. To fulfill this goal, the robotic arm is contained in a metal frame that has cameras monitoring its position. The camera feed is then processed through a machine-learning algorithm into instructions that can be used to pull various strings attached to the arm which will allow the arm to move. Currently, our team has finished building the frame/arm as well as software that can use cameras to map the position of the arm. The next steps in this project are to research and implement a machine-learning algorithm and write a program that can appropriately adjust stepper motors to pull the strings.
Implementing Quality Control for the Fluorescent Coating of Intravenous Catheters
Authors: Melissa Wiggins, Aaron Bigelow, Porter Ellis. Mentors: Ronald Sims. Insitution: Utah State University. Ensuring that the hydrophilic coating of Merit Medical’s Prelude IDeal trans-radial catheter is necessary for its biocompatibility and patient safety. The current method for testing the coating involves a test using Congo Red Dye. The Congo Red Dye does work, but the dye is toxic and all tested catheters must be discarded after testing. The Conge Red Dye test results in wasted catheters. A new method for testing the coating uses fluorescent particles. First, fluorescent particles are added to the hydrophilic coating. These fluorescent particles can be easily visualized on the catheter using UV light. Thus, the uncoated portions of the catheter can be visualized as well. The coated catheters are placed into a black box that ensures only the catheter is being seen. A line scan camera is used to take pictures of every side of the catheter as the catheter spins. Photos of the scanned catheter are then linked together, showing the entire circumference in one picture. The catheter is ultimately tested by analyzing the full picture to find any uncoated regions. By using software to analyze the full picture, the size of uncoated regions is determined with greater accuracy. This new method allows for tested catheters to be used after testing and does not involve any toxic chemicals.
Exploring the Quasi-Static Compression Characteristics of Origami-inspired Foldcore Sandwich Composite
Authors: Chase Mortensen, Juhyeong Lee. Mentors: Juhyeong Lee. Insitution: Utah State University. Foldcore sandwich composites (FSCs) are constructed using multi-layered sheets folded in a desired pattern and placed between two thin face sheets. The choice of material geometric folding pattern provides a large design space to optimize the structural performance of FSCs. These composites are typically made of carbon fiber reinforced polymer (CFRP) composites, offering lightweight and high-energy-absorbing properties. This work aims to characterize the size effects of unit-cell foldcores by analyzing the influence of subscale foldcore models subjected to periodic boundary conditions under quasi-static compression. Three Miura-based unit-cell foldcore models were considered: (1) 1×1, (2) 1×2 (two 1×1 unit-cell foldcores connected in parallel), and (3) 2×1 (two 1×1 unit-cell foldcores connected perpendicularly). Through finite element modeling, three key findings were derived: 1) the finite element model closely replicated experimental results; 2) the application of periodic boundary conditions had an insignificant impact on subscale foldcore models. Third, inconsiderable variations in stress and damage were observed primarily along the foldcore creases when unit-cells were placed in parallel.
Arm Modeling in Preparation for Wearable Mobility-Enhancing Elbow Brace
Authors: Samuel Stearman, Benjamin Crapo, Antonio Trujillo. Mentors: Jeff Hill. Insitution: Brigham Young University. Our goal at BYU SMASH IT lab is to improve patient’s mobility in rehabilitative settings. For this purpose, we’re modeling the human arm to aid in our design of wearable rehabilitative sleeves. We are investigating methods for manipulating elbow flexion and extension using an assistive elbow brace, such as through cable-driven movement and the less used concept of tensegrity. The appeal of these methods is their flexibility, lightweight, and multiple degrees of freedom in movement. In the prototyping stage we’ve created a test stand resembling a human arm that we use to evaluate how our elbow brace would interact with the wearer and measure the forces between the arm and the brace. Measurements from these tests will aid in our design of a future elbow brace. Knowledge gained from this work has the potential to apply to other joints, each with their own rehabilitative and other uses.
Investigation of the Representative Volume Element in Fibrous Porous Systems
Authors: James Walker. Mentors: Pania Newell. Insitution: University of Utah. During the COVID-19 pandemic, the discussion of using fibrous porous materials in the context of face masks has gained significant relevance. These materials consist of networks of fibers that are intertwined through weaving, knitting, or bonding, creating a structure with interconnected pores that facilitate the transport of gasses and liquids. When a face mask is used, it is under tensile stresses that can greatly affect its longevity and behavior, and simulating the behavior of the fibers within the mask under this loading is essential in enhancing its robustness. Numerical analysis involving fibrous porous materials is challenging due to their inherent randomness and anisotropy, however. The models we use need to accurately represent the entire mask, which we achieve using a small cubic cell known as a representative volume element (RVE). In this study, we systematically investigate the role of fiber diameter, fiber cross sectional shape, and RVE size on the mechanical properties of various RVEs using a computational framework built on the finite element method. The RVEs themselves are idealistic, but useful networks of polypropylene fibers that are orthogonally intersected within cubic boundaries. Our results show that once an appropriate RVE size was determined with constant porosity between systems, the stiffness of the samples increases as the cross-sectional shape progresses from a triangle to a square, to a pentagon, etc., largely due to the increases in intersection volume between fibers. We also found that increasing the diameter serves to increase material stiffness. This project not only offers insights into designing more robust face masks but also provides novel tools that can be used for designing other fibrous porous materials.
The effects of invasive competition on the phytochemistry of cottonwoods
Authors: Jessica Crook, Brooke Parker, Michael C Rotter. Mentors: Michael C Rotter. Insitution: Utah Valley University. Fremont cottonwoods are a foundation species throughout the Wasatch front. Cottonwoods face a competitive threat from the invasive tamarisk, which grows very easily in the same habitats. Tamarisk can have a negative impact on cottonwoods, displacing them. The loss of cottonwoods could have negative impacts on ecosystems. This study will examine phytochemical compounds in cottonwoods, and how they are affected by growing in competition with tamarisk. We hypothesize that cottonwoods growing in competition with non-native tamarisk will be stressed and produce higher levels of phytochemical compounds. To test our hypothesis, cottonwoods were grown in pots from cuttings either in competition with a tamarisk cutting, or alone. We then tested total phenolics using a ferric chloride solution, and tannin content using a radial diffusion method. It’s predicted that due to the stress of competition, cottonwoods that grew with tamarisk will have higher overall phenolics and tannins than cottonwoods that were grown on their own. The results of this trial could be important in influencing beaver foraging patterns. Since beavers prefer trees with elevated levels of phenolics and other phytochemicals, this could imply an important mechanism allowing tamarisk to invade an area by stressing cottonwoods and encouraging beaver foraging on these plants.
An Integrated Microfluidic Model of Subretinal Tissue to Study Age-Related Macular Degeneration
Authors: Sophia Hessami. Mentors: Elizabeth Vargis. Insitution: Utah State University. Age-related macular degeneration (AMD) is the leading cause of blindness in developed countries. During later stages of AMD, immature blood vessels penetrate Bruch’s membrane and release fluid into the subretinal space. This process is referred to as choroidal neovascularization (CNV). Current in vitro models of retinal tissue are limited, so we propose a three-layered microfluidic model of the subretinal tissue, consisting of retinal pigment epithelium (RPE), Bruch’s membrane (BrM), and choroid. We have produced models of BrM using hagfish proteins that are more mimetic to the nonporous, proteinaceous BrM that is seen in vivo. Then, we fabricated a three-layered microfluidic device using the BrM models and polydimethylsiloxane (PDMS). Once the devices were assembled, porcine primary RPE were isolated, cultured, and characterized in the upper channel of the microfluidic device. Going forward, HUVECs will be cultured and characterized in the lower channel of the device. Then, primary RPE and HUVECs will be co-cultured and characterized within the device. The result will be a multilayered microfluidic device containing primary porcine RPE, hagfish protein BrM models, and human umbilical vein endothelial cell (HUVEC) choroid. It is expected that RPE protein secretions will diffuse through the BrM models and initiate interconnected vascular network formation in the endothelial cells. In the future, we will induce chemical hypoxia to turn this model into a diseased model of the subretina. We hypothesize that this in vitro model of the subretinal tissue will lead to a better understanding of the mechanisms of CNV initiation and progression in AMD.
Targeted Treatment of Cytomegalovirus
Authors: Alisa Dabb, David Britt, Elizabeth Vargis. Mentors: David Britt. Insitution: Utah State University. Cytomegalovirus (CMV) is the leading infectious cause of birth defects in the United States. CMV is typically treated with ganciclovir, an antiviral medicine that inhibits the virus. However, ganciclovir also inhibits the growth of neutrophils, a type of immune cell, which leaves the patient vulnerable to other viruses and diseases. To combat the toxic effects of ganciclovir, a subtherapeutic dose of ganciclovir can be used with the combinatorial treatment of quercetin and poloxamer 188 (P188) while maintaining the same level of antiviral activity. Quercetin is a hydrophobic natural flavonoid with antiviral properties that is found in many fruits and vegetables. P188 acts as the delivery vehicle for quercetin and is an FDA-approved polymer that targets the mitochondria in a cell. This study examines two delivery vehicles—P188 and Dimethyl Sulfoxide (DMSO) to optimize the combinatorial treatment of quercetin and ganciclovir.DMSO is a solvent for both polar and nonpolar compounds. DMSO is beneficial for cell growth at low concentrations. Additionally, DMSO successfully delivers hydrophobic quercetin to infected cells, although it does not target quercetin delivery like P188. Targeting the mitochondria, like P188, could be valuable because one mechanism of CMV infection occurs when the virus attacks the mitochondria in an infected cell. This study aims to understand if mitochondrial targeted delivery of quercetin better protects cells against CMV infection compared to non-targeted quercetin delivery.