Skip to main content
Utah's Foremost Platform for Undergraduate Research Presentation
2013 Abstracts

Antimicrobial Properties of Essential Oils Isolated from Anthoxanthum hirtum and A. odoratum Against Soil Bacteria

Harsh Kansagra, Southern Utah University

Biology

Anthoxanthum hirtum is a native grass with many traditional and modern uses, including human medicinal benefits. Populations are found locally in Utah, but at higher elevations, usually above 2500 m. Indigenous people used native sweetgrass in a variety of ways, including medicinally, as ceremonial incense, and in basketry. The active compound that elicits the sweet fragrance of the grass is produced by coumarin, a secondary metabolite used today both medicinally and commercially. Plants most often produce secondary metabolites, or essential oils, as a defense against pathogens, but these antimicrobial properties have not been investigated in A. hirtum. Our research used the Kirby-Bauer disk diffusion test to determine if closely related commercial diploid and polyploid sweetgrass strains (Anthoxanthum odoratum), as well as plants from native A. hirtum populations, produce zones of inhibition when tested against associated soil bacteria and fungi. Results of our research showed all species tested produced inhibition zones, but zone size varied in response to the secondary metabolites produced by each plant type. Despite this variation, these data suggest components of the essential oils may have antimicrobial properties. Results of this study increase our understanding of the antimicrobial properties of secondary metabolites produced by A. hirtum as well as the essential oils produced by commercial diploid and polyploid strains. Future studies will focus on identifying the chemical composition of each extract as well as the specific bacterial and fungal species associated with each plant.