Skip to main content
Utah's Foremost Platform for Undergraduate Research Presentation
2015 Abstracts

Invasive Aquatic Species Attachment Inhibited by Surfactant Paint

Kyle Marcus, Cami McKellar, Riley Pearce, Shay Beck, and Zenja Draca, Dixie State University

Physical Sciences

Invasive marine and freshwater species have a detrimental impact on aquatic ecosystems and are easily transferred between bodies of water as a result of unregulated settlement and attachment to commercial and recreational watercraft. This results in infestation of waterways and disruption of native organisms throughout an ecosystem. The quagga mussel (Dreissena rostriformis bugensis) is one example of such invasive species that has called for a focus on cross-contamination prevention. The goal is to use aquatic paint suitable for watercraft that prevents the settlement and/or attachment of various aquatic species such as algae, snails (Physa sp.), anemones (Aiptasia sp.), and quagga mussels. The paint is integrated with newly developed surfactants that act as an inhibitor to the adherence ability of invasive aquatic species. The surfactants are added to provide a barrier between the paint surface and the organisms creating an undesirable surface area for the organisms to attach. This barrier disrupts the specific naturally occurring chemical and physical processes that allow organisms to adhere to surfaces. The most innovative characteristic of the surfactant-based paint is its effectiveness on adherence inhibition without degradation, dissociation, or toxicity to the environment. Preventing adherence of invasive organisms to surfaces could have significant positive effects on the efficiency and cost of operations in marine environments and waterways.