2020 Abstracts Skip to main content
Utah's Foremost Platform for Undergraduate Research Presentation

2020 Abstracts

data-content-type="article"

Beyond Journalism's Stagnation

December 30, 0020 12:00 AM
Mendiola, Diego (Utah State University)
Faculty Advisor: Bullock, Cathy (College of Humanities and Social Sciences, Journalism and Communication Department)

To understand journalism and communication is to know who we are as human beings and what our journey through time means to us; through the systematically detailed logging of our daily experiences we witness the creation of our history; living out moral, ideological and cultural ideals through the word. It is to see ourselves reflected, to see our time, our values, our hypocrisy, our psychology reflected onto the depths of space and time.

For this reason, I believe it is imperative that we get a grip on the methods we use to communicate that historical dialogue we call journalism effectively, providing the least amount of trouble to the living generations of people that inhabit the earth. The promise of an educated, autonomous population is the one that keeps journalism alive and relevant. I have found a set of solutions that are to be discussed among professionals and academics alike, including the reforming of communicative structures and a more conversational relationship with the audience about the larger direction of media.
overrideBackgroundColorOrImage= overrideTextColor= promoTextAlignment= overrideCardHideSection= overrideCardHideByline= overrideCardHideDescription= overridebuttonBgColor= overrideButtonText= promoTextAlignment=
data-content-type="article"

Plugged-In: Rural Readiness for Technology Industry

December 30, 0020 12:00 AM
Johnson, Hayden Allen; Harris, Laurie (Southern Utah University)
Faculty Advisor: Harris, Laurie (Southern Utah University, College of Science and Engineering)

Rural communities in Utah may be an excellent place for technology companies to expand. Many rural Utah communities face major problems with declining economies. Adding to the problem, median incomes in nine rural counties is $48,306 while the statewide median income is $62,961 (US Census Bureau, 2017). Rural areas seem to be an untapped well of potential to help both the state’s economy and tech companies themselves. This research explores how to effectively use that potential.

The object of this research is to identify needs and limitations that currently exist in rural communities that would prevent or could be seen as obstacles for technology industry to grow in these areas. Ongoing research being conducted is looking into the viability of technology companies being able to expand and/or start up in rural Utah by exploring if those areas are ready for the technology industry. Specifically, the research examines:

1. Current educational opportunities related to technology in rural area school systems.

2. Interest among potential workforce in technological fields.

3. Presence of skilled workforce in these rural areas.

4. Potential to form partnerships between higher education and high schools to offer better education and generate interest.

5. Infrastructure of rural areas to support growing technology industry.

Additionally, obstacles that are preventing these areas from being able to support technology industry are found and examined. This research constitutes the first step in helping bolster rural economies through an increase of jobs and industry into those areas. By conducting extensive research and getting in on the “front-lines” of the problem, current situations are more understood and potential suggestions are being developed.
overrideBackgroundColorOrImage= overrideTextColor= promoTextAlignment= overrideCardHideSection= overrideCardHideByline= overrideCardHideDescription= overridebuttonBgColor= overrideButtonText= promoTextAlignment=
data-content-type="article"

Simulated Physiological Environment Stimulates Corrosion in Stainless Steel Substrates following Carbon-Infiltrated Carbon Nanotube Surface Modification

December 30, 0020 12:00 AM
Bowden, Lucy; Monroe, Jacquelyn; Bowden, Anton E.; Jensen, Brian D. (Brigham Young University)
Faculty Advisor: Bowden, Anton (Engineering, Mechanical Engineering); Jensen, Brian (Engineering, Mechanical Engineering)

Previously our lab has shown that carbon-infiltrated carbon nanotube (CI-CNT) surfaces enhance osseointegration and resist biofilm formation, making them attractive possibilities as orthopedic implant materials. For these applications, CI-CNTs and their underlying substrate material must be able to withstand aqueous physiologic conditions. Due to microstructural changes that occur during CI-CNT production, we hypothesized that stainless steel substrate materials experience a loss of their protective, passivating layer, subsequently corroding when immersed in a simulated biological environment. The purpose of the study was to compare corrosion resistance of CI-CNT coated stainless steel substrates to bare stainless steel control samples after two days of incubation in different physiological analog media.

CI-CNTs were grown on 316L stainless steel samples which were sonicated for 20 minutes in isopropyl alcohol and given a 2 minute heat treatment in air at 800°C, followed by a 20 minute growth at the same temperature in ethylene and argon. Carbon infiltration was done for 5 minutes in the same gases at 900°C. The samples were autoclaved and placed into different media including deionized water, phosphor buffered saline solution (PBS), and DMEM culture media. The samples were then incubated for 48 hours at 37°C.

Macroscopic observation showed no obvious signs of corrosion (e.g., discoloration of the liquid media, cloudiness, physical changes in sample appearance) for any of the control samples, or for CI-CNT coated samples in deionized water. In contrast, the CI-CNT coated samples immersed in PBS and culture media exhibited significant discoloration and a cloudy appearance. Subsequent SEM images of the CI-CNT coated samples which had been immersed in culture media and PBS showed foreign residue. Energy dispersive x-ray analysis characterized this residue as having markedly higher levels of sodium and phosphorus than a baseline CI-CNT coated stainless steel sample. SEM images of the bare stainless steel samples and the CI-CNT samples cultured in deionized water showed no signs of corrosion or residue.

Our preliminary results illustrate that media containing salts initiated corrosion of CI-CNT coated stainless steel samples, likely due to disruption of the passivating layer in the substrate. Future work will explore methods for re-establishing the passivating layer in stainless steel materials.
overrideBackgroundColorOrImage= overrideTextColor= promoTextAlignment= overrideCardHideSection= overrideCardHideByline= overrideCardHideDescription= overridebuttonBgColor= overrideButtonText= promoTextAlignment=
data-content-type="article"

Human-Robot Co-Manipulation of Extended Objects

December 30, 0020 12:00 AM
Howell, Ashley (Brigham Young University)
Faculty Advisor: Killpack, Marc (Ira A. Fulton College of Engineering, Mechanical Engineering); Salmon, John (Ira A. Fulton College of Engineering, Mechanical Engineering)

Human-robot co-manipulation of objects to complete specific tasks, such as carrying a stretcher in a search and rescue operation, is an open ended problem in the foreseeable future. Since many motions of the shared object, like rotation and translation, initially feel identical, it can create disagreement between the human and the robot on where to move the object. Programming a robot to determine what kind of movement a human is suggesting and acting accordingly requires extensive data on how humans interpret such communications. This project focuses on designing and constructing a stretcher like object that will be used in a series of experiments in which two humans will carry it through a random arrangement of obstacles. Sensors on the object will gather data on the different ways humans move and interact with it through forces and torques. Indications of these movements will be used to instruct a robot on how to "follow" with the goal of adding no additional cognitive load to the human leader.
overrideBackgroundColorOrImage= overrideTextColor= promoTextAlignment= overrideCardHideSection= overrideCardHideByline= overrideCardHideDescription= overridebuttonBgColor= overrideButtonText= promoTextAlignment=
data-content-type="article"

Micropatterning Retinal Pigment Epithelial Cells to Model the Effects of Age-Related Macular Degeneration

December 30, 0020 12:00 AM
Barney, Nate; Paterson, Chase: Farjood, Farhod; Vargis, Elizabeth (Utah State University)
Faculty Advisor: Vargis, Elizabeth (College of Engineering, Biological Engineering Department)

Age-related macular degeneration (AMD) is the leading cause of blindness in the developed world. Often the cause of irreversible blindness is abnormal blood vessel growth, or angiogenesis, into the retina during AMD. This abnormal vascular growth affects a tissue monolayer called the retinal pigment epithelium (RPE). The RPE cells transport nutrients and maintain the photoreceptors of the eye. The loss of cells in the RPE layer can cause photoreceptor death and consequently blind spots in an individual's vision that steadily increase in size as AMD progresses. Early research suggests RPE cell disruption plays a role in abnormal angiogenesis as RPE cells lacking neighbors have higher production rates of angiogenic factors, such as vascular endothelial growth factor (VEGF). To better understand the effects of RPE detachment on angiogenesis, cells can be grown and characterized in vitro. This research can lead to an in vitro model of degeneration in the human retina that could be used to investigate specific causes of abnormal angiogenesis and potential therapeutics. Our research to date has shown the benefits of using micropatterning as a technique to simulate the areas of cell-cell detachment. To do so, we used photolithography to create thin PDMS stencils with 100 _m holes. ARPE-19 cells were grown across the stencil until confluent, and the stencil was peeled away to cause controlled cell-cell detachment. The concentration of angiogenic factors can then be analyzed to see the effects of cell-cell detachment. My ongoing research will include the use of human RPE cells and analyzing retinal images that show varying levels of degeneration to create micropatterns that are more representative of retinal degeneration during AMD.
overrideBackgroundColorOrImage= overrideTextColor= promoTextAlignment= overrideCardHideSection= overrideCardHideByline= overrideCardHideDescription= overridebuttonBgColor= overrideButtonText= promoTextAlignment=
data-content-type="article"

Optogenetics in Engineered Cardiac Tissue Maturation

December 30, 0020 12:00 AM
Moncada, Silvia; Allen, Bryce; Hafen, Tanner; Valencia-Amores, Sebastian; Hanson, Luke; Dorian, Sariah; Bechtel, Matth;ew; Smith, Seth; Myres, Isaac; Holding, Clayton; Jacobs, Dallin; Hellwig, Lexi; White, Joshua; Evanson, Davin; Cheney, Cladin; Taylor, Sloan; Grossman, Jesse; Donaldson, Jesse; Jepsen, Emily; Johnston, Maren; Porter, Kaiden; Jardine, Alyson; Garfield, Seth; Larson, Spencer; Gardiner (Brigham Young University)
Faculty Advisor: Mizrachi, Dario (College of Life Sciences, Physiology & Molecular Biology)

Heart disease is the leading cause of death in the United States. During myocardial infarction cardiac tissue suffers a lack of nutrients and oxygen that leads to the formation of unregenerable scar tissue which causes a loss of myocardial functionality. With the advent of human induced pluripotent stem cells (hiPSC), the promise of engineering autologous cardiac tissues (ECTs) as a translatable treatment to cardiac disease and as a model for pharmaceutical research is ever closer. We create ECTs using iPS-human induced cardiomyocytes (hiCMs) and extra cellular matrix (ECM) derived from a decellularized left ventricle of a porcine heart. Decellularized matrices allow the preservation of important architectural cues found in the native heart for hiCMs development (Momtahan, 2015). Nevertheless, ECTs still face some challenges before they can be useful in a clinical or pharmaceutical research setting i.e. poor ECT contractile force, hiCM maturity, proper cell morphology and architecture, etc. (Dwenger, 2018). In this study, we seek to combine the mechanical cues of the preserved architecture of a decellularized matrix with the spatiotemporal accuracy of optogenetics as a novel technique to stimulate ECT functionality assessed through contractile force, proper hiCM elongation, and alignment.
overrideBackgroundColorOrImage= overrideTextColor= promoTextAlignment= overrideCardHideSection= overrideCardHideByline= overrideCardHideDescription= overridebuttonBgColor= overrideButtonText= promoTextAlignment=
data-content-type="article"

Hierarchical Parcel Swapping: Turbulent Mixing Model

December 30, 0020 12:00 AM
Wheeler, Isaac; Lignell, David (Brigham Young University)
Faculty Advisor: Lignell, David (Brigham young University, Chemical Engineering)

Turbulence remains one of the great unsolved problems of classical physics; for this reason it remains one of the primary focuses of study in computational fluid dynamics. Numerically, the governing equations for fluid flow can be solved, but to accurately simulate a turbulent flow (as found in combustion, drag calculations, and a variety of other situations) the equations must be solved at small enough length scales to describe very small structures present in turbulent phenomena. Hierarchical parcel swapping (HiPS) is a proposed model for turbulent mixing; the model is computationally cheaper than a numerical simulation at similar length scales, and allows for variation in diffusion coefficients (Schmidt number Sc). In my presentation I will discuss the implementation of HiPS and its agreement with established turbulent phenomena.
overrideBackgroundColorOrImage= overrideTextColor= promoTextAlignment= overrideCardHideSection= overrideCardHideByline= overrideCardHideDescription= overridebuttonBgColor= overrideButtonText= promoTextAlignment=
data-content-type="article"

Investigating The Biocompatibility Of Novel Recombinant Hagfish Thread Keratins As A Platform For Mammalian Cell Culture

December 30, 0020 12:00 AM
Walker, Caleb; Justin A. Jones (Utah State University)
Faculty Advisor: Jones, Justin (College of Science, Biology Department)

In recent years there has been a large push towards exploring the possibility of using protein-based materials to replace petroleum-based materials. Proteins such as those found in spider silk have been investigated, and this exploration has led to proteins not only being used for fibers, but also gels, foams, and films. As research progressed in protein-based filaments, hagfish intermediate filaments have started being explored, specifically, how to recreate these proteins synthetically and what material forms could be produced from them. In the last year, significant progress has been made into the production and of these novel proteins as well as studying their material applications.

The biocompatibility and cytotoxicity of protein films made of these novel recombinant hagfish proteins was evaluated through in vitro testing with a NIH/3T3 mouse fibroblast cell line. The films were produced from alpha and gamma hagfish proteins, purified as insoluble bodies from genetically engineered E. coli bacteria. Cytotoxicity of the films was tested through direct contact and extract testing using cell viability ratios, cell morphology, a cell proliferation assay, and a DNA quantitation assay.

This preliminary data is important for further experimentation with the novel hagfish proteins being used in the Jones lab for biomedical applications. The understanding of the cytotoxicity of these proteins is required before further testing can be done in any biomedical aspect, as in vitro studies provide the foundational data for moving forward with in vivo testing. This project is the first step into the biomedical field for these novel proteins and their potential applications.
overrideBackgroundColorOrImage= overrideTextColor= promoTextAlignment= overrideCardHideSection= overrideCardHideByline= overrideCardHideDescription= overridebuttonBgColor= overrideButtonText= promoTextAlignment=
data-content-type="article"

Modular Design of In-Road Pads for In-Motion Wireless Power Transfer

December 30, 0020 12:00 AM
Hansen, Matthew; Kamineni, Abhilash; Zane, Regan (Utah State University)
Faculty Advisor: Kamineni, Abhilash (College of Engineering, Electrical and Computer Engineering Department); Zane, Regan (College of Engineering, Electrical and Computer Engineering Department)

Electric vehicles (EV) are becoming a cleaner, more popular mode of transportation. However, more convenient charging solutions are required for higher EV adoption. One possible solution is wireless charging of in-motion EVs, but that technology still needs to mature before realization. This research explores a novel charging technology for an in-road wireless charging pad that may increase the feasibility of in-motion wireless EV charging. The research is based on a commonly used pad design. The charging pad on-board the vehicle operates without direct input from the in-road pad, which simplifies current EV wireless charging designs. When the vehicle is not near an in-road pad, negligible energy is used by the vehicle's charging pad, increasing overall efficiency. As the vehicle approaches an in-road pad, the electromagnetic effects of the approaching, enabled vehicle pad activate the in-road pad. An innovative scheme is used to synchronize the in-road pad to the vehicle pad, achieving maximum power transfer. Protections against system instability have also been included. The control scheme only observes the electromagnetic effects of the approaching vehicle, eliminating the need for any radio frequency communication between the vehicle and road and between subsequent in-road pads. The result is a modular, secure, reliable, and simple design. The design improvements can be an enabling technology to in-motion wireless EV charging and broader EV adoption, which can result in lower emissions in populated areas.
overrideBackgroundColorOrImage= overrideTextColor= promoTextAlignment= overrideCardHideSection= overrideCardHideByline= overrideCardHideDescription= overridebuttonBgColor= overrideButtonText= promoTextAlignment=
data-content-type="article"

Increasing Accuracy in Cell-Free Protein Synthesis Reactions

December 30, 0020 12:00 AM
Bundy, Bradley C; Mills, Heather; Nelson, Andrew (Brigham Young University)
Faculty Advisor: Bundy, Bradley (Brigham Young University, Chemical Engineering)

Many advantages are associated with cell-free protein synthesis. It is the fastest way to obtain a protein from a gene, and large amounts can be produced.

A common challenge in cell-free protein synthesis is inconsistency in reaction results, when protein yields appear to vary significantly between trials of the same reaction. Correcting this problem by focusing on and adjusting laboratory technique was the platform of this specific research project. Such adjustments aimed to increase the precision with which reagents were measured and the accuracy of the spectrophotometer results; and to decrease potential error created by air bubbles and non-uniformly mixed reagents.

Overall, amounts of protein yield became more consistent as procedural steps were performed with greater focus on laboratory technique. These results indicate that adjusting laboratory technique could potentially help to increase consistency in yield amounts and reduce error in cell-free protein synthesis reactions. Further direction for the research includes using the improved and more accurate CFPS reactions to produce protein therapeutics, which is used in the treatment of various diseases.
overrideBackgroundColorOrImage= overrideTextColor= promoTextAlignment= overrideCardHideSection= overrideCardHideByline= overrideCardHideDescription= overridebuttonBgColor= overrideButtonText= promoTextAlignment=
data-content-type="article"

Pluronic Micelles Shield Antiviral Cargo from Oxidation

December 30, 0020 12:00 AM
Kjar, Andrew; Heap, Mitchell; Wadsworth, Ian; Vargis, Elizabeth; Britt, David (Utah State University)
Faculty Advisor: Britt, David (College of Engineering, Biological Engineering Department); Vargis, Elizabeth (College of Engineering, Biological Engineering Department)

Quercetin is a flavonoid that exhibits antiviral activity against cytomegalovirus infection, the leading cause of non-genetic sensorineural hearing loss in infants. However, delivering quercetin as an antiviral treatment is challenging as it is sparingly soluble in water and highly susceptible to oxidation once solubilized. This study investigated quercetin encapsulation in micelles formed from self-assembled nanocariiers of differing hydrophobic and hydrophilic chain lengths (specifically, F127, P123, and F68). Samples were investigated weekly for two months using UV-vis spectroscopy and dynamic light scattering to determine quercetin chemical stability and micelle size, respectively. Free quercetin and F68-encapsulated quercetin oxidized within one week in PBS, while quercetin encapsulated by Pluronics F127 and P123 remained stable and encapsulated over two months. Pluronics F127 and F68 have similar PEO chain lengths, but the lower hydrophobic PPO content of F68 was insufficient to allow quercetin-loaded F68 to form stable carriers. As a consequence, F68 also did not protect quercetin against oxidation. The decreased PEO chain length of P123 did not inhibit micelle formation nor oxidative protection. These data suggest the length of the hydrophilic chain is not a determining factor in the chemical stability of encapsulated quercetin. Instead, shielding effects appear to correlate to longer hydrophobic segment lengths, as in F127 and P123.

Conclusions: The ability of the selected Pluronics to encapsulate quercetin in stable micelles and inhibit oxidation was highly dependent on PEO/PPO ratios. This work indicates selection of the appropriate delivery vehicle is necessary to improve quercetin's efficacy as an antiviral and antioxidant for inhibiting CMV and associated SNHL.
overrideBackgroundColorOrImage= overrideTextColor= promoTextAlignment= overrideCardHideSection= overrideCardHideByline= overrideCardHideDescription= overridebuttonBgColor= overrideButtonText= promoTextAlignment=
data-content-type="article"

Microprocessor Developing For an Air Quality Control System

December 30, 0020 12:00 AM
Craig, Michael W. ; Valle, Hugo E. (Weber State University)
Faculty Advisor: Valle, Hugo (Weber State university, Computer Science)

The purpose of Project Atmosniffer is to develop a scientific and commercial air-quality monitoring and recording tool.
This project has undergone many transformations over the years since its birth and is continuing to be improved during the period of my contributions. Project Atmosniffer has provided me a unique opportunity to enhance my computer science (CS) core skills. From networking, ticket tracking, version control, data analysis, and hands-on experience in the lab.
The atmosniffer has changed much of its hardware. The current version of the Atmosniffer device, upgraded the following components: microprocessor, gas board, dynamic sensor, OLED screen. The new version offers new features like a new CO2 sensor and WiFi connectivity.
More details covering the CS skills utilized in the development of new components and features of the Atmosniffer device will be presented.
overrideBackgroundColorOrImage= overrideTextColor= promoTextAlignment= overrideCardHideSection= overrideCardHideByline= overrideCardHideDescription= overridebuttonBgColor= overrideButtonText= promoTextAlignment=
data-content-type="article"

Scientific Research Accessibility in an Open Access World

December 30, 0020 12:00 AM
Tucker, Ryan W.; Bundy, Bradley C. (Brigham Young University)
Faculty Advisor: Bundy, Bradley (Engineering, Chemical Engineering)

Peer-reviewed journal articles publications and their citation rate is the primary measure of research productivity and impact. Many measure of this impact have been developed and this has motivated many researchers to advertise and market their work. However, there are challenges with this system in that much of the scientific literature is not openly available and there are often high fees associated with making an article open access. Here I discuss this challenge and how engineering researchers are working to better make their research more available to the community.
overrideBackgroundColorOrImage= overrideTextColor= promoTextAlignment= overrideCardHideSection= overrideCardHideByline= overrideCardHideDescription= overridebuttonBgColor= overrideButtonText= promoTextAlignment=
data-content-type="article"

Scheimpflug (aka Tilt-Tip) Applied to Solid Mechanics to Improve Depth of Field for Stereo DIC

December 30, 0020 12:00 AM
Van Leeuwen, Fiona; German, Emma; Berke, Ryan (Utah State University)
Faculty Advisor: Berke, Ryan (College of Engineering, Mechanical and Aerospace Engineering Department)

Stereo Digital Image Correlation (DIC) is a technique to visually analyze deformations and strains in a material. This way of calculating strains is useful due to the implications of the technique being non-contact. One of the methods to improve using this technique is to use scheimpflug (AKA tilt-tip lenses) to increase the depth of field of the image. These lenses are oriented at an angle with respect to the camera sensor, thereby rotating the angle between the image plane and the subject plane. These methods have been verified in fluids research for PIV measurements which are like DIC. The experiment was conducted by first verifying the method by using a single camera. The research currently being conducted is on using two cameras giving a verification for the 3D method. The goal for this research is to measure an increase in depth of field. Using the single camera 2D measurements, it has been shown that at steeper angles from the camera, the better the measurement when a larger scheimpflug angle is used.

Keyword: Depth of Field, Scheimpflug Lenses, Stereo DIC
overrideBackgroundColorOrImage= overrideTextColor= promoTextAlignment= overrideCardHideSection= overrideCardHideByline= overrideCardHideDescription= overridebuttonBgColor= overrideButtonText= promoTextAlignment=
data-content-type="article"

Optimization of Turbine Tilt in a Wind Farm

December 30, 0020 12:00 AM
Cutler, James; Stanley, Andrew; Ning, Andrew (Brigham Young University)
Faculty Advisor: Ning, Andrew (Brigham Young University, Mechanical Engineering)

Wind farms are severely affected by negative wake interactions between turbines. By opti- mizing the tilt angle of the turbines in a farm, wakes may be deflected away from downstream turbines, increasing the overall energy production. In this study, we will optimize the tilt angle of turbines in a wind farm to maximize energy production. We will use an analytic wake model modified to consider wake deflection from tilt, and gradient-based optimization. We will consider optimizing the tilt angle of each turbine assuming that it will remain fixed for the lifetime of the farm. We will also consider active tilt control. Preliminary results with a simple five turbine row show that a large tilt angles of 35_ in the front upstream turbine increases the power production of the five turbines by about 20% compared to the power production with no tilt in the front turbine. Although these preliminary results only consider one wind direction and exaggerate the gains from wake deflection through tilt, we expect that considering a whole wind farm and wind distribution will still result in significant gains.
overrideBackgroundColorOrImage= overrideTextColor= promoTextAlignment= overrideCardHideSection= overrideCardHideByline= overrideCardHideDescription= overridebuttonBgColor= overrideButtonText= promoTextAlignment=
data-content-type="article"

Quantifying Permeability of RPE Cells on Spider Silk Membranes as a Model of an Aged Bruch's Membrane

December 30, 0020 12:00 AM
Burrows, Tessa; Paterson, Chase; Harris, Tom; Jones, Justin; Elizabeth, Vargis (Utah State University)
Faculty Advisor: Vragis, Elizabeth (College of Engineering, Biological Engineering Department)

Age-related macular degeneration (AMD) is the leading cause of vision loss and blindness in developed nations. To better treat this disease, an accurate model of the retina is needed to study how its healthy and diseased functions. Modeling Bruch's membrane (BM) — a semipermeable layer separates the specialized cells in the retina from blood vessels and becomes more thick and brittle with age — can aid in identifying how the cells associated with AMD, retinal pigmented epithelial (RPE) cells, grow and respond to stress. This project identifies how the brittleness and thickness of a synthetic BM affects cell function and stress factor production in RPE cells. Previous research compared the growth of RPE cells on Transwell membranes and recombinant spider silk proteins (rSSPs) to model BM, and found rSSPs membranes to support RPE growth. Using rSSPs, nonporous membranes with thicknesses of approximately 36 and 50 µm were fabricated to simulate a thicker and more brittle, aged BM. Control assessments were performed with Transwell support membranes, and with 15 µm rSSPs membranes which have been found to support the growth of RPE cells. RPE cells (ARPE-19) were grown on the membranes to confluency and the permeability of the membrane-cell complex was assessed with a size dependent permeability assay with fluorescent dyes of varying molecular weight. Preliminary results found that 36 and 50 µm membranes have a lower permeability coefficient with 7 days of cell growth and a 10 kDa dye. This project is ongoing, and future work includes protein staining to determine the formation of tight junctions and the expression of vascular growth factors associated with AMD. Differences in permeability across the thicker cell-membrane complexes suggest RPE cells have a reduced ability to transport waste across BM. Using rSSPs provides a tunable substrate to quantify the importance of BM in AMD.
overrideBackgroundColorOrImage= overrideTextColor= promoTextAlignment= overrideCardHideSection= overrideCardHideByline= overrideCardHideDescription= overridebuttonBgColor= overrideButtonText= promoTextAlignment=
data-content-type="article"

Implementing a Sectional Model for Soot Coagulation into a Standalone Soot Library

December 30, 0020 12:00 AM
Oldham, Keturah; Lignell, David; Stephens, Victoria (Brigham Young University)
Faculty Advisor: Lignell, David (Brigham Young University, Chemical Engineering)

Soot is an important but computationally expensive aspect of modeling combustion. To thoroughly predict the way that soot acts, it is necessary to know the number and size of every soot particle in a situation. Since that is clearly not practical, there are a variety of methods to approximate the soot size distribution: the method of moments, assuming monodispersion, and a sectional method. To facilitate the incorporation of these soot models into various applications, a C++ library including these models was created. As part of this C++ library, a sectional model was implemented. This splits the overall soot size distribution into discrete sections, then calculates the soot chemistry involved with these sections. To implement this into the library, a partial sectional model (including only coagulation) was first implemented in Python and compared to verified values. This model was then written in C++, expanded to include the various other soot mechanisms (e.g., growth, oxidation), and incorporated into the larger soot library. The sectional model as part of the soot library will be tested for validity. In summary, to enable the combustion simulation community to more easily simulate soot, a soot library that includes several models was created and expanded to include a sectional model. The use of these models enables modeling to be more accurate due to the easy inclusion of soot in a comparatively computationally inexpensive manner.
overrideBackgroundColorOrImage= overrideTextColor= promoTextAlignment= overrideCardHideSection= overrideCardHideByline= overrideCardHideDescription= overridebuttonBgColor= overrideButtonText= promoTextAlignment=
data-content-type="article"

Physical Human-Robot Co-Manipulation of Extended Objects

December 30, 0020 12:00 AM
Qian,Rui (Brigham Young University)
Faculty Advisor: Salmon, John (BYU - Ira A. Fulton College of Engineering, Mechanical Engineering); Killpack, Marc (BYU - Ira A. Fulton College of Engineering, Mechanical Engineering)

The cooperation between humans and robots may become more intuitive as technology develops. It is foreseeable that soon physical human-robot collaboration may be applied in the area of co-manipulation of objects, especially in search and rescue. It comes naturally for a human dyad to adapt and respond to changes with each other while moving objects. However, it still can be difficult for a robot to determine the motion it should take to best collaborate with a human. In order to optimize robots imitation of humans and improve their efficiency to assist humans, the research aims to design algorithms for robots to move objects in more human-like ways by first analyzing behavioral characteristics of human-to-human collaborations.

During our experiments, we will designate one person per group as a leader and one as a follower to carry a stretcher-like table as a simulated object with force-torque sensors through different obstacles. As the follower will not be explicitly told the intention of the leader, the forces and torques that the follower feels through the object become important for understanding the leader's intent. With standardized specific goals and qualifiers, data will be gathered on the force and torque people exert on the object and motion of table; we will then analyze the correlation and characteristics between the data and people's actual intentions. The data will later be implemented as an algorithm on the robot to help it identify human's intentions and to complete the cooperative task efficiently and smoothly.
overrideBackgroundColorOrImage= overrideTextColor= promoTextAlignment= overrideCardHideSection= overrideCardHideByline= overrideCardHideDescription= overridebuttonBgColor= overrideButtonText= promoTextAlignment=