Computational analysis of cyclic aminoborane complexes that exhibit potential to act as hydrogen storage molecules Skip to main content
Utah's Foremost Platform for Undergraduate Research Presentation
2024 Abstracts

Computational analysis of cyclic aminoborane complexes that exhibit potential to act as hydrogen storage molecules

Authors: Amy Richards, Caleb Shelton, Jordan Colmenero, Mason Warenski
Mentors: Diana Reese
Insitution: Utah Tech University

Hydrogen gas has potential to be an excellent form of clean energy; unfortunately, hydrogen gas is difficult to store safely in its elemental form. Consequently, this research project investigated cyclic aminoborane complexes in which hydrogen (H2) can be safely stored. Utilizing computational methods, molecular dynamics simulations of four cyclic aminoborane compounds were performed using Q-CHEM 6.0, with a t-HCTHh density functional and cc-pVDZ basis set. Results were visualized using Molden 6.7 and VMD 1.9.3 then plotted using Gnuplot 5.2.8. Molecules selected for the investigation involve two constitutional isomers for both the 3- and 4- membered ring cyclic aminoborane complexes. The four molecules studied were (CH2)2NHBH3, (CH2)2BHNH3, (CH2)3NHBH3, and (CH2)3BHNH3, (hereafter 3N-B, 3B-N, 4N-B, 4B-N). Motions inherent in these molecules exhibited surprising differences. Specifically, in the 3-membered rings, the terminal borane (3N-B) exhibited more motion than the terminal amine (3B-N); however in the 4-membered rings (4N-B and 4B-N) the opposite occurred. Differences in these and other motions were quantified and qualified with respect to each molecule to gather data relevant to hydrogen storage potential.