Skip to main content
Utah's Foremost Platform for Undergraduate Research Presentation

2020 Abstracts

data-content-type="article"

Tabletop to Screens: Development of an "Unplugged-to-Plugged" Computer Science Curriculum

December 30, 0020 12:00 AM
Rasmussen, Melissa; Lauritsen, Jake; Clarke-Midura, Jody; Lee, Victor; Recker, Mimi (Utah State University)
Faculty Advisor: Lee, Victor (Emma Eccles Jones College of Education & Human Services, Instructional Technology and Learning Sciences Department); Recker, Mimi (Emma Eccles Jones College of Education & Human Services, Instructional Technology and Learning Sciences Department)

With the rising perception of computer science as a universally useful skill in the twenty-first century, researchers and schools test ways to effectively interest and introduce young children to computer science. Our project develops a curriculum pairing an "unplugged" board game component with a "plugged" portion in MIT's Scratch, pairing short class lectures with hands-on student learning. In order to effectively work with our partner school district and implement a complete unit without taking too many class minutes, we integrate much of the hands-on portion of the curriculum into existing library time. We run several iterations of the curriculum for fifth graders, refining the 6-8 week unit as we go. Of particular concern in our design is the typical middle school teacher's unfamiliarity with coding and computer science concepts. We find that it may be possible to capitalize on this unfamiliarity in order to improve student outcomes. We look at student creativity and computational thinking during the unit, seeking an increase in ability and self-efficacy by closing the unit with student creation of their own game boards. Furthermore, we examine female engagement and interest in the programming portion, with the goal of pinpointing factors that could increase female participation in computer science or partially explain the current deficit. The results of the implementation of our curriculum, with particular focus on the successes and failures that can be generalized to other computer science curricula, will be discussed.
overrideBackgroundColorOrImage= overrideTextColor= promoTextAlignment= overrideCardHideSection= overrideCardHideByline= overrideCardHideDescription= overridebuttonBgColor= overrideButtonText= promoTextAlignment=
data-content-type="article"

Validating Ductility Scaling Relationships Using DIC

December 30, 0020 12:00 AM
Buxton, Ashley; Ahmed, Jasmin; Smith, Adam; Rowley, Robert; Kingstedt, Owen; Berke, Ryan (Utah State University)
Faculty Advisor: Berke, Ryan (College of Engineering, Menanical and Aerospace Engineering Department)

As nuclear facilities grow older, the Department of Energy (DOE) seeks to understand how materials degrade under irradiation conditions. However, engineering-scale radioactive specimens are expensive to irradiate and difficult to handle. Thus, there is significant interest in new methods to characterize materials using miniaturized specimens. In recent years, several promising techniques have gained popularity (for example: nano-indentation, MEMs-based micro-tension, or nano-pillar compression), but there remains a significant gap in translating measurements at a micro- or nano-scale to material properties at an engineering scale.
In the late stages of ductility testing, localized necking means that two specimens of the same material but differing dimensions can produce drastically different elongation measurements. Barba's Law addresses this through scaling relationships. The law's key assumption is that similarly sized tensile specimens develop geometrically similar necked regions. The presented work utilizes this relationship to bridge ductility tests across length scales.
Throughout this research, full-field displacements are measured using Digital Image Correlation (DIC). In brief, DIC works by recording images of a specimen before and after deformation with a digital camera, then comparing the images to compute deformation. The gauge region is then varied to assess whether Barba's Law can be satisfied with a single long specimen and multiple shorter gauge regions. Multiple physical specimen lengths are then measured to validate the DIC results.
overrideBackgroundColorOrImage= overrideTextColor= promoTextAlignment= overrideCardHideSection= overrideCardHideByline= overrideCardHideDescription= overridebuttonBgColor= overrideButtonText= promoTextAlignment=
data-content-type="article"

Scientific Research Accessibility in an Open Access World

December 30, 0020 12:00 AM
Tucker, Ryan W.; Bundy, Bradley C. (Brigham Young University)
Faculty Advisor: Bundy, Bradley (Engineering, Chemical Engineering)

Peer-reviewed journal articles publications and their citation rate is the primary measure of research productivity and impact. Many measure of this impact have been developed and this has motivated many researchers to advertise and market their work. However, there are challenges with this system in that much of the scientific literature is not openly available and there are often high fees associated with making an article open access. Here I discuss this challenge and how engineering researchers are working to better make their research more available to the community.
overrideBackgroundColorOrImage= overrideTextColor= promoTextAlignment= overrideCardHideSection= overrideCardHideByline= overrideCardHideDescription= overridebuttonBgColor= overrideButtonText= promoTextAlignment=
data-content-type="article"

Amaebae in warming soils : The interactive effects of protozoan predation pressure and environmental factors on Nitrogen Cycling in soils under warming conditions

December 30, 0020 12:00 AM
Dodge, Reagan; Backman, Talia (Utah Valley University)
Faculty Advisor: Zahn, Geoffrey (Utah Valley University, Biology)

We assessed the ability of Pleurotus ostreatus, Oyster mushroom, to efficiently decompose waste products containing cellulose. As common pollutants are comprised of cellulose it is important to understand organisms that have cellulolytic enzymes such as P. ostreatus. The fungus P. ostreatus was introduced to the substrates of paper textiles, peanut shells, and livestock manure. After each treatment, the yield of mushroom production and remaining substrate was measured. As these substrates have been broken down during mushroom production they can be sold as inorganic fertilizer or compost. As well, Oyster mushrooms can be purchased and enjoyed in meals. Mushroom cultivation is a multi-billion dollar industry, and excessive wastes are a strain on the environment. By understanding what cellulase substrates produce the greatest yields we can eliminate waste all while increasing profits. Oh, and eating great mushrooms!
overrideBackgroundColorOrImage= overrideTextColor= promoTextAlignment= overrideCardHideSection= overrideCardHideByline= overrideCardHideDescription= overridebuttonBgColor= overrideButtonText= promoTextAlignment=
data-content-type="article"

Scheimpflug (aka Tilt-Tip) Applied to Solid Mechanics to Improve Depth of Field for Stereo DIC

December 30, 0020 12:00 AM
Van Leeuwen, Fiona; German, Emma; Berke, Ryan (Utah State University)
Faculty Advisor: Berke, Ryan (College of Engineering, Mechanical and Aerospace Engineering Department)

Stereo Digital Image Correlation (DIC) is a technique to visually analyze deformations and strains in a material. This way of calculating strains is useful due to the implications of the technique being non-contact. One of the methods to improve using this technique is to use scheimpflug (AKA tilt-tip lenses) to increase the depth of field of the image. These lenses are oriented at an angle with respect to the camera sensor, thereby rotating the angle between the image plane and the subject plane. These methods have been verified in fluids research for PIV measurements which are like DIC. The experiment was conducted by first verifying the method by using a single camera. The research currently being conducted is on using two cameras giving a verification for the 3D method. The goal for this research is to measure an increase in depth of field. Using the single camera 2D measurements, it has been shown that at steeper angles from the camera, the better the measurement when a larger scheimpflug angle is used.

Keyword: Depth of Field, Scheimpflug Lenses, Stereo DIC
overrideBackgroundColorOrImage= overrideTextColor= promoTextAlignment= overrideCardHideSection= overrideCardHideByline= overrideCardHideDescription= overridebuttonBgColor= overrideButtonText= promoTextAlignment=
data-content-type="article"

Integration of Informal Learning into College General Chemistry

December 30, 0020 12:00 AM
Heider, Emily; Simkins, Kylee (Utah Valley University)
Faculty Advisor: Heider, Emily (Utah Valley University, Chemistry)

Expansion of science literacy is increasingly accomplished outside of formal classroom settings with reports of informal learning (IL) experiences at nature centers, demonstration shows, science museums, and scouting. Some researchers have expanded the range of informal learning to also include media, libraries, and public parks. These informal portals to science knowledge provide inclusive settings for learning, and reports of their development research opportunities and benefits are garnering increasing attention. This research describes the integration of informal museum-based learning into college general chemistry courses using the School Museum Learning Framework. Outcomes related to course content were quantified using pre- and post- assessment measures. Additional outcomes quantifying student motivation were evaluated using the Science Motivation Questionnaire. Results show improvement in some course-related outcomes as well as differences in motivation for students who participate in informal learning when compared with students who complete a conventional chemistry course.
overrideBackgroundColorOrImage= overrideTextColor= promoTextAlignment= overrideCardHideSection= overrideCardHideByline= overrideCardHideDescription= overridebuttonBgColor= overrideButtonText= promoTextAlignment=
data-content-type="article"

Quantifying Permeability of RPE Cells on Spider Silk Membranes as a Model of an Aged Bruch's Membrane

December 30, 0020 12:00 AM
Burrows, Tessa; Paterson, Chase; Harris, Tom; Jones, Justin; Elizabeth, Vargis (Utah State University)
Faculty Advisor: Vragis, Elizabeth (College of Engineering, Biological Engineering Department)

Age-related macular degeneration (AMD) is the leading cause of vision loss and blindness in developed nations. To better treat this disease, an accurate model of the retina is needed to study how its healthy and diseased functions. Modeling Bruch's membrane (BM) — a semipermeable layer separates the specialized cells in the retina from blood vessels and becomes more thick and brittle with age — can aid in identifying how the cells associated with AMD, retinal pigmented epithelial (RPE) cells, grow and respond to stress. This project identifies how the brittleness and thickness of a synthetic BM affects cell function and stress factor production in RPE cells. Previous research compared the growth of RPE cells on Transwell membranes and recombinant spider silk proteins (rSSPs) to model BM, and found rSSPs membranes to support RPE growth. Using rSSPs, nonporous membranes with thicknesses of approximately 36 and 50 µm were fabricated to simulate a thicker and more brittle, aged BM. Control assessments were performed with Transwell support membranes, and with 15 µm rSSPs membranes which have been found to support the growth of RPE cells. RPE cells (ARPE-19) were grown on the membranes to confluency and the permeability of the membrane-cell complex was assessed with a size dependent permeability assay with fluorescent dyes of varying molecular weight. Preliminary results found that 36 and 50 µm membranes have a lower permeability coefficient with 7 days of cell growth and a 10 kDa dye. This project is ongoing, and future work includes protein staining to determine the formation of tight junctions and the expression of vascular growth factors associated with AMD. Differences in permeability across the thicker cell-membrane complexes suggest RPE cells have a reduced ability to transport waste across BM. Using rSSPs provides a tunable substrate to quantify the importance of BM in AMD.
overrideBackgroundColorOrImage= overrideTextColor= promoTextAlignment= overrideCardHideSection= overrideCardHideByline= overrideCardHideDescription= overridebuttonBgColor= overrideButtonText= promoTextAlignment=
data-content-type="article"

Funding Community College Child Care Services: How the Child Care Access Means Parents in School (CCAMPIS) Funding Influences Institutional Policy and Practice

December 30, 0020 12:00 AM
Avondet, Callie (University of Utah)
Faculty Advisor: Taylor, Jason (College of Education; Education, Leadership & Policy)

A shocking 33% of student parents graduate from college (Institute for Women's Policy Research, 2014). Part of this low graduation rate has been attributed to scheduling difficulties: the hours classes are offered, planning group-project meetings, and out of class requirements making it difficult to coordinate childcare (Kensinger and Minnick, 2018). Child Care Access Means Parents in School (CCAMPIS) is a federal program that provides money for childcare services to qualifying students at institutions whose students receive a total of $350,000 or more in federal Pell grant funding (Baskerville, 2013) . In fiscal year (FY) 2018 the overall amount of funding allocated to CCAMPIS and the number of schools getting this government grant nearly doubled. This provided CCAMPIS funding to many colleges that did not previously have it (Department of Education, n.d.). This project interviews the child care director from one randomly selected community college from each of the 9 US Census districts (excluding DC and Puerto Rico) to understand how CCAMPIS funding for FY 2018 changed institutional policy, practice, and programs related to child care in community colleges that did not receive CCAMPIS funding in FY 2017. Although data is still being collected, preliminary data suggests that CCAMPIS allows institutions to mold their childcare programs to the needs of their students through various projects. It also frees up more funding to help students who would still struggle financially to get access to childcare but do not meet the formal requirements for CCAMPIS money.
overrideBackgroundColorOrImage= overrideTextColor= promoTextAlignment= overrideCardHideSection= overrideCardHideByline= overrideCardHideDescription= overridebuttonBgColor= overrideButtonText= promoTextAlignment=
data-content-type="article"

Transverse Curvature Measurements of Lumbar Vertebral Bodies

December 30, 0020 12:00 AM
Brevin, Brevin; Taylor, Aubrie; Bowden, Anton (Brigham Young University)
Faculty Advisor: Bowden, Anton (Brigham Young University, Mechanical Engineering)

The development of precise lumbar vertebral devices depends heavily on the varying dimensions of vertebrae themselves. Upon literature review it was found that while much data presents spinal measurements for curvature in kyphosis, lordosis, and scoliosis, as well as individual vertebral heights and diameters, little to no data has been published regarding the transverse curvature of the vertebrae. As this measurement is requisite for the designing of a lumbar vertebral clamp currently being developed in our laboratory, the purpose of this work was to measure a variety of lumbar vertebrae, specifically characterizing lateral length, sagittal width, vertebral height, and the transverse curvature at the minimum lateral length. Dimensions were measured manually from dissected human spine samples using dial calipers and a measuring tape. 13 lumbar vertebrae from 3 cadaveric spines were measured. The average lateral length was 1.63 in (+/- 0.20 in) and the average transverse radius of curvature was 1.01 in (+/- 0.12 in). In future work, these measurements will be incorporated into the device design process for the lumbar vertebral clamp.
overrideBackgroundColorOrImage= overrideTextColor= promoTextAlignment= overrideCardHideSection= overrideCardHideByline= overrideCardHideDescription= overridebuttonBgColor= overrideButtonText= promoTextAlignment=
data-content-type="article"

Understanding the Impact of Student Involvement on Persistence Toward Graduation

December 30, 0020 12:00 AM
Dickamore, Erik (Utah State University)
Faculty Advisor: Colver, Mitchell

Becoming integrated into the social sphere of an institution is a vital step for new and continuing students in a university setting. There is a body of studies that have examined the impact of different aspects of the student experience on persistence. Many of them center on how becoming integrated into the social sphere of an institution is impactful on persistence. While social integration is considered essential for success, few studies have rigorously considered if social integration through student involvement and leadership is associated with persistence toward graduation. This research is intended to estimate causal links between treatments and expected student outcomes. More specifically, this research will highlight the estimated causal impacts on persistence to the next term for students who participate in student involvement. Historically, there has been a roadblock of understanding the effect that leadership and student involvement programs have on students due to self-selection bias. This research uses Prediction Based Propensity Score Matching (PPSM), a quasi-experimental method, to control for baseline variability and account for self-selection bias. Results highlight an estimated causal link to persistence and being involved in leadership positions at a 4-year institution in the mountain west of the United States.
overrideBackgroundColorOrImage= overrideTextColor= promoTextAlignment= overrideCardHideSection= overrideCardHideByline= overrideCardHideDescription= overridebuttonBgColor= overrideButtonText= promoTextAlignment=
data-content-type="article"

Comparing Peach Rootstocks for Adaptability in Utah Soils

December 30, 0020 12:00 AM
Black, Brent; Peterson, Savannah (Utah State University)
Faculty Advisor: Black, Brent (College of Agriculture and Applied Science; Plants, Soils, and Climate Department)

Utah has 1,200 acres of commercial peaches (15th largest peach producing state) making it the second most important fruit crop in the state. However, Utah soils are alkaline, and many trees grown on alkaline soils struggle with iron chlorosis. Peaches and other fruit trees are a combination of the desired variety (scion) grafted onto a rootstock. Some peach rootstocks may be better adapted to Utah's alkaline soils. An orchard comparing 12 peach rootstocks was planted in Utah County in 2007 and evaluated in the 2019 season for survival, tree size and iron chlorosis (leaf chlorophyll content, an indicator of alkaline soil tolerance).The scion for all trees was O'Henry. Most rootstocks had good survival after 13 years (>80%). Empyrean 2 and Julior had the poorest survival (< 50%). The largest trees were on Monegro, Empyrean 1 and Nickels rootstocks, and the smallest were on Lovell, Julior and Krymsk 86. Leaf chlorophyll was lowest (most chlorotic) for Lovell, Julior and Empyrean 1. Selecting the best adapted rootstock is essential for an orchard to be successful and profitable. These results will be useful for Utah growers to select trees best adapted to their conditions.
overrideBackgroundColorOrImage= overrideTextColor= promoTextAlignment= overrideCardHideSection= overrideCardHideByline= overrideCardHideDescription= overridebuttonBgColor= overrideButtonText= promoTextAlignment=
data-content-type="article"

Modeling Customer Behavior with Statistical Analysis

December 30, 0020 12:00 AM
Vasquez, Cesar; Dockstader, Patrick; Havertz, Brett; Phillips, Justin (Dixie State University)
Faculty Advisor: Chellamuthu, Vinodh (Dixie State University, Mathematics)

For any business, understanding the customer’s behavior is vital to maximizing income and minimizing costs. Our work aims to create an algorithm that analyzes the historical data from the customers and determines the target customers in an optimal way. We take on a data set from a transmission shop in California and seek out which factors produce higher potential for client value. We created a mathematical model that classifies the clients as low, medium, or high potential using this historical data. Furthermore, we demonstrated the model utility using the transmission shop’s data to compute the correlation of paying customers and customer history. The correlations are then used to create a conditional probability distribution which served to predict an expected rating score. Moreover, our results are validated by comparing the predicted ratings with the actual ratings in varying train and test cases from the data set. Our results show that the proposed algorithm is fast, simple, and intuitive, which could be utilized by the transmission shop in the future.
overrideBackgroundColorOrImage= overrideTextColor= promoTextAlignment= overrideCardHideSection= overrideCardHideByline= overrideCardHideDescription= overridebuttonBgColor= overrideButtonText= promoTextAlignment=
data-content-type="article"

Water Entry Of Two Projectiles Side By Side

December 30, 0020 12:00 AM
Mortensen, Chase (Utah State University)
Faculty Advisor: Truscott, Tadd (College of Engineering, Mechanical and Aerospace Engineering Department)

The aim of this project is to analyze water entry based cavity formation of two projectiles and how it affects their motion. The study will be conducted by dropping two horizontally spaced similar-sized hydrophobic spheres from different heights into a quiescent water pool. The results will look at the position, acceleration and forces of the two sphere system and how they differ from a single sphere water entry. In addition, the horizontally spaced spheres show a change in the accompanying cavity formation and evolution when compared to past studies of a single sphere entry. Preliminary data suggests that the closer you drop projectiles to one another in water, the resulting of cavity-seal time, cavity shape, drag experienced by the bodies while in water could differ from single projectiles entering the water.
overrideBackgroundColorOrImage= overrideTextColor= promoTextAlignment= overrideCardHideSection= overrideCardHideByline= overrideCardHideDescription= overridebuttonBgColor= overrideButtonText= promoTextAlignment=
data-content-type="article"

Engineering Origami-Inspired Furniture

December 30, 0020 12:00 AM
Parkinson, Bethany; Andrews, David; Magleby, Spencer (Brigham Young University)
Faculty Advisor: Magleby, Spencer (Brigham Young University, Mechanical Engineering)

Increasing worldwide urbanization is leading to a rising population of people living in apartments. Apartments typically have short leases, which lead to a high turnover rate, or number of renters that move in per year. For example, the 2018 turnover rate in New York City was 30.5%. People who move this often usually buy cheap furniture each time they change apartments, because carrying furniture on public transportation is impractical. The goal of our research is to create furniture that allows people who move often to avoid re-purchasing furniture. This goal leads to three design requirements. First, the furniture should be easily collapsed and deployed. This permits the furniture to be conveniently stored and transported. Ideally, the furniture could be deployed with one hand. Second, the furniture should be inexpensive, both in manufacturing processes and material selection. Lastly, the furniture should be aesthetically pleasing. We have utilized origami as a method to achieve these design objectives, because it can be deployed in one motion.

There are significant challenges to designing and implementing origami-inspired furniture. For example, any joints between the legs, seat, table, and back of the furniture need to allow not only for the furniture to be stable in its deployed state, but also to be flat in its non-deployed state. Additionally, the employed joints must account for the thickness of the material. Each type of joint that is adaptable to thick materials was therefore considered and analyzed in the specific loading situation of a chair. Using these criteria and three unique types of joints, a variety of chairs were conceptualized. After prototyping, each type of chair was expanded to create an entire family of furniture, including a table, stool, and couch. The principles and design approaches developed in this project have generated origami-inspired furniture that is easily transportable, functional, inexpensive, comfortable, and aesthetic.
overrideBackgroundColorOrImage= overrideTextColor= promoTextAlignment= overrideCardHideSection= overrideCardHideByline= overrideCardHideDescription= overridebuttonBgColor= overrideButtonText= promoTextAlignment=
data-content-type="article"

Human-Robot Co-Manipulation of Extended Objects

December 30, 0020 12:00 AM
Howell, Ashley (Brigham Young University)
Faculty Advisor: Killpack, Marc (Ira A. Fulton College of Engineering, Mechanical Engineering); Salmon, John (Ira A. Fulton College of Engineering, Mechanical Engineering)

Human-robot co-manipulation of objects to complete specific tasks, such as carrying a stretcher in a search and rescue operation, is an open ended problem in the foreseeable future. Since many motions of the shared object, like rotation and translation, initially feel identical, it can create disagreement between the human and the robot on where to move the object. Programming a robot to determine what kind of movement a human is suggesting and acting accordingly requires extensive data on how humans interpret such communications. This project focuses on designing and constructing a stretcher like object that will be used in a series of experiments in which two humans will carry it through a random arrangement of obstacles. Sensors on the object will gather data on the different ways humans move and interact with it through forces and torques. Indications of these movements will be used to instruct a robot on how to "follow" with the goal of adding no additional cognitive load to the human leader.
overrideBackgroundColorOrImage= overrideTextColor= promoTextAlignment= overrideCardHideSection= overrideCardHideByline= overrideCardHideDescription= overridebuttonBgColor= overrideButtonText= promoTextAlignment=
data-content-type="article"

Micropatterning Retinal Pigment Epithelial Cells to Model the Effects of Age-Related Macular Degeneration

December 30, 0020 12:00 AM
Barney, Nate; Paterson, Chase: Farjood, Farhod; Vargis, Elizabeth (Utah State University)
Faculty Advisor: Vargis, Elizabeth (College of Engineering, Biological Engineering Department)

Age-related macular degeneration (AMD) is the leading cause of blindness in the developed world. Often the cause of irreversible blindness is abnormal blood vessel growth, or angiogenesis, into the retina during AMD. This abnormal vascular growth affects a tissue monolayer called the retinal pigment epithelium (RPE). The RPE cells transport nutrients and maintain the photoreceptors of the eye. The loss of cells in the RPE layer can cause photoreceptor death and consequently blind spots in an individual's vision that steadily increase in size as AMD progresses. Early research suggests RPE cell disruption plays a role in abnormal angiogenesis as RPE cells lacking neighbors have higher production rates of angiogenic factors, such as vascular endothelial growth factor (VEGF). To better understand the effects of RPE detachment on angiogenesis, cells can be grown and characterized in vitro. This research can lead to an in vitro model of degeneration in the human retina that could be used to investigate specific causes of abnormal angiogenesis and potential therapeutics. Our research to date has shown the benefits of using micropatterning as a technique to simulate the areas of cell-cell detachment. To do so, we used photolithography to create thin PDMS stencils with 100 _m holes. ARPE-19 cells were grown across the stencil until confluent, and the stencil was peeled away to cause controlled cell-cell detachment. The concentration of angiogenic factors can then be analyzed to see the effects of cell-cell detachment. My ongoing research will include the use of human RPE cells and analyzing retinal images that show varying levels of degeneration to create micropatterns that are more representative of retinal degeneration during AMD.
overrideBackgroundColorOrImage= overrideTextColor= promoTextAlignment= overrideCardHideSection= overrideCardHideByline= overrideCardHideDescription= overridebuttonBgColor= overrideButtonText= promoTextAlignment=
data-content-type="article"

Optogenetics in Engineered Cardiac Tissue Maturation

December 30, 0020 12:00 AM
Moncada, Silvia; Allen, Bryce; Hafen, Tanner; Valencia-Amores, Sebastian; Hanson, Luke; Dorian, Sariah; Bechtel, Matth;ew; Smith, Seth; Myres, Isaac; Holding, Clayton; Jacobs, Dallin; Hellwig, Lexi; White, Joshua; Evanson, Davin; Cheney, Cladin; Taylor, Sloan; Grossman, Jesse; Donaldson, Jesse; Jepsen, Emily; Johnston, Maren; Porter, Kaiden; Jardine, Alyson; Garfield, Seth; Larson, Spencer; Gardiner (Brigham Young University)
Faculty Advisor: Mizrachi, Dario (College of Life Sciences, Physiology & Molecular Biology)

Heart disease is the leading cause of death in the United States. During myocardial infarction cardiac tissue suffers a lack of nutrients and oxygen that leads to the formation of unregenerable scar tissue which causes a loss of myocardial functionality. With the advent of human induced pluripotent stem cells (hiPSC), the promise of engineering autologous cardiac tissues (ECTs) as a translatable treatment to cardiac disease and as a model for pharmaceutical research is ever closer. We create ECTs using iPS-human induced cardiomyocytes (hiCMs) and extra cellular matrix (ECM) derived from a decellularized left ventricle of a porcine heart. Decellularized matrices allow the preservation of important architectural cues found in the native heart for hiCMs development (Momtahan, 2015). Nevertheless, ECTs still face some challenges before they can be useful in a clinical or pharmaceutical research setting i.e. poor ECT contractile force, hiCM maturity, proper cell morphology and architecture, etc. (Dwenger, 2018). In this study, we seek to combine the mechanical cues of the preserved architecture of a decellularized matrix with the spatiotemporal accuracy of optogenetics as a novel technique to stimulate ECT functionality assessed through contractile force, proper hiCM elongation, and alignment.
overrideBackgroundColorOrImage= overrideTextColor= promoTextAlignment= overrideCardHideSection= overrideCardHideByline= overrideCardHideDescription= overridebuttonBgColor= overrideButtonText= promoTextAlignment=
data-content-type="article"

Hierarchical Parcel Swapping: Turbulent Mixing Model

December 30, 0020 12:00 AM
Wheeler, Isaac; Lignell, David (Brigham Young University)
Faculty Advisor: Lignell, David (Brigham young University, Chemical Engineering)

Turbulence remains one of the great unsolved problems of classical physics; for this reason it remains one of the primary focuses of study in computational fluid dynamics. Numerically, the governing equations for fluid flow can be solved, but to accurately simulate a turbulent flow (as found in combustion, drag calculations, and a variety of other situations) the equations must be solved at small enough length scales to describe very small structures present in turbulent phenomena. Hierarchical parcel swapping (HiPS) is a proposed model for turbulent mixing; the model is computationally cheaper than a numerical simulation at similar length scales, and allows for variation in diffusion coefficients (Schmidt number Sc). In my presentation I will discuss the implementation of HiPS and its agreement with established turbulent phenomena.
overrideBackgroundColorOrImage= overrideTextColor= promoTextAlignment= overrideCardHideSection= overrideCardHideByline= overrideCardHideDescription= overridebuttonBgColor= overrideButtonText= promoTextAlignment=