Skip to main content
Utah's Foremost Platform for Undergraduate Research Presentation
2024 Abstracts

Synthesis of 1,3-Diphenylpropene from Benzyl Bromide Through a Hydroboration and Palladium-Catalyzed Cross-Coupling Sequence

Authors: Michal Hansen, Nathan Werner
Mentors: Nathan Werner
Insitution: Southern Utah University

The preparation of pharmaceuticals and fine chemicals requires chemical reactions that make carbon-carbon bonds. Carbon atoms of three different hybridazations are known: sp3, sp2 and sp. Most reactions are specific to the hybridization of the carbon atom. We will study a reaction to bond an sp2-hybridized carbon to an sp3-hybridized carbon. This reaction could then be used to make interesting molecules that contain similar bonds.

Specifically, the synthesis of 1,3-diphenylpropene will begin with a hydroboration reaction of phenylacetylene with pinacolborane. These two starting materials are combined with a 9-BBN-catalyst and heated to reflux in tetrahydrofuran at 65 degrees Celsius for 1 hour. The hydroboration product is then purified by aqueous extraction and silica gel flash chromatography. The product from the hydroboration reaction contains an sp2-hydridized carbon-boron bond and is then combined with benzyl bromide that contains a sp3-carbon-bromine bond. This is the reaction that we are studying. They are heated in DMF solvent with a palladium catalyst, ligand and base at 90 degrees Celsius for 1.5 hours. Once the reaction is complete, the cross-coupling product is purified by aqueous extraction and silica gel flash chromatography.