Skip to main content
Utah's Foremost Platform for Undergraduate Research Presentation

2020 Abstracts

data-content-type="article"

The effect of Nr4a3 gene deletion on body weight, blood glucose levels, and glucose tolerance in mice

December 30, 0020 12:00 AM
Yang, Haokun; Herring, Jacob; Elison, Weston; Wynn, Adam; Tessem, Jeffery (Brigham Young University)
Faculty Advisor: Tessem, Jeffery (Brigham Young University; Nutrition, Dietetics, and Food Science)

Nearly 1 in 10 Americans have type 2 diabetes (T2D), a disease that is characterized by a loss of functional β-cell mass, resulting in decreased insulin secretion and glucose utilization. The pancreatic β-cell is responsible for producing and secreting insulin and monitoring blood glucose levels, and it is crucial to the understanding of T2D. The orphan nuclear receptor Nr4a3 (Nor1) has well-defined roles throughout the body, specifically with fuel utilization in the liver, muscle, and adipose tissues. Here we present data demonstrating that Nr4a3 KO mice have increased body weight, blood glucose levels (fasting and non-fasting), and impaired glucose tolerance when fed a standard diet. Respiration from adipose tissue is significantly impaired in male and female Nr4a3 KO animals. These data demonstrate that Nr4a3 is necessary for whole-body homeostasis. We believe that these data serve as a step toward understanding the pathway of T2D progression and finding a cure.
overrideBackgroundColorOrImage= overrideTextColor= promoTextAlignment= overrideCardHideSection= overrideCardHideByline= overrideCardHideDescription= overridebuttonBgColor= overrideButtonText= promoTextAlignment=
data-content-type="article"

Sex differences in MAP kinase activation in the periaqueductal gray after morphine treatment

December 30, 0020 12:00 AM
Ashley McCarty, Akila Ram, Max V. McDermott, Erin N. Bobeck (Utah State University)
Faculty Advisor: Bobeck, Erin (College of Science, Biology Department)

Morphine is a potent opioid analgesic, but its long term use can lead to negative side effects, including tolerance, which is a decrease in the effectiveness of the opioid. An area of active interest is looking into the molecular effects of chronic morphine treatment in the Periaqueductal gray (PAG), a brain region that controls descending pain modulation. One such molecular target within the PAG is extracellular-signal regulated kinase 1/2 (ERK). Previous studies have shown that pharmacological inhibition of ERK enhanced morphine tolerance, indicating that ERK activity is associated with better responsiveness to morphine. The PAG is known to contain a heterogenous population of neurons including GABA and glutamate subtypes. However, which neurons ERK is activated in within the PAG following morphine tolerance is unknown. Further, there are known differences in PAG activity between male and female mice. However, these sex-differences have not been well studied after morphine tolerance using acute pain tests. The purpose of this research is to investigate differences in ERK activation following morphine tolerance in male and female mice. We treated wild-type male and female mice with morphine (10 mg/kg, i.p.) or saline for 5 days to induce morphine tolerance, following which both behavior and protein immunofluorescence were assessed. We observe sex-specific differences in ERK activation levels and morphine antinociceptive tolerance in mice. We also assessed co-localization of ERK with GABA and glutamate neurons after morphine tolerance. The study will help us understand the cell-type specificity of kinase activation following morphine tolerance. Further this will give us more information about the nature of neurons that are contributing to sex-differences in opioid functions within the PAG
overrideBackgroundColorOrImage= overrideTextColor= promoTextAlignment= overrideCardHideSection= overrideCardHideByline= overrideCardHideDescription= overridebuttonBgColor= overrideButtonText= promoTextAlignment=
data-content-type="article"

Supplemental treatment options for diabetes: how DHE induces Nr4a1 expression and subsequent β-cell function

December 30, 0020 12:00 AM
Brown, Nathan; Herring, Jacob; Tessem, Jeffery (Brigham Young University)
Faculty Advisor: Tessem, Jeffery (Brigham young University; Nutrition, Dietetics, and Food Science)

Diabetes is a global epidemic affecting millions of people. The total estimated cost of diabetes in the U.S. during 2017 was 327 billion dollars. Diabetes is characterized by the loss of pancreatic β-cell function which is caused by an autoimmune disorder in Type 1 diabetes or insulin resistance and β-cell exhaustion in Type 2 (T2D) diabetes.
It is shown that β-cell mitochondrial respiration is dependent on the nuclear receptor Nr4a1. Respiration rates of cells lacking Nr4a1 in the presence of 16 mM glucose resulted in a significant decrease in glucose-stimulated insulin secretion by impeding the production of ATP. It was also found that knockdown of Nr4a1 results in decreased expression of mitochondrial dehydrogenase subunits Idh3g and Sdhb. Thus, the orphan nuclear receptor Nr4a1 is critical for β-cell mitochondrial function and insulin secretion.
In subsequent studies it was shown that dihydroergotamine (DHE) induces Nr4a1 expression via recruitment of the super elongation complex to enable elongation of Nr4a1 promoter paused RNA polymerase II. While these experiments have been shown in cancer cells, I hypothesize that DHE will up-regulate Nr4a1 and other downstream targets. To test this I will use an in-vitro model to culture INS-1 832/3 rat insulinoma cell lines as a useful model for insulin secretion regulation and pancreatic islet beta-cell function studies. This study will shed further light on the regulation of the Nr4a1 nuclear receptor in pancreatic β-cells.
overrideBackgroundColorOrImage= overrideTextColor= promoTextAlignment= overrideCardHideSection= overrideCardHideByline= overrideCardHideDescription= overridebuttonBgColor= overrideButtonText= promoTextAlignment=
data-content-type="article"

Harmonic analysis of mid-latitude temperatures in the mesopause region: TIME-GCM results and sodium resonance lidar observations during 2009

December 30, 0020 12:00 AM
Cutler, Alynne; Hagan, Maura; Yuan, Titus (Utah State University)
Faculty Advisor: Hagan, Maura (College of Science, Physics Department); Yuan, Titus (College of Science, Physics Department)

Analyses of sodium resonance lidar temperature measurements made during a three-day period in August 2009 in the mesopause region (ca. 70-120km) above Fort Collins CO, along with analyses of correlative temperature predictions from the Thermosphere-Ionosphere-Mesosphere-Electrodynamics General Circulation Model (TIME-GCM) reveal diurnal and semidiurnal temperature variations characteristic of solar atmospheric tides. Harmonic analyses via Fourier decomposition of the lidar data reveal a dominant semidiurnal oscillation with amplitudes that are well-represented in TIME-GCM at altitudes below about 92 km. A comparatively weaker diurnal tide was detected in the lidar data. This variation is negligible in the TIME-GCM results below 95km. Downward phase progression associated with upward propagating tides characterizes both tidal model and measurement results. Comparisons between August 2009 mean temperature profiles reveal a cold bias of ~17K in the TIME-GCM mesopause region. Equivalent analyses of temperature during a second three-day period in January 2009 remain in progress.
overrideBackgroundColorOrImage= overrideTextColor= promoTextAlignment= overrideCardHideSection= overrideCardHideByline= overrideCardHideDescription= overridebuttonBgColor= overrideButtonText= promoTextAlignment=
data-content-type="article"

Shocked Electrons: Determination of the Heating Mechanism in Abell 665

December 30, 0020 12:00 AM
Wik, Daniel (University of Utah)
Faculty Advisor: Wik, Daniel (Science, Physics and Astronomy)

Mergers between galaxy clusters are some of the most energetic events in the universe, driving shock fronts in the intracluster medium (ICM), an X-ray hot plasma permeating the cluster. Shock fronts heat thermal electrons, causing an increase in their temperature. The mechanism by which this occurs is undetermined, with two models being proposed to explain the phenomenon. The first proposes direct shock-heating and the second suggests indirect adiabatic compression, with the electrons subsequently equilibrating with ions heated by the shock. We utilize NuSTAR observations, advantaging its effective area at higher energies, of a shock in the merging cluster Abell 665 in order to discriminate between the models. To do so, a temperature profile was constructed across the shock, utilizing spectral fitting, and compared against the models' predictions. In addition, temperature maps across the cluster were generated to better understand the merger event as a whole. We find that the temperature profile is suggestive of the shock model but is not yet statistically significant, due to NuSTAR's comparatively worse spatial resolution. As a result, we apply a novel joint fitting technique to NuSTAR data and Chandra observations in order to statistically distinguish between the models for the first time, accounting for the scattering of photons due to the PSF. Understanding these processes increases our understanding of the magnetic field of the ICM, allowing for mass determination, permitting galaxy clusters to be used to constrain cosmological studies.
overrideBackgroundColorOrImage= overrideTextColor= promoTextAlignment= overrideCardHideSection= overrideCardHideByline= overrideCardHideDescription= overridebuttonBgColor= overrideButtonText= promoTextAlignment=
data-content-type="article"

Heavy metals analysis of particulate matter removed by trees

December 30, 0020 12:00 AM
Dustin, Malia; Holden, Maliea; Peterson, Rob; Chilom, Gabriela (Dixie State University)
Faculty Advisor: Chilon, Gabriela (Dixie State University, Chemistry)

Particulate matter (PM) is a complex mixture of extremely small particles and liquid droplets suspended in air. Particles vary in terms of origin, chemical composition and size. Particles with diameter of 10 µm and smaller carry an increased risk for human health as they can penetrate deeper into the lungs, even to the alveolar regions. Recent studies suggest that trees can remove particles from the atmosphere through their leaves and their removal capacity depends on the chemistry and morphology of the leaves.

The goal of this project is to analyze the composition of PM for three species of trees commonly grown in St George, Utah: Pyrus Calleryana Bradford, Prunus x Cistena, and Chilopsis Linearis. The amount of PM accumulated on the surface of leaves was determined gravimetrically for two size fractions (2.5-10µm and 10-100µm). Both fractions were analyzed by inductively coupled plasma-mass spectrometry (ICP MS) after acid digestion of filters that collected PM. The average concentrations of the following metals: Mn, Fe, Co, Ni, Cu, Zn, Ti, V, Cr, As, Zr, Mo, Se, Cd, Sn, Sb, Pt, and Pb is reported.

The accumulation of heavy metals on leaf surfaces can prevent the metals from being airborne, therefore reducing the exposure of residents to PM pollution.
overrideBackgroundColorOrImage= overrideTextColor= promoTextAlignment= overrideCardHideSection= overrideCardHideByline= overrideCardHideDescription= overridebuttonBgColor= overrideButtonText= promoTextAlignment=
data-content-type="article"

Flavonol Esters: Synthesis, Characterization, and CO Release Activity

December 30, 0020 12:00 AM
Lake, Alexander; Soboleva, Tatiana; Berreau, Lisa (Utah State University)
Faculty Advisor: Berreau, Lisa (College of Science, Chemistry and Biochemistry)

Carbon Monoxide (CO) has been found to have a wide range of potential therapeutic effects. For example, low concentrations of CO have been shown to produce anti-inflammatory, anti-hypoxia, anti-proliferative, and anti-apoptotic effects, as well as vasodilation. CO-releasing molecules (CORMs), particularly those which release CO upon triggering with light in the visible range (photoCORMs), are of significant current interest for targeted CO delivery. Our laboratory is developing extended flavonols as highly tunable tunable photoCORMs. In this presentation, the synthesis, characterization, and CO release reactivity studies exploring the use of flavonol esters as CO delivery molecules will be presented.
overrideBackgroundColorOrImage= overrideTextColor= promoTextAlignment= overrideCardHideSection= overrideCardHideByline= overrideCardHideDescription= overridebuttonBgColor= overrideButtonText= promoTextAlignment=
data-content-type="article"

How to create very dark surfaces for applications

December 30, 0020 12:00 AM
Lange, Christian; Shen, T.-C. (Utah State University)
Faculty Advisor: Shen, T.-C. (College of Science, Physics Department)

An ideal black surface should have low reflectance uniformly across the spectrum of electromagnetic radiation. Black paints are not ideal because they have specific reflection peaks and bands. Vertically aligned nanopillars of proper shapes and physical properties are good candidates, but the fabrication and oxidation in air are challenging. Carbon nanotube (CNT) forests could be a cheap alternative but the optical properties are sensitive to the density, length, and alignment of the CNTs in a forest. A model to understand the correlation between the morphology and optical reflectance of CNT forests and strategies to achieve extremely low reflectance in the infrared region will be presented.
overrideBackgroundColorOrImage= overrideTextColor= promoTextAlignment= overrideCardHideSection= overrideCardHideByline= overrideCardHideDescription= overridebuttonBgColor= overrideButtonText= promoTextAlignment=
data-content-type="article"

Isotope Paleothermometry of Belemnites from the Jurassic Sundance Sea of Western North America

December 30, 0020 12:00 AM
Perdue, Perdue; Burke, Joshua; Bylund, Kevin; Stephen, Daniel (Utah Valley University)
Faculty Advisor: Stephen, Daniel (Utah Valley University, Earth Science)

The Sundance Sea covered much of western North America during the Middle to Late Jurassic Period. Deposits from this vast epeiric sea are now widely exposed across the region, including the Stump Formation in northeastern Utah, which consists of sandstones and shales reflecting shallow marine deposition. Well-preserved belemnites (Pachyteuthis densus, Oxfordian Stage, ~156 Ma) collected from this unit preserve stable isotope data (_18O and _13C ) that can be used to better understand the paleoceanography and paleoclimatology of the area, as well as possibly some paleobiologic characteristics such as migration patterns through the life cycle and age at sexual maturity and death. Incremental growth of belemnites created growth bands that record isotopic values through various life stages, thus potentially providing information about the life history traits of these organisms, in addition to seasonal temperature variations. Preliminary results suggest our material is consistent with previous reports from other locations in the region, with paleotemperatures in the 17 to 20° C range. In addition, there is some indication of seasonal variations. However, analyses of more samples and further evaluation of potential diagenetic alteration is necessary before more robust conclusions can be drawn.
overrideBackgroundColorOrImage= overrideTextColor= promoTextAlignment= overrideCardHideSection= overrideCardHideByline= overrideCardHideDescription= overridebuttonBgColor= overrideButtonText= promoTextAlignment=
data-content-type="article"

ProSPr: Protein Structure Prediction via Interatomic Distances

December 30, 0020 12:00 AM
Hedelius, Bryce; Millecam, Todd; Wingate, David; Della Corte, Dennis (Brigham Young University)
Faculty Advisor: Della Corte, Dennis (BYU College of Physical and Mathematical Sciences, Physics); Wingate, David (BYU College of Physical and Mathematical Sciences, Computer Science)

Substantial progress has been made in the past several years towards the accurate prediction of protein tertiary structures from primary sequence, aided greatly by the integration of machine learning. Current success is based on two-stage protocols: first, the training of a deep convolutional neural network (CNN) to predict macromolecular structure restraints, and second, the use of these restraints to construct a folded three-dimensional structure of the target protein. Such a two-stage folding protocol was used by DeepMind in the recent Critical Assessment of Structure Prediction (CASP13), which outperformed all established groups. However, DeepMind has not expressed a plan to publish the code of their AlphaFold protocol. Here we present ProSPr, a network representing the first part of the AlphaFold pipeline for predicting interatomic distances, and demonstrate its abilities in the contact prediction task relative to other state-of-the-art methods. We also investigate and report on the roles of certain input features in prediction quality. ProSPr is made freely available to the scientific community both as source code and a Docker container, which we anticipate will encourage the development of better techniques for assembling protein structures from restraints.
overrideBackgroundColorOrImage= overrideTextColor= promoTextAlignment= overrideCardHideSection= overrideCardHideByline= overrideCardHideDescription= overridebuttonBgColor= overrideButtonText= promoTextAlignment=
data-content-type="article"

Hematite Microtextures And (U--TH)/HE Thermochronometry Of The Hurricane Fault, Southwestern Utah: Evidence For A Paleoearthquake?

December 30, 0020 12:00 AM
Taylor, Madison; Ault, Alexis; Newell, Dennis (Utah State University)
Faculty Advisor: Ault, Alexis (College of Science, Geosciences Department)

Hematite-coated fault surfaces offer the potential to characterize and understand the mechanisms and timing of past deformation in exhumed fault zones. We apply integrated micro- to nanoscale microscopy and geochemistry with hematite (U—Th)/He (He) thermochronometry dates to document hematite textural evolution and timing of fault slip on the seismically-active Hurricane fault in southwestern Utah. Hematite is preserved on this bedrock fault scarp that cuts the Triassic Moenkopi Formation. It occurs in elongate, striated, mm- to cm-scale lenses on the slip surface, and we target this material for thermochronometry. Scanning electron microscopy (SEM) shows hematite within ~100—200 μm of the fault surface comprises rounded hematite particles ~100 nm to 2 μm in diameter that lack grain boundaries. Away from the surface and beneath these nanoparticles are randomly-oriented, ~70—150 nm-thick hematite plates. Plate and rounded, "fused" particle morphologies likely reflect initial hematite crystallization from fluids and deformation, respectively. SEM imaging and energy dispersive X-ray spectroscopy also reveal a featureless, ~3 μm-thick, Al-rich silica film enveloping the hematite nanoparticles at the fault surface, suggesting it is amorphous silica. This layer is exclusively found in contact with deformed hematite, implying association with fault slip. A preliminary mean hematite He thermochronometric date is 375 ± 54 ka (±1σ std. dev.; n = 11). This date is appreciably younger than previously-reported, regional apatite He thermochronometry data. This suggests hematite He data may record hematite formation or thermal resetting from friction-generated heat during fault slip. Ongoing hematite He analyses targeting the distinct textural domains will discriminate between these possibilities, and scanning/transmission electron microscopy will evaluate the crystallinity of the surface silica and hematite nanoparticles. Collectively, these data will allow us to decipher the timing and mechanisms of past deformation of the Hurricane fault and understand analogous relationships in other hematite-bearing fault zones.
overrideBackgroundColorOrImage= overrideTextColor= promoTextAlignment= overrideCardHideSection= overrideCardHideByline= overrideCardHideDescription= overridebuttonBgColor= overrideButtonText= promoTextAlignment=
data-content-type="article"

Machine learning-based auto-segmentation of polystyrene micro-bead phantoms for cellular confluence measurements

December 30, 0020 12:00 AM
Johnston, Olivia; Preston, Kolten; Hoyt, Tyson; Owens May, April; Bentley, Kaden; Gunnerson, Shane; Johnson, Alex; Parr, McKenna; Reeves, Duncan; Parry, Whitney; Rawson, Clayton; Hart, Vern (Utah Valley University)
Faculty Advisor: Hart, Vern (Science, Physics)

Recent efforts in early cancer detection require identifying the disease at a cellular level, by distinguishing cancer cells from healthy cells at low concentrations (<0.1%). Cancerous cells typically have larger nuclei than healthy cells and can be distinguished using a variety of optical techniques, however, this process is complicated when the fraction of malignant cells is extremely low. As such, high-precision detection requires highly accurate measurements of cell confluence and the ratio of healthy to cancerous cells. Techniques such as machine learning and Fourier analysis have been used to auto-segment cells in microscopy images. However, these techniques often lack a ground truth standard to validate the segmentation results. We present a methodology for producing agarose tissue phantoms embedded with mixed polystyrene microbeads of varying diameters. These phantoms were imaged using a 2D translational stage and a microscope camera, collecting hundreds of images that were input to an artificially intelligent neural network for training and classification. The ability of this binary classifier to identify and quantify micro-beads in the images was assessed by comparing the automated results to manual counts, producing accuracies above 90% for bead sizes ranging from 50-200 microns. Auto-segmentation results will also be presented for mixtures of micro-beads and U-87 (glioblastoma) cancer cells, which differ in shape and morphology from the beads but whose boundaries are significantly less defined. The ability to accurately segment two different cell types in vitro would be highly beneficial for future cellular imaging studies.
overrideBackgroundColorOrImage= overrideTextColor= promoTextAlignment= overrideCardHideSection= overrideCardHideByline= overrideCardHideDescription= overridebuttonBgColor= overrideButtonText= promoTextAlignment=
data-content-type="article"

Raman Imaging of Single Cellular Metabolism

December 30, 0020 12:00 AM
Ballantyne, Eliza; Buck, Lance; Cox, Zach; Adams, Brittney; Trappett, Matthew; Shipp, Dustin (Utah Valley University)
Faculty Advisor: Shipp, Dustin (Utah Valley University, Physics)

Understanding how cells metabolize the chemicals around them on a single cellular level is paramount to analyzing the effectiveness of pharmaceutical drugs. Discrepancies between pharmaceutical drug results during lab testing versus in actual patients are an expensive and time consuming obstacle. These differences could be alleviated using Raman spectroscopy by testing based on an overall chemical map instead of individual factors. Raman spectroscopy has great potential to aid this process because of its ability to present a chemical fingerprint of an entire cell without interfering with the cell's natural responses to chemical changes.

Using Raman spectroscopy to develop an additional method for observing cell metabolism will enhance understanding of cell function and advance studies focused on the results of chemical effects on cells in vivo. As a step toward this goal, this project is currently focused on obtaining time-lapsed Raman images of glucose uptake. Using glucose metabolism, we are able to model a system for more complicated pharmaceuticals. This study has explored methods for collecting Raman spectra in vivo, balancing time-dependent data collection with the time-constraint of working with living and changing cells. Raman spectra describing the chemical makeup of glioblastoma cancer cells as they metabolize glucose were analyzed and used to create time-lapsed images during uptake.

Our process presents a new lens for understanding cell metabolism and a potential tool for analyzing an additive's effect on a single-cellular level. We developed a platform and method for measuring chemical changes in cells over time. Next stages for this research include observing how metabolism varies depending on what additives are used for uptake and quantifying metabolic differences between types of cells.
overrideBackgroundColorOrImage= overrideTextColor= promoTextAlignment= overrideCardHideSection= overrideCardHideByline= overrideCardHideDescription= overridebuttonBgColor= overrideButtonText= promoTextAlignment=
data-content-type="article"

The Role of Auxin in Growth Promotion of Rice by Rhizobium sp. IRBG74

December 30, 0020 12:00 AM
Watts, Austin; Crook, M. B. (Weber State University)
Faculty Advisor: Crook, Matthew (College of Science, Microbiology)

Auxin is a known growth hormone for plants and many plant-beneficial bacteria are known to produce it. It has previously been shown that Rhizobium sp. IRBG74 promotes growth of rice, but the mechanism is unknown. We hypothesized that Rhizobium sp. IRBG74 accomplishes this by production and secretion of auxin. To address this hypothesis, we first performed a bioinformatic analysis to identify putative auxin biosynthesis genes in the genome of IRBG74 using BLAST with known auxin biosynthesis genes as queries. To test whether the genes identified by BLAST play a role in promoting growth of rice, we are making in-frame deletions of each one. Briefly, we use overlap-extension PCR to create and stitch together deletion fragments and then we clone these fragments into the sacB deletion vector pJQ200SK. The target genes are then disrupted by homologous recombination and then deintegration is selected for with sucrose. After this is done we test the mutant to verify the deletion occurred by PCR. Once the deletion mutants are verified, each one is tested on rice seedlings and compared to wild-type IRBG74. Rice growth is quantified by shoot dry weight and by root branching, as measured using ImageJ.
overrideBackgroundColorOrImage= overrideTextColor= promoTextAlignment= overrideCardHideSection= overrideCardHideByline= overrideCardHideDescription= overridebuttonBgColor= overrideButtonText= promoTextAlignment=
data-content-type="article"

Four Steps into One: Using Nitrogen to Simplify C--C Bond Formation

December 30, 0020 12:00 AM
Timothy P. McFadden; Chideraa I. Nwachukwu; Andrew G. Roberts (University of Utah)
Faculty Advisor: Roberts, Andrew (College of Science, Chemistry)

Carbon—nitrogen (C—N) bonds are easy to form relative to carbon—carbon (C—C) bonds due to reliable and predictable reactions. Previous methods to form a C—C bond from a C—N bond require four independent chemical reactions. We report a new method to achieve the desired transformation in one flask. Optimization of this method is ongoing; ultimately, we hope to define a new strategy for accessing future C—C bonds with C—N bonds.
overrideBackgroundColorOrImage= overrideTextColor= promoTextAlignment= overrideCardHideSection= overrideCardHideByline= overrideCardHideDescription= overridebuttonBgColor= overrideButtonText= promoTextAlignment=
data-content-type="article"

Measuring the Luminosity Function of Galactic Foreground Stars

December 30, 0020 12:00 AM
Morris, Nathaniel; Jensen, Joseph (Utah Valley University)
Faculty Advisor: Jensen, Joseph (Utah Valley University, Physics)

We measured the brightness of Milky Way stars to determine if they have an effect on extragalactic surface brightness fluctuation (SBF) distance measurements. When SBF measurements are made on background galaxies near the Galactic plane, we observe a large number of stars in the foreground. With most SBF measurements, we can mask out the brightest stars, and make measure SBF with a relatively uncontaminated background. This becomes more difficult with galaxies that are close to the Galactic plane because there are many more foreground stars, and undetected fainter stars that escape the masking process can bias the distance measurement. My research will determine if these unmasked foreground stars have a significant effect on the SBF measurements on these galaxies near the Galactic plane.
overrideBackgroundColorOrImage= overrideTextColor= promoTextAlignment= overrideCardHideSection= overrideCardHideByline= overrideCardHideDescription= overridebuttonBgColor= overrideButtonText= promoTextAlignment=
data-content-type="article"

Sustainable Synthesis of Porphyrin Paddle-wheel Frameworks through Mechanochemistry

December 30, 0020 12:00 AM
Stokes, Jessica; Burnett, Brandon (Weber State University)
Faculty Advisor: Burnett, Brandon (Weber State University, Chemistry)

Mechanochemistry has become a growing avenue for materials synthesis, as it typically requires little to no solvent, and often creates different crystalline phases compared to traditional synthetic methods. Liquid-assisted grinding, a form of mechanochemistry, was used to synthesize porphyrin paddle-wheel frameworks (PPFs). Three different crystalline phases were targeted in order to test the viability of this method on this class of materials and observe any difference compared to traditional solvothermal synthesis. X-ray diffraction was used to confirm the formation of each PPF phase. We found that mechanochemistry was indeed successful to sustainably synthesize PPFs. Additionally, we observed a significant difference in phase preference between the traditional solvothermal synthesis and liquid assisted grinding methods.
overrideBackgroundColorOrImage= overrideTextColor= promoTextAlignment= overrideCardHideSection= overrideCardHideByline= overrideCardHideDescription= overridebuttonBgColor= overrideButtonText= promoTextAlignment=
data-content-type="article"

Interference Patter Structured Imaging Utilizing Micromirror Display

December 30, 0020 12:00 AM
Gray, Daniel; Durfee, Dallin (Utah Valley University)
Faculty Advisor: Durfee, Dallin (College of Science, Physics)

IPSII is a fully lensless single pixel imaging technique using mechanically scanned interference patterns. The method uses only simple, flat optics; no lenses, curved mirrors, or acousto-optics are used in pattern formation or detection. The resolution is limited by the numerical aperture of the angular access to the object, with a fundamental limit of a quarter wavelength, which is twice the Abbe limit. ISPII also has no fundamental limit on working distance as well as a depth of field and field of view independent of resolution. Normally, an interference pattern is projected across the target object to obtain information. Currently this uses interfering plane waves which produce sinusoidal interference patterns allowing us to measure in the Fourier basis. Mechanically scanning the laser angles to change the interference pattern is slow. Image times usually require hours or days as regular scan times produce approximately one pixel per second. We intend to improve the time to scan an object by utilizing a micromirror array to modify the interference patterns, such that multiple measurements can be made at one angle. Updating the micromirror array is much faster than changing the angles at which the target is scanned. This will greatly reduce the time required as we will not need to measure with as many angles to obtain an image. With the micromirror array we will be able to generate a wider range of basis functions. In addition to increasing the speed this may allow us to better utilize compressive sensing techniques where an n-pixel image may be obtained by scanning only a fraction of n-points on the object.
overrideBackgroundColorOrImage= overrideTextColor= promoTextAlignment= overrideCardHideSection= overrideCardHideByline= overrideCardHideDescription= overridebuttonBgColor= overrideButtonText= promoTextAlignment=