2020 Abstracts
        data-content-type="article"
    
    
    The Effects of High Glucose and Pterostilbene on the Oxidant Status of the Red Blood Cell
Garcia, Jessica; Hanks, Hana; Kist, Taylor; Suman, Tanner (Dixie State University)
Faculty Advisor: Meyer, Jennifer (Dixie State University, Physical Sciences)
Antioxidants in the human body regulate reactive oxygen species (ROS). If ROS are increased within the body it can potentially lead to oxidative stress and cell injury. Glucose-6-phosphate dehydrogenase (G6PD) is an enzyme found in the pentose phosphate pathway that assists in reducing the amount of ROS in the bloodstream. Increased concentrations of glucose, commonly found in patients that suffer from type 1 and type 2 diabetes mellitus have been shown to impair G6PD activity, thereby causing damage to erythrocytes (RBCs)2. It has been shown that hyperglycemic conditions decrease the activity of G6PD in RBCs, which is improved by the addition of pterostilbene, a potent antioxidant1. Glutathione, another antioxidant found in the pentose phosphate pathway, is decreased in RBCs within hyperglycemic conditions. The addition of pterostilbene is predicted to increase levels of glutathione under high glucose conditions.
References:
1. Richins, M., & Meyer, J. (2018). Pterostilbene Ameliorates Lipid Peroxidation and Increases Glucose-6-Phosphate Dehydrogenase Activity in Erythrocytes Subjected to High Glucose Conditions. American Heart Association Journals, 138.
2. Zang, Z., Apse, K., Pang, J., & Stanton, R. C. (2000). High glucose inhibits glucose-6-phosphate dehydrogenase via cAMP in aortic endothelial cells. The Journal of Biological Chemistry, 275(51), 40042-40047. Doi: 10.1074/jbc.M007505200
        
        
            
    
    
         
    
        
        
        
        
        
        
        
    Faculty Advisor: Meyer, Jennifer (Dixie State University, Physical Sciences)
Antioxidants in the human body regulate reactive oxygen species (ROS). If ROS are increased within the body it can potentially lead to oxidative stress and cell injury. Glucose-6-phosphate dehydrogenase (G6PD) is an enzyme found in the pentose phosphate pathway that assists in reducing the amount of ROS in the bloodstream. Increased concentrations of glucose, commonly found in patients that suffer from type 1 and type 2 diabetes mellitus have been shown to impair G6PD activity, thereby causing damage to erythrocytes (RBCs)2. It has been shown that hyperglycemic conditions decrease the activity of G6PD in RBCs, which is improved by the addition of pterostilbene, a potent antioxidant1. Glutathione, another antioxidant found in the pentose phosphate pathway, is decreased in RBCs within hyperglycemic conditions. The addition of pterostilbene is predicted to increase levels of glutathione under high glucose conditions.
References:
1. Richins, M., & Meyer, J. (2018). Pterostilbene Ameliorates Lipid Peroxidation and Increases Glucose-6-Phosphate Dehydrogenase Activity in Erythrocytes Subjected to High Glucose Conditions. American Heart Association Journals, 138.
2. Zang, Z., Apse, K., Pang, J., & Stanton, R. C. (2000). High glucose inhibits glucose-6-phosphate dehydrogenase via cAMP in aortic endothelial cells. The Journal of Biological Chemistry, 275(51), 40042-40047. Doi: 10.1074/jbc.M007505200
    overrideBackgroundColorOrImage=
    overrideTextColor=
    promoTextAlignment=
    overrideCardHideSection=
    overrideCardHideByline=
    overrideCardHideDescription=
    overridebuttonBgColor=
    overrideButtonText=
    promoTextAlignment=
        data-content-type="article"
    
    
    The Synthesis and Characterization of Liposomes for Future Delivery of Gentamicin to Biofilms
Buehler, Nate; Hoehn, Nick; Stokes, Britt; Tyler, Areiann; Dr. Kopp, Olga (Utah Valley University)
Faculty Advisor: Kopp, Dr.Olga (Utah Valley University, Biology)
Bacterial infections are difficult to treat with antibiotics because of the protective nature of the biofilms produced by bacteria. Biofilms are a common cause of nosocomial and medical devices-related infections. The current treatments for biofilms include mechanically removing the biofilm itself or by treatments with antibiotics. Biofilms usually become resistant to drugs because of the higher frequency of mutation and horizontal gene transfer compared to planktonic cells. Liposomes are promising delivery systems because of their small size, surface characteristics and ability to encapsulate drugs and other molecules. Liposomal particles can slowly release the encapsulated drugs, increasing their distribution in targeted areas. Studies have shown that the fusion between liposomes and bacterial cells enhances the penetration of antibiotics. The purpose of this study is to form liposomes to encapsulate Gentamicin and characterize the formation and characteristics of these liposomes. Liposomes will be formed using the thin film hydration method and characterized using a scanning electron microscope. This project will present an analysis of the use of different ratios of phospholipids and cholesterol to evaluate the stability and ability to carry Gentamicin.
        
        
            
    
    
         
    
        
        
        
        
        
        
        
    Faculty Advisor: Kopp, Dr.Olga (Utah Valley University, Biology)
Bacterial infections are difficult to treat with antibiotics because of the protective nature of the biofilms produced by bacteria. Biofilms are a common cause of nosocomial and medical devices-related infections. The current treatments for biofilms include mechanically removing the biofilm itself or by treatments with antibiotics. Biofilms usually become resistant to drugs because of the higher frequency of mutation and horizontal gene transfer compared to planktonic cells. Liposomes are promising delivery systems because of their small size, surface characteristics and ability to encapsulate drugs and other molecules. Liposomal particles can slowly release the encapsulated drugs, increasing their distribution in targeted areas. Studies have shown that the fusion between liposomes and bacterial cells enhances the penetration of antibiotics. The purpose of this study is to form liposomes to encapsulate Gentamicin and characterize the formation and characteristics of these liposomes. Liposomes will be formed using the thin film hydration method and characterized using a scanning electron microscope. This project will present an analysis of the use of different ratios of phospholipids and cholesterol to evaluate the stability and ability to carry Gentamicin.
    overrideBackgroundColorOrImage=
    overrideTextColor=
    promoTextAlignment=
    overrideCardHideSection=
    overrideCardHideByline=
    overrideCardHideDescription=
    overridebuttonBgColor=
    overrideButtonText=
    promoTextAlignment=
        data-content-type="article"
    
    
    Supplemental treatment options for diabetes: how DHE induces Nr4a1 expression and subsequent β-cell function
Brown, Nathan; Herring, Jacob; Tessem, Jeffery (Brigham Young University)
Faculty Advisor: Tessem, Jeffery (Brigham young University; Nutrition, Dietetics, and Food Science)
Diabetes is a global epidemic affecting millions of people. The total estimated cost of diabetes in the U.S. during 2017 was 327 billion dollars. Diabetes is characterized by the loss of pancreatic β-cell function which is caused by an autoimmune disorder in Type 1 diabetes or insulin resistance and β-cell exhaustion in Type 2 (T2D) diabetes.
It is shown that β-cell mitochondrial respiration is dependent on the nuclear receptor Nr4a1. Respiration rates of cells lacking Nr4a1 in the presence of 16 mM glucose resulted in a significant decrease in glucose-stimulated insulin secretion by impeding the production of ATP. It was also found that knockdown of Nr4a1 results in decreased expression of mitochondrial dehydrogenase subunits Idh3g and Sdhb. Thus, the orphan nuclear receptor Nr4a1 is critical for β-cell mitochondrial function and insulin secretion.
In subsequent studies it was shown that dihydroergotamine (DHE) induces Nr4a1 expression via recruitment of the super elongation complex to enable elongation of Nr4a1 promoter paused RNA polymerase II. While these experiments have been shown in cancer cells, I hypothesize that DHE will up-regulate Nr4a1 and other downstream targets. To test this I will use an in-vitro model to culture INS-1 832/3 rat insulinoma cell lines as a useful model for insulin secretion regulation and pancreatic islet beta-cell function studies. This study will shed further light on the regulation of the Nr4a1 nuclear receptor in pancreatic β-cells.
        
        
            
    
    
         
    
        
        
        
        
        
        
        
    Faculty Advisor: Tessem, Jeffery (Brigham young University; Nutrition, Dietetics, and Food Science)
Diabetes is a global epidemic affecting millions of people. The total estimated cost of diabetes in the U.S. during 2017 was 327 billion dollars. Diabetes is characterized by the loss of pancreatic β-cell function which is caused by an autoimmune disorder in Type 1 diabetes or insulin resistance and β-cell exhaustion in Type 2 (T2D) diabetes.
It is shown that β-cell mitochondrial respiration is dependent on the nuclear receptor Nr4a1. Respiration rates of cells lacking Nr4a1 in the presence of 16 mM glucose resulted in a significant decrease in glucose-stimulated insulin secretion by impeding the production of ATP. It was also found that knockdown of Nr4a1 results in decreased expression of mitochondrial dehydrogenase subunits Idh3g and Sdhb. Thus, the orphan nuclear receptor Nr4a1 is critical for β-cell mitochondrial function and insulin secretion.
In subsequent studies it was shown that dihydroergotamine (DHE) induces Nr4a1 expression via recruitment of the super elongation complex to enable elongation of Nr4a1 promoter paused RNA polymerase II. While these experiments have been shown in cancer cells, I hypothesize that DHE will up-regulate Nr4a1 and other downstream targets. To test this I will use an in-vitro model to culture INS-1 832/3 rat insulinoma cell lines as a useful model for insulin secretion regulation and pancreatic islet beta-cell function studies. This study will shed further light on the regulation of the Nr4a1 nuclear receptor in pancreatic β-cells.
    overrideBackgroundColorOrImage=
    overrideTextColor=
    promoTextAlignment=
    overrideCardHideSection=
    overrideCardHideByline=
    overrideCardHideDescription=
    overridebuttonBgColor=
    overrideButtonText=
    promoTextAlignment=
        data-content-type="article"
    
    
    The Influence of Staphylococcus Aureus Biofilm-associated Gene Mutations on Biofilm Composition
Berges, Bradford; Wienclaw, Trevor; Ball, Ashley; Richmond, Bradley (Brigham Young University)
Faculty Advisor: Berges, Bradford (Life Sciences, Microbiology and Molecular Biology)
Staphylococcus Aureus (SA) biofilms are serious impediments to immune defenses and antibiotics, making them a major factor in SA infection. Such infections can be highly lethal even using current treatments, representing a major challenge to the healthcare industry. Previous genetic screenings of SA have revealed several genes that may be associated with biofilm formation. While the roles of many of these genes have been studied, little research has been done on how mutations of these genes impact biofilm composition. As several therapeutic options for treating mature SA biofilms require understanding of biofilm composition, a better understanding of how genes influence that composition is critical to improving current treatments and developing new ones.
In this project, we will study the biofilm phenotypes of SA with mutations in common biofilm-associated genes. By comparing the biofilm mass and composition of the wild-type (wt) Je2 strain to strains containing mutated biofilm-associated genes, we hope to uncover the impact that each mutation has on the composition of the biofilm matrix. We will utilize crystal violet assays as well as extracellular DNA and protein quantifying procedures to determine biofilm composition, after which meaningful comparisons can be made between mutant biofilms and wt biofilms.
        
        
            
    
    
         
    
        
        
        
        
        
        
        
    Faculty Advisor: Berges, Bradford (Life Sciences, Microbiology and Molecular Biology)
Staphylococcus Aureus (SA) biofilms are serious impediments to immune defenses and antibiotics, making them a major factor in SA infection. Such infections can be highly lethal even using current treatments, representing a major challenge to the healthcare industry. Previous genetic screenings of SA have revealed several genes that may be associated with biofilm formation. While the roles of many of these genes have been studied, little research has been done on how mutations of these genes impact biofilm composition. As several therapeutic options for treating mature SA biofilms require understanding of biofilm composition, a better understanding of how genes influence that composition is critical to improving current treatments and developing new ones.
In this project, we will study the biofilm phenotypes of SA with mutations in common biofilm-associated genes. By comparing the biofilm mass and composition of the wild-type (wt) Je2 strain to strains containing mutated biofilm-associated genes, we hope to uncover the impact that each mutation has on the composition of the biofilm matrix. We will utilize crystal violet assays as well as extracellular DNA and protein quantifying procedures to determine biofilm composition, after which meaningful comparisons can be made between mutant biofilms and wt biofilms.
    overrideBackgroundColorOrImage=
    overrideTextColor=
    promoTextAlignment=
    overrideCardHideSection=
    overrideCardHideByline=
    overrideCardHideDescription=
    overridebuttonBgColor=
    overrideButtonText=
    promoTextAlignment=
        data-content-type="article"
    
    
    Census and Distribution Analysis of Alouatta palliata (mantled howler monkey) in La Selva Biological Station
Smith, Mick; Desdames, Chloe (University of Utah)
Faculty Advisor: Seaboch, Melissa (University of Utah, Anthropology)
Census and sampling work are important because they provide critical information on population size, distribution, and habitat preference — all important factors in conservation. La Selva Biological station is located on the north eastern side of Costa Rica and is a protected biological reserve. It is home to three species of primates including Alouatta palliata, commonly known as the mantled howler monkey. It is comprised of primary forest that has been undisturbed by human forces and secondary forest that is regenerating from past disturbances, such as deforestation. Past research conducted on howler monkeys shows they prefer primary forest over secondary because primary forests have higher species richness and a wider range of trees which provides food for howler monkey's selective diet. I predict that the majority of A. palliata in Costa Rica will be located in primary forest because it offers more resources. I censused 11 established trails at La Selva (two trails in primary forest, seven trails in secondary forest, and two trails crossing both forest types). For each howler monkey encountered, I recorded the location, forest type, and group size. I identified four different groups of A. palliata with group size ranging between 6-10 individuals. One group was located in primary forest and three groups in secondary forest; thus, my hypothesis that A. palliata would prefer primary forests was not supported. Anecdotally, A. palliata were observed more frequently around rivers or streams. This could indicate that rather than being concerned with primary versus secondary forest, they prefer riparian habitats found along the banks of rivers or other actively moving sources of water. A study conducted by Stoner found howler monkeys in riparian habits supporting this hypothesis. This type of research continues to provide critical information for understanding primate's habitats which helps with conservation of species.
        
        
            
    
    
         
    
        
        
        
        
        
        
        
    Faculty Advisor: Seaboch, Melissa (University of Utah, Anthropology)
Census and sampling work are important because they provide critical information on population size, distribution, and habitat preference — all important factors in conservation. La Selva Biological station is located on the north eastern side of Costa Rica and is a protected biological reserve. It is home to three species of primates including Alouatta palliata, commonly known as the mantled howler monkey. It is comprised of primary forest that has been undisturbed by human forces and secondary forest that is regenerating from past disturbances, such as deforestation. Past research conducted on howler monkeys shows they prefer primary forest over secondary because primary forests have higher species richness and a wider range of trees which provides food for howler monkey's selective diet. I predict that the majority of A. palliata in Costa Rica will be located in primary forest because it offers more resources. I censused 11 established trails at La Selva (two trails in primary forest, seven trails in secondary forest, and two trails crossing both forest types). For each howler monkey encountered, I recorded the location, forest type, and group size. I identified four different groups of A. palliata with group size ranging between 6-10 individuals. One group was located in primary forest and three groups in secondary forest; thus, my hypothesis that A. palliata would prefer primary forests was not supported. Anecdotally, A. palliata were observed more frequently around rivers or streams. This could indicate that rather than being concerned with primary versus secondary forest, they prefer riparian habitats found along the banks of rivers or other actively moving sources of water. A study conducted by Stoner found howler monkeys in riparian habits supporting this hypothesis. This type of research continues to provide critical information for understanding primate's habitats which helps with conservation of species.
    overrideBackgroundColorOrImage=
    overrideTextColor=
    promoTextAlignment=
    overrideCardHideSection=
    overrideCardHideByline=
    overrideCardHideDescription=
    overridebuttonBgColor=
    overrideButtonText=
    promoTextAlignment=
        data-content-type="article"
    
    
    Cell Adhesion and Morphology in Relation to Neural Tube Defects
Lin, Jade; Park, Yeram; Ross, Micah; Stark, Michael; Hansen, Marc (Brigham Young University)
Faculty Advisor: Stark, Michael (Brigham Young University, Physiology and Developmental Biology); Hansen, Marc (Brigham Young University, Physiology and Developmental Biology)
Neural Tube Defects (NTDs) such as spina bifida and anencephaly are due to incomplete closure of neural tubes in developing embryos. While the etiology is still unknown, environmental and genetic factors, toxicants, and maternal health are implicated as potential causes. Previous research shows that NTDs are associated with increased levels of ceramide (C2) and possible exposure to fumonisin (FB1), and valproic acid (VPA). We hypothesize that these molecules may interfere with cell-to-cell interactions which are important for neural tube formation. To investigate the potential mechanisms by which these toxicants can induce NTDs, I will use a well-characterized MDCK cell model treated with C2, FB1, and VPA to assess their impact on cell adhesion.
        
        
            
    
    
         
    
        
        
        
        
        
        
        
    Faculty Advisor: Stark, Michael (Brigham Young University, Physiology and Developmental Biology); Hansen, Marc (Brigham Young University, Physiology and Developmental Biology)
Neural Tube Defects (NTDs) such as spina bifida and anencephaly are due to incomplete closure of neural tubes in developing embryos. While the etiology is still unknown, environmental and genetic factors, toxicants, and maternal health are implicated as potential causes. Previous research shows that NTDs are associated with increased levels of ceramide (C2) and possible exposure to fumonisin (FB1), and valproic acid (VPA). We hypothesize that these molecules may interfere with cell-to-cell interactions which are important for neural tube formation. To investigate the potential mechanisms by which these toxicants can induce NTDs, I will use a well-characterized MDCK cell model treated with C2, FB1, and VPA to assess their impact on cell adhesion.
    overrideBackgroundColorOrImage=
    overrideTextColor=
    promoTextAlignment=
    overrideCardHideSection=
    overrideCardHideByline=
    overrideCardHideDescription=
    overridebuttonBgColor=
    overrideButtonText=
    promoTextAlignment=
        data-content-type="article"
    
    
    Cancer Data Exploration for the Public
Payne, Samuel; Paquette, Teancum; Lindgren, Caleb (Brigham Young University)
Faculty Advisor: Payne, Samuel (Brigham Young University, Life Sciences)
The National Cancer Institute’s Clinical Proteomic Tumor Analysis Consortium (CPTAC) generates comprehensive proteogenomic data for cancer cohorts. Our goal is to bring CPTAC data to researchers and the general public. A major difficulty in accomplishing this is the large amount of variability in the programming capabilities in the public. As a solution, we created a set of interactive tutorials that instructs users on exploring CPTAC data in a way that even novice programmers can understand. However, these tutorials still require software installation, which can be complicated. In order to empower more people to confidently use, access and analyze cancer data, we are making our tutorials accessible without any installation. We plan to do this by hosting the tutorials directly using a tool called Binder. In the end this project will not only improve the quality of user experience with CPTAC, but also improve the quality of their experience accessing a vast amount of cancer data.
        
        
            
    
    
         
    
        
        
        
        
        
        
        
    Faculty Advisor: Payne, Samuel (Brigham Young University, Life Sciences)
The National Cancer Institute’s Clinical Proteomic Tumor Analysis Consortium (CPTAC) generates comprehensive proteogenomic data for cancer cohorts. Our goal is to bring CPTAC data to researchers and the general public. A major difficulty in accomplishing this is the large amount of variability in the programming capabilities in the public. As a solution, we created a set of interactive tutorials that instructs users on exploring CPTAC data in a way that even novice programmers can understand. However, these tutorials still require software installation, which can be complicated. In order to empower more people to confidently use, access and analyze cancer data, we are making our tutorials accessible without any installation. We plan to do this by hosting the tutorials directly using a tool called Binder. In the end this project will not only improve the quality of user experience with CPTAC, but also improve the quality of their experience accessing a vast amount of cancer data.
    overrideBackgroundColorOrImage=
    overrideTextColor=
    promoTextAlignment=
    overrideCardHideSection=
    overrideCardHideByline=
    overrideCardHideDescription=
    overridebuttonBgColor=
    overrideButtonText=
    promoTextAlignment=
        data-content-type="article"
    
    
    Anti-Tumor Activity of Chalcone Derivatives
Allen, Brian; Covey, Tracy; Davies, Don; Eccles, Nick; Farnsworth, Brian; Ferguson, Parker; Hart, Sierra; Lowder, Jordan (Weber State University)
Faculty Advisor: Davies, Don (Weber State University, Chemistry and Biochemistry); Covey, Tracy (Weber State University, Chemistry and Biochemsitry)
Chalcones refer to biological molecules with the structure trans 1,3-diphenylprop-2-en-1-one. Biological chalcones and chalcone derivatives display anti-tumor, anti-fungal, anti-inflammatory and antibiotic properties. To understand the role of the chalcone structure in tumor cessation, derivatives to the original chalcone were synthesized using aldol condensation reactions. HeLa and HEK-293 cells were treated with the synthesized chalcone and an LD50, or the concentration of chalcone required to kill half of the cells, was calculated. The LD50 was then used to determine the efficiency of the chalcone derivative. Correlations between the structure and activity suggest that a Michael reaction occurs at the cell and indicate that that an aromatic ring at C3 is likely necessary. Further research will help determine the structures of more cytotoxic compounds.
        
        
            
    
    
         
    
        
        
        
        
        
        
        
    Faculty Advisor: Davies, Don (Weber State University, Chemistry and Biochemistry); Covey, Tracy (Weber State University, Chemistry and Biochemsitry)
Chalcones refer to biological molecules with the structure trans 1,3-diphenylprop-2-en-1-one. Biological chalcones and chalcone derivatives display anti-tumor, anti-fungal, anti-inflammatory and antibiotic properties. To understand the role of the chalcone structure in tumor cessation, derivatives to the original chalcone were synthesized using aldol condensation reactions. HeLa and HEK-293 cells were treated with the synthesized chalcone and an LD50, or the concentration of chalcone required to kill half of the cells, was calculated. The LD50 was then used to determine the efficiency of the chalcone derivative. Correlations between the structure and activity suggest that a Michael reaction occurs at the cell and indicate that that an aromatic ring at C3 is likely necessary. Further research will help determine the structures of more cytotoxic compounds.
    overrideBackgroundColorOrImage=
    overrideTextColor=
    promoTextAlignment=
    overrideCardHideSection=
    overrideCardHideByline=
    overrideCardHideDescription=
    overridebuttonBgColor=
    overrideButtonText=
    promoTextAlignment=
        data-content-type="article"
    
    
    Antimicrobial Activity of Artemisia tridentata
Wasden, Kayla; Suisse, David; Kaundal, Amita (faculty mentor) (Utah State University)
Faculty Advisor: Kaundal, Amita (College of Agriculture and Applied Sciences; Plants, Soils, and Climate Department)
Many plants secrete substances to create a more favorable environment, including chemicals that kill pathogenic microbes or competing plants. Artemisia tridentata, also known as "Big Sagebrush," is prevalent in the Rocky Mountain region of the United States and is known to have antimicrobial capabilities. We will study the potential antimicrobial activity of Artemisia tridentata.
Studies report that chemicals released by the leaves and branches of A. tridentata affect bacteria native to deer rumen. Another study showed that 27 actinomycetes (anaerobic bacteria that form colonies) strains found in the rhizosphere of A. tridentata demonstrated antibacterial activities when tested on E. coli, Bacillus subtilis and Staphylococcus aureus. Native Americans traditionally used A. tridentata to relieve stomach pain, colds, coughs, sore eyes, snake bites and as an insect repellent. Researchers found several compounds, including flavonoids, that can affect antimicrobial activity. Articles regarding antimicrobial activities in A. tridentata were published between 1967 and 2004. With the chronological gaps and considering the progress that biological and molecular technology has made in recent years, knowledge of the chemicals released by A. tridentata lies largely untapped. In this study, we will investigate the antimicrobial activities of the leaves, stem, roots, and flowers of A. tridentata initially by the agar well diffusion method and followed by validating with the agar disk diffusion method. We will check the antimicrobial activity of the extract from different plant parts of A. tridentata on common bacteria such as E. coli, Bacillus subtilis, and some Pseudomonas spp. of plant pathogens.
The knowledge obtained from this research will further help in the identification and characterization of the secondary metabolites or chemicals involved in antimicrobial activity of sagebrush. Medicinal plants provide a healthy, natural alternative to conventional medication, and may lead to new insights on antibiotics and pharmaceuticals. Besides, Artemisia tridentata is a plant native to Utah and Idaho. It grows everywhere in the surrounding area, making it inexpensive (free) to produce.
        
        
            
    
    
         
    
        
        
        
        
        
        
        
    Faculty Advisor: Kaundal, Amita (College of Agriculture and Applied Sciences; Plants, Soils, and Climate Department)
Many plants secrete substances to create a more favorable environment, including chemicals that kill pathogenic microbes or competing plants. Artemisia tridentata, also known as "Big Sagebrush," is prevalent in the Rocky Mountain region of the United States and is known to have antimicrobial capabilities. We will study the potential antimicrobial activity of Artemisia tridentata.
Studies report that chemicals released by the leaves and branches of A. tridentata affect bacteria native to deer rumen. Another study showed that 27 actinomycetes (anaerobic bacteria that form colonies) strains found in the rhizosphere of A. tridentata demonstrated antibacterial activities when tested on E. coli, Bacillus subtilis and Staphylococcus aureus. Native Americans traditionally used A. tridentata to relieve stomach pain, colds, coughs, sore eyes, snake bites and as an insect repellent. Researchers found several compounds, including flavonoids, that can affect antimicrobial activity. Articles regarding antimicrobial activities in A. tridentata were published between 1967 and 2004. With the chronological gaps and considering the progress that biological and molecular technology has made in recent years, knowledge of the chemicals released by A. tridentata lies largely untapped. In this study, we will investigate the antimicrobial activities of the leaves, stem, roots, and flowers of A. tridentata initially by the agar well diffusion method and followed by validating with the agar disk diffusion method. We will check the antimicrobial activity of the extract from different plant parts of A. tridentata on common bacteria such as E. coli, Bacillus subtilis, and some Pseudomonas spp. of plant pathogens.
The knowledge obtained from this research will further help in the identification and characterization of the secondary metabolites or chemicals involved in antimicrobial activity of sagebrush. Medicinal plants provide a healthy, natural alternative to conventional medication, and may lead to new insights on antibiotics and pharmaceuticals. Besides, Artemisia tridentata is a plant native to Utah and Idaho. It grows everywhere in the surrounding area, making it inexpensive (free) to produce.
    overrideBackgroundColorOrImage=
    overrideTextColor=
    promoTextAlignment=
    overrideCardHideSection=
    overrideCardHideByline=
    overrideCardHideDescription=
    overridebuttonBgColor=
    overrideButtonText=
    promoTextAlignment=
        data-content-type="article"
    
    
    CD5 knockout mice display reduced ethanol consumption and resistance to ethanol induced sedation
Baptista, Gabriela; Payne, Andrew; Obray, J Daniel; Yorgason, Jordan; Weber, K Scott; Steffensen, Scott (Brigham Young University)
Faculty Advisor: Steffensen, Scott (Family, Home, and Social Sciences, Psychology)
Cluster of differentiation 5 (CD5) is expressed in both T and B cells. CD5 has been found to display an altered expression profile following chronic ethanol use and during ethanol withdrawal. Specifically, the number of CD5+ B cells is reduced during withdrawal while the number of T cells is increased. Given the apparent sensitivity of these cells to ethanol and recent research suggesting that some ethanol effects are accounted for by neuroimmune interactions we assessed drinking behavior and ethanol induced sedation in CD5 knockout (KO) mice. We found that CD5 KO mice display decreased ethanol consumption as compared with wild-type controls and that ethanol consumption does not increase with repeated exposure in CD5 KO mice. Additionally, CD5 KO mice displayed considerable resistance to the sedating effects of ethanol. Further studies are underway to assess whether there are baseline differences in dopamine dynamics within the mesolimbic pathway between CD5 KO mice and wild-type controls as well as to whether neurons in the mesolimbic pathway differ in their response to ethanol in CD5 KO mice.
        
        
            
    
    
         
    
        
        
        
        
        
        
        
    Faculty Advisor: Steffensen, Scott (Family, Home, and Social Sciences, Psychology)
Cluster of differentiation 5 (CD5) is expressed in both T and B cells. CD5 has been found to display an altered expression profile following chronic ethanol use and during ethanol withdrawal. Specifically, the number of CD5+ B cells is reduced during withdrawal while the number of T cells is increased. Given the apparent sensitivity of these cells to ethanol and recent research suggesting that some ethanol effects are accounted for by neuroimmune interactions we assessed drinking behavior and ethanol induced sedation in CD5 knockout (KO) mice. We found that CD5 KO mice display decreased ethanol consumption as compared with wild-type controls and that ethanol consumption does not increase with repeated exposure in CD5 KO mice. Additionally, CD5 KO mice displayed considerable resistance to the sedating effects of ethanol. Further studies are underway to assess whether there are baseline differences in dopamine dynamics within the mesolimbic pathway between CD5 KO mice and wild-type controls as well as to whether neurons in the mesolimbic pathway differ in their response to ethanol in CD5 KO mice.
    overrideBackgroundColorOrImage=
    overrideTextColor=
    promoTextAlignment=
    overrideCardHideSection=
    overrideCardHideByline=
    overrideCardHideDescription=
    overridebuttonBgColor=
    overrideButtonText=
    promoTextAlignment=
        data-content-type="article"
    
    
    Cocoa Epicatechin Metabolites' affect on β Cell Proliferation and Cell Cycle
Ross, Mimi; Tessem, Jeffery; Orton, Emily; Ekpo, Idongesit; Beales, Joseph (Brigham Young University)
Faculty Advisor: Tessem, Jeffery (Life Sciences; Nutrition, Dietetics, & Food Science)
In 2015 there were over 30 million Americans with diabetes and over 84 million Americans ages 18 and older had pre-diabetes. With diabetes being the seventh leading cause of death in the United States and becoming more prevalent the race is on to find a cure. One of the main problems with this disease is the decrease in functional β-cell mass. β-cells produce insulin to maintain blood glucose levels at healthy levels. Thus, if we can increase β-cell proliferation we are one step closer to curing diabetes. Cocoa epicatechins have been shown to be beneficial in blocking diabetes progression. Studies have shown that oligomeric and polymeric cocoa epicatechin extracts improve diabetes onset in a mouse model of Type 2 diabetes. We have demonstrated that the oligomeric fraction of cocoa epicatechins enhances β-cell proliferation in an in vitro model. Absorption studies have shown that while the oligomeric and polymeric forms are not readily absorbed in the gut, they are metabolized by gut bacteria and that these metabolites can be observed in circulation. Using flow cytometry we have studied how these phytochemicals: epicatechin, 5-phenylvaleric acid, Homovanilic acid, and Hippuric acid. Here we present the data regarding the effect of microbial cocoa flavanol metabolites on β-cell cell cycle during proliferation.
        
        
            
    
    
         
    
        
        
        
        
        
        
        
    Faculty Advisor: Tessem, Jeffery (Life Sciences; Nutrition, Dietetics, & Food Science)
In 2015 there were over 30 million Americans with diabetes and over 84 million Americans ages 18 and older had pre-diabetes. With diabetes being the seventh leading cause of death in the United States and becoming more prevalent the race is on to find a cure. One of the main problems with this disease is the decrease in functional β-cell mass. β-cells produce insulin to maintain blood glucose levels at healthy levels. Thus, if we can increase β-cell proliferation we are one step closer to curing diabetes. Cocoa epicatechins have been shown to be beneficial in blocking diabetes progression. Studies have shown that oligomeric and polymeric cocoa epicatechin extracts improve diabetes onset in a mouse model of Type 2 diabetes. We have demonstrated that the oligomeric fraction of cocoa epicatechins enhances β-cell proliferation in an in vitro model. Absorption studies have shown that while the oligomeric and polymeric forms are not readily absorbed in the gut, they are metabolized by gut bacteria and that these metabolites can be observed in circulation. Using flow cytometry we have studied how these phytochemicals: epicatechin, 5-phenylvaleric acid, Homovanilic acid, and Hippuric acid. Here we present the data regarding the effect of microbial cocoa flavanol metabolites on β-cell cell cycle during proliferation.
    overrideBackgroundColorOrImage=
    overrideTextColor=
    promoTextAlignment=
    overrideCardHideSection=
    overrideCardHideByline=
    overrideCardHideDescription=
    overridebuttonBgColor=
    overrideButtonText=
    promoTextAlignment=
        data-content-type="article"
    
    
    Basal diet, green tea extract and gut microbiome interactions in a mouse multi-generation study.
Bartlett, Ashley; Phatak, Sumira; Hintze, Korry; Benninghoff, Abby (Utah State University)
Faculty Advisor: Benninghoff, Abby (College of Agriculture and Applied Sciences; Animal, Dairy, and Veterinary Sciences Department)
The gut microbiome modulates various physiological functions related to cancer development including inflammation, cell proliferation, apoptosis, and angiogenesis. Patients with inflammatory bowel disease have a microbiome distinct from healthy controls with consistent observations of reduced gut biomass, decreased diversity within the community, and altered relative abundance. Although a consensus cancer-related microbiome has not been identified, several pathogenic species play an instrumental role in the progression of colitis and tumorigenesis, including: Streptococcus bovis, Helicobacter pylori, Enterococcus faecalis, Clostridium septicum, and Escherichia coli. Gut microbial composition is highly responsive to diet and inadequate intake of micronutrients is a critical feature of the Western dietary pattern. Gut dysbiosis has been proposed to further limit mineral uptake and impair vitamin synthesis, predisposing the host to micronutrient deficiency. Dietary bioactives, such as those in green tea, may function as a mediator between the gut microbiome and basal diet to ultimately prevent colitis associated colorectal cancer (CAC). The overarching objective of our work is to determine the impact of ancestral or multi-generational consumption of the total Western diet (TWD) in a murine model of CAC. Our previous work is the first to investigate how diet induced transgenerational inheritance affects CAC outcome. Our data suggested that multigenerational patterns of exposure to the TWD altered both phenotype and gene expression in third generation offspring. Supplementation with green tea appeared to be most promising after consumption of TWD for multiple generations. Considering that gut microbes are inherited maternally after colonization during vaginal birth, the gut microbiome is a missing piece in this disease model puzzle. The hypothesis of our current project is to investigate whether intake of TWD influences the transmission of microbes and whether CAC outcome is reflected by altered gut microbial composition. Based on other work, we expect the healthy control to possess an abundance of varied bacterial taxa that maintain protective epithelial barrier function and overall homeostasis. On the other hand, a high fat diet would promote increased intestinal permeability, a substantial shift at the phyla level, and increased production of pro-inflammatory cytokines. After TWD consumption, we expect an overall negative phenotypic outcome within the gut microbiome, that includes a breakdown of the epithelial barrier and introduction of pathogenic bacteria. These harmful bacteria tend to thrive on simple sugars that are common in the Western dietary pattern and tend to produce metabolites known as endotoxins that promote dysbiosis.
        
        
            
    
    
         
    
        
        
        
        
        
        
        
    Faculty Advisor: Benninghoff, Abby (College of Agriculture and Applied Sciences; Animal, Dairy, and Veterinary Sciences Department)
The gut microbiome modulates various physiological functions related to cancer development including inflammation, cell proliferation, apoptosis, and angiogenesis. Patients with inflammatory bowel disease have a microbiome distinct from healthy controls with consistent observations of reduced gut biomass, decreased diversity within the community, and altered relative abundance. Although a consensus cancer-related microbiome has not been identified, several pathogenic species play an instrumental role in the progression of colitis and tumorigenesis, including: Streptococcus bovis, Helicobacter pylori, Enterococcus faecalis, Clostridium septicum, and Escherichia coli. Gut microbial composition is highly responsive to diet and inadequate intake of micronutrients is a critical feature of the Western dietary pattern. Gut dysbiosis has been proposed to further limit mineral uptake and impair vitamin synthesis, predisposing the host to micronutrient deficiency. Dietary bioactives, such as those in green tea, may function as a mediator between the gut microbiome and basal diet to ultimately prevent colitis associated colorectal cancer (CAC). The overarching objective of our work is to determine the impact of ancestral or multi-generational consumption of the total Western diet (TWD) in a murine model of CAC. Our previous work is the first to investigate how diet induced transgenerational inheritance affects CAC outcome. Our data suggested that multigenerational patterns of exposure to the TWD altered both phenotype and gene expression in third generation offspring. Supplementation with green tea appeared to be most promising after consumption of TWD for multiple generations. Considering that gut microbes are inherited maternally after colonization during vaginal birth, the gut microbiome is a missing piece in this disease model puzzle. The hypothesis of our current project is to investigate whether intake of TWD influences the transmission of microbes and whether CAC outcome is reflected by altered gut microbial composition. Based on other work, we expect the healthy control to possess an abundance of varied bacterial taxa that maintain protective epithelial barrier function and overall homeostasis. On the other hand, a high fat diet would promote increased intestinal permeability, a substantial shift at the phyla level, and increased production of pro-inflammatory cytokines. After TWD consumption, we expect an overall negative phenotypic outcome within the gut microbiome, that includes a breakdown of the epithelial barrier and introduction of pathogenic bacteria. These harmful bacteria tend to thrive on simple sugars that are common in the Western dietary pattern and tend to produce metabolites known as endotoxins that promote dysbiosis.
    overrideBackgroundColorOrImage=
    overrideTextColor=
    promoTextAlignment=
    overrideCardHideSection=
    overrideCardHideByline=
    overrideCardHideDescription=
    overridebuttonBgColor=
    overrideButtonText=
    promoTextAlignment=
        data-content-type="article"
    
    
    Blue Streak on Uca Pugnax
Anderson, Lars; Baldwin, Haley; Christensen, Ben; Walker, Austen (Brigham Young University)
Faculty Advisor: Griffen, Blaine (Brigham Young University, Life Sciences)
This research looks at the blue coloration on uca pugnax crab carapace above the mouth and between the eyestalks and associates the coloration to the behavior, sexual maturity, and size of the crab, as well as the detection of metals in their environment. Up to ten crabs were photographed within twenty five isolated sites with the objective of gathering a high range of color difference among the uca pugnax. The photos of the crabs were set to match the same scale of light and RGB as to not have interference from external factors such as sunlight or overcast weather. The shade of blue on the carapace provides information about the surrounding environment where the uca pugnax are found.
        
        
            
    
    
         
    
        
        
        
        
        
        
        
    Faculty Advisor: Griffen, Blaine (Brigham Young University, Life Sciences)
This research looks at the blue coloration on uca pugnax crab carapace above the mouth and between the eyestalks and associates the coloration to the behavior, sexual maturity, and size of the crab, as well as the detection of metals in their environment. Up to ten crabs were photographed within twenty five isolated sites with the objective of gathering a high range of color difference among the uca pugnax. The photos of the crabs were set to match the same scale of light and RGB as to not have interference from external factors such as sunlight or overcast weather. The shade of blue on the carapace provides information about the surrounding environment where the uca pugnax are found.
    overrideBackgroundColorOrImage=
    overrideTextColor=
    promoTextAlignment=
    overrideCardHideSection=
    overrideCardHideByline=
    overrideCardHideDescription=
    overridebuttonBgColor=
    overrideButtonText=
    promoTextAlignment=
        data-content-type="article"
    
    
    Beta Cell Heterogeneity: Nkx6.1 Binding Partners
Littlefield, Connor; Tessem, Jeffery (Brigham Young University)
Faculty Advisor: Tessem, Jeffery (Brigham Young University, NDFS)
The transcription factor Nkx6.1 is essential for beta cell growth and function. Given that Nkx6.1 is expressed in beta cells undergoing high level expansion, our lab demonstrated that Nkx6.1 overexpression in primary rat islets was sufficient to induce beta cell proliferation and enhance glucose stimulated insulin secretion. However, while these phenotypes are evident in islets from young animals, islets from aged animals fail to induce proliferation or increased insulin secretion. One reason for why Nkx6.1 fails to drive proliferation or increase insulin secretion is due to lost binding partners that allow it to control gene transcription. We hypothesize that loss of Nkx6.1 binding partners curtails its ability to induce gene transcription that leads to proliferation and enhanced glucose stimulated insulin secretion. To test this hypothesis we have used Nkx6.1 BioID to define by mass spectrometry the proteins that interact with Nkx6.1 Here we define three novel interactors, Mef2D, Sirt7, PDX1. This finding will provide us with a greater understanding of Nkx6.1 function in the beta cell, provide us with new gene targets essential for Nkx6.1 function, and allow us to begin to apply these findings to aged beta cells.
        
        
            
    
    
         
    
        
        
        
        
        
        
        
    Faculty Advisor: Tessem, Jeffery (Brigham Young University, NDFS)
The transcription factor Nkx6.1 is essential for beta cell growth and function. Given that Nkx6.1 is expressed in beta cells undergoing high level expansion, our lab demonstrated that Nkx6.1 overexpression in primary rat islets was sufficient to induce beta cell proliferation and enhance glucose stimulated insulin secretion. However, while these phenotypes are evident in islets from young animals, islets from aged animals fail to induce proliferation or increased insulin secretion. One reason for why Nkx6.1 fails to drive proliferation or increase insulin secretion is due to lost binding partners that allow it to control gene transcription. We hypothesize that loss of Nkx6.1 binding partners curtails its ability to induce gene transcription that leads to proliferation and enhanced glucose stimulated insulin secretion. To test this hypothesis we have used Nkx6.1 BioID to define by mass spectrometry the proteins that interact with Nkx6.1 Here we define three novel interactors, Mef2D, Sirt7, PDX1. This finding will provide us with a greater understanding of Nkx6.1 function in the beta cell, provide us with new gene targets essential for Nkx6.1 function, and allow us to begin to apply these findings to aged beta cells.
    overrideBackgroundColorOrImage=
    overrideTextColor=
    promoTextAlignment=
    overrideCardHideSection=
    overrideCardHideByline=
    overrideCardHideDescription=
    overridebuttonBgColor=
    overrideButtonText=
    promoTextAlignment=
        data-content-type="article"
    
    
    Bioinformatic comparison of peptidases in Lactococcus lactis subsp. lactis and Lactococcus lactis subsp. cremoris
Wood, Branzen; Oberg, Taylor; Culumber, Michele; Oberg, Craig (Weber State University)
Faculty Advisor: Oberg, Taylor (Utah State University, Nutrition and Food Science); Culumber, Michele (Weber State University, Microbiology); Oberg, Craig (Weber State University, Microbiology)
The unique flavorings and textures of Cheddar cheese are produced by the degradation of the major milk proteins. One of those proteins, casein, is degraded by the enzyme chymosin and a series of peptidases produced by the starter Lactococcus added to the milk. As casein is degraded, several small peptides accumulate. One of these peptides, ß-casein, can have an adverse bitter taste that is non-desirable and considered a defect in Cheddar cheese. The two main starter cultures used industrially in Cheddar cheese making are Lactococcus lactis subsp. lactis and L. lactis subsp. cremoris. L. lactis subsp. cremoris has been used traditionally in Cheddar cheese making, however, L. lactis subsp. lactis ferments more quickly and is becoming more popular in the cheese industry. With the transition creameries have seen a sharp rise in bitterness during production. Our hypothesis was that while closely related, cremoris synthesizes some peptidases that help with ß-casein degradation that lactis does not. Peptidases found in cremoris include PrtP I and II, Pep X, Pep C, Pep A, Pep T, Pep Q, Pep N, Pep V among others. We searched the genomes of both strains using RAST bioinformatic software, and the databases NCBI and UniProt. The peptidases common in cremoris were also found in lactis. We are now trying to determine if the location of the peptidases on the genomes change how they are regulated or produced. Further, we will begin looking into the genome for other, novel, enzymes that might have peptidase activity that influence bitterness.
        
        
            
    
    
         
    
        
        
        
        
        
        
        
    Faculty Advisor: Oberg, Taylor (Utah State University, Nutrition and Food Science); Culumber, Michele (Weber State University, Microbiology); Oberg, Craig (Weber State University, Microbiology)
The unique flavorings and textures of Cheddar cheese are produced by the degradation of the major milk proteins. One of those proteins, casein, is degraded by the enzyme chymosin and a series of peptidases produced by the starter Lactococcus added to the milk. As casein is degraded, several small peptides accumulate. One of these peptides, ß-casein, can have an adverse bitter taste that is non-desirable and considered a defect in Cheddar cheese. The two main starter cultures used industrially in Cheddar cheese making are Lactococcus lactis subsp. lactis and L. lactis subsp. cremoris. L. lactis subsp. cremoris has been used traditionally in Cheddar cheese making, however, L. lactis subsp. lactis ferments more quickly and is becoming more popular in the cheese industry. With the transition creameries have seen a sharp rise in bitterness during production. Our hypothesis was that while closely related, cremoris synthesizes some peptidases that help with ß-casein degradation that lactis does not. Peptidases found in cremoris include PrtP I and II, Pep X, Pep C, Pep A, Pep T, Pep Q, Pep N, Pep V among others. We searched the genomes of both strains using RAST bioinformatic software, and the databases NCBI and UniProt. The peptidases common in cremoris were also found in lactis. We are now trying to determine if the location of the peptidases on the genomes change how they are regulated or produced. Further, we will begin looking into the genome for other, novel, enzymes that might have peptidase activity that influence bitterness.
    overrideBackgroundColorOrImage=
    overrideTextColor=
    promoTextAlignment=
    overrideCardHideSection=
    overrideCardHideByline=
    overrideCardHideDescription=
    overridebuttonBgColor=
    overrideButtonText=
    promoTextAlignment=
        data-content-type="article"
    
    
    Collared Peccary (Pecari tajucu) Group Size at La Selva Biological Station, Costa Rica
Shin, Seungwon (Salt Lake Community College)
Faculty Advisor: Seaboch, Melissa (Salt Lake Community College, Anthropology)
The abundance of collared peccaries (Pecari tajucu) is crucial to study because they are a keystone species that plays a large role in their ecosystems. They consume fallen fruits and nuts, disperse seeds, and provide food for predators. Additionally, they are ecosystem engineers altering the landscape for other species. Previous studies have shown that collared peccaries at La Selva Biological Station travel in smaller groups (averaging 10 individuals per group) compared to peccaries at other Neotropical sites. La Selva Biological Station is located in northeastern Costa Rica and it consists of both primary and secondary (i.e. degraded) forests surrounded on three sides by farmland. Due to the general decline of mammals in degraded habitats, I predicted that the average group size of collared peccaries at La Selva will be even smaller than previously reported. I collected data at La Selva Biological Station for two weeks in May 2019. I used three census methods: total count sampling (counting all the species in a certain area), line transect sampling (counting all the species I see when I walk through a trail), and point sampling (standing at selected viewpoints and recording the species visible from that location). I observed 39 peccaries in 17 separate sightings. Group size ranged from 1 to 7 peccaries with an average of 2.3 peccaries per group. Eight sightings (20%) were of single peccaries. My hypothesis that peccary group size would be smaller than 10 individuals was supported. Some limitations of the study were low visibility due to the dense forest and the dispersed social organization of peccary individuals within the group. Both of these factors would underestimate the actual group size of collared peccaries. Nevertheless, the results support previous findings that peccary group size at La Selva are smaller than at other Neotropical sites.
        
        
            
    
    
         
    
        
        
        
        
        
        
        
    Faculty Advisor: Seaboch, Melissa (Salt Lake Community College, Anthropology)
The abundance of collared peccaries (Pecari tajucu) is crucial to study because they are a keystone species that plays a large role in their ecosystems. They consume fallen fruits and nuts, disperse seeds, and provide food for predators. Additionally, they are ecosystem engineers altering the landscape for other species. Previous studies have shown that collared peccaries at La Selva Biological Station travel in smaller groups (averaging 10 individuals per group) compared to peccaries at other Neotropical sites. La Selva Biological Station is located in northeastern Costa Rica and it consists of both primary and secondary (i.e. degraded) forests surrounded on three sides by farmland. Due to the general decline of mammals in degraded habitats, I predicted that the average group size of collared peccaries at La Selva will be even smaller than previously reported. I collected data at La Selva Biological Station for two weeks in May 2019. I used three census methods: total count sampling (counting all the species in a certain area), line transect sampling (counting all the species I see when I walk through a trail), and point sampling (standing at selected viewpoints and recording the species visible from that location). I observed 39 peccaries in 17 separate sightings. Group size ranged from 1 to 7 peccaries with an average of 2.3 peccaries per group. Eight sightings (20%) were of single peccaries. My hypothesis that peccary group size would be smaller than 10 individuals was supported. Some limitations of the study were low visibility due to the dense forest and the dispersed social organization of peccary individuals within the group. Both of these factors would underestimate the actual group size of collared peccaries. Nevertheless, the results support previous findings that peccary group size at La Selva are smaller than at other Neotropical sites.
    overrideBackgroundColorOrImage=
    overrideTextColor=
    promoTextAlignment=
    overrideCardHideSection=
    overrideCardHideByline=
    overrideCardHideDescription=
    overridebuttonBgColor=
    overrideButtonText=
    promoTextAlignment=
        data-content-type="article"
    
    
    Analysis of binding affinity and molecular cloning of two PRMT1 substrates
Jones, Abigail; Hevel, Joan (Utah State University)
Faculty Advisor: Hevel, Joan (College of Science, Chemistry and Biochemistry Department)
PRMT1 is one of nine known mammalian Protein Arginine Methyltransferases (PRMTs) whose function are to transfer methyl groups from S-adenosyl methionine (SAM) to arginine residues of specific proteins. PRMT1 is known to methylate many different proteins in cells, but the mechanism of target recognition and binding is still unknown. Correct regulation of PRMT1 is critical to proper cellular function; thus, the action of PRMT1 is important to understand. In this study, we seek to elucidate how PRMT1 recognizes and binds its targets by identifying protein substrates of PRMT1 that form a stable complex with the enzyme. Such a protein would allow for additional studies (e.g. crystallographic or cryo-EM studies) to help visualize PRMT1-substrate interactions. Two substrates of PRMT1, TWIST1 and Smad6, have been purified, and the binding affinity of each to PRMT1 has been qualitatively assessed via pull-down assay and Western blot. Ligation-independent-cloning has been used to clone each substrate gene out of a GST-tagged vector and into a His-tagged vector, which will allow for further experiments assessing the stoichiometry of PRMT1-substrate binding.
        
        
            
    
    
         
    
        
        
        
        
        
        
        
    Faculty Advisor: Hevel, Joan (College of Science, Chemistry and Biochemistry Department)
PRMT1 is one of nine known mammalian Protein Arginine Methyltransferases (PRMTs) whose function are to transfer methyl groups from S-adenosyl methionine (SAM) to arginine residues of specific proteins. PRMT1 is known to methylate many different proteins in cells, but the mechanism of target recognition and binding is still unknown. Correct regulation of PRMT1 is critical to proper cellular function; thus, the action of PRMT1 is important to understand. In this study, we seek to elucidate how PRMT1 recognizes and binds its targets by identifying protein substrates of PRMT1 that form a stable complex with the enzyme. Such a protein would allow for additional studies (e.g. crystallographic or cryo-EM studies) to help visualize PRMT1-substrate interactions. Two substrates of PRMT1, TWIST1 and Smad6, have been purified, and the binding affinity of each to PRMT1 has been qualitatively assessed via pull-down assay and Western blot. Ligation-independent-cloning has been used to clone each substrate gene out of a GST-tagged vector and into a His-tagged vector, which will allow for further experiments assessing the stoichiometry of PRMT1-substrate binding.
    overrideBackgroundColorOrImage=
    overrideTextColor=
    promoTextAlignment=
    overrideCardHideSection=
    overrideCardHideByline=
    overrideCardHideDescription=
    overridebuttonBgColor=
    overrideButtonText=
    promoTextAlignment=
        data-content-type="article"
    
    
    Antibiotic Resistance in Staphylococcus aureus: Effects of Biofilm Synthesis in Gene Transfer
Hirschi, Blake; Pickett, Brad; Thompson, Jared; Telford, Mady; Berges, Bradford (Brigham Young University)
Faculty Advisor: Berges, Brad (Life Sciences, Microbiology and Molecular Biology)
Staphylococcus aureus (S. aureus) is a commensal bacterium commonly found amongst livestock and near 30% of humans' nostrils. However, through acquisition of certain genes S. aureus may develop antibiotic resistance such as in methicillin-resistant Staphylococcus aureus (MRSA). One hypothesized component lending to acquisition of genetic resistance in S. aureus is the synthesis of colony biofilms. Biofilms are comprised of a variety of substances including secreted polysaccharides, protein and even extracellular DNA. Our work postulates that extracellular DNA-based biofilms will transfer genes for antibiotic resistance at a higher rate than in polysaccharide/protein biofilms. Through employment of polymerase chain reaction (PCR), we aim to characterize a wide sample of methicillin-susceptible S. aureus (MSSA) human associated strains and MRSA livestock associated strains for multiple antibiotic resistances. Co-inoculating pairs of human associated and livestock associated strains, each lacking the other's resistance genes, will provide an environment wherein biofilm-mediated gene transfer may occur. Further pairing based on biofilm composition (DNA or polysaccharide/protein) will yield data concerning which biofilm facilitates gene transfer more efficiently. Subsequent genotyping will confirm whether resulting isolates acquired new antibiotic resistance through biofilm-mediated transfer, thus increasing pathogenicity.
        
        
            
    
    
         
    
        
        
        
        
        
        
        
    Faculty Advisor: Berges, Brad (Life Sciences, Microbiology and Molecular Biology)
Staphylococcus aureus (S. aureus) is a commensal bacterium commonly found amongst livestock and near 30% of humans' nostrils. However, through acquisition of certain genes S. aureus may develop antibiotic resistance such as in methicillin-resistant Staphylococcus aureus (MRSA). One hypothesized component lending to acquisition of genetic resistance in S. aureus is the synthesis of colony biofilms. Biofilms are comprised of a variety of substances including secreted polysaccharides, protein and even extracellular DNA. Our work postulates that extracellular DNA-based biofilms will transfer genes for antibiotic resistance at a higher rate than in polysaccharide/protein biofilms. Through employment of polymerase chain reaction (PCR), we aim to characterize a wide sample of methicillin-susceptible S. aureus (MSSA) human associated strains and MRSA livestock associated strains for multiple antibiotic resistances. Co-inoculating pairs of human associated and livestock associated strains, each lacking the other's resistance genes, will provide an environment wherein biofilm-mediated gene transfer may occur. Further pairing based on biofilm composition (DNA or polysaccharide/protein) will yield data concerning which biofilm facilitates gene transfer more efficiently. Subsequent genotyping will confirm whether resulting isolates acquired new antibiotic resistance through biofilm-mediated transfer, thus increasing pathogenicity.
    overrideBackgroundColorOrImage=
    overrideTextColor=
    promoTextAlignment=
    overrideCardHideSection=
    overrideCardHideByline=
    overrideCardHideDescription=
    overridebuttonBgColor=
    overrideButtonText=
    promoTextAlignment=