Basal Pterygote Relationships and Its Implications for the Evolution of Flight in Insects Skip to main content
Utah's Foremost Platform for Undergraduate Research Presentation
2013 Abstracts

Basal Pterygote Relationships and Its Implications for the Evolution of Flight in Insects

Mark Tingey, Utah Valley University

Biology

The phylogenetic relationship of Ephemeroptera (mayflies), Odonata (dragonflies) and Neoptera (remaining winged insects) has been a problematic isse in insect evolution and systematics. Resolving their relationships is a critical step toward understanding insect diversification and the evolution of flight. Three hypotheses are evaluated so as to determine the phylogenetic placement of these three orders of insects: 1) Ephemeroptera sister to Odonata + Neoptera; 2) Monophyletic Paleoptera (Ephemeroptera + Odonata); and 3) Odonata sister to Ephemeroptera + Neoptera. Data from more than 260 taxa were collected from Genbank and assembled into a supermatrix representing 6 different molecular markers. Each of the genes were aligned and phylogenetic analyses were carried out utilizing a number of different methods including Bayesian, maximum likelihood, and parsimony frameworks in order to elucidate the relationships of these insect groups. The large number of taxa proved to be a daunting task, but provided new insights into the support for the different hypotheses. The implications for the evolution of flight were examined in light of the generated phylogenies.