Skip to main content
Utah's Foremost Platform for Undergraduate Research Presentation
2015 Abstracts

Isolation and Characterization of Novel Lytic Phage to Treat Methicillin- Resistant Staphylococcus Aureus

Tyler White, Kyle Jensen, Jacob Hatch, Trevor Wienclaw, Brian Hair, and Aaron Trent, Brigham Young University

Life Sciences

The bacterium Staphylococcus Aureus (SA) is a common commensal organism of the human nose and skin that can lead to diseases such as pneumonia, endocarditis, and meningitis. These SA infections are usually remedied via antibiotic treatment with methicillin. However, over the course of frequent exposure to various antibiotics, the bacteria have evolved resistance to methicillin to create resistant strains (MRSA) that is completely resistant to this drug and many others (leaving vancomycin as the last viable option). As a result, the need for an antibiotic alternative treatment for this infection is becoming increasingly crucial especially in hospitals where nosocomial transmission of the bacteria is prevalent. Phage are bacterial-specific viruses that have shown promise as anti- bacterial agents for human bacterial pathogens. Thus far, we have isolated 18 different samples of phage that lyse MRSA and 51 strains of S. Aureus (over 20 of which are MRSA). We are currently testing all phage samples against these bacterial strains to determine which phage possess a broad tropism to kill many SA/MRSA isolates. We are also conducting experiments to determine the relative lytic ability of each phage. Lytic phage with broad tropism and/or strong lytic ability will have their genomes sequenced in order to verify their respective novelty. Novel phage will be aggregated to form a highly virulent cocktail that can be used to treat a broad spectrum of SA and MRSA infections.