Berges, Bradford; Wienclaw, Trevor; Ball, Ashley; Richmond, Bradley (Brigham Young University)
Faculty Advisor: Berges, Bradford (Life Sciences, Microbiology and Molecular Biology)
Staphylococcus Aureus (SA) biofilms are serious impediments to immune defenses and antibiotics, making them a major factor in SA infection. Such infections can be highly lethal even using current treatments, representing a major challenge to the healthcare industry. Previous genetic screenings of SA have revealed several genes that may be associated with biofilm formation. While the roles of many of these genes have been studied, little research has been done on how mutations of these genes impact biofilm composition. As several therapeutic options for treating mature SA biofilms require understanding of biofilm composition, a better understanding of how genes influence that composition is critical to improving current treatments and developing new ones.
In this project, we will study the biofilm phenotypes of SA with mutations in common biofilm-associated genes. By comparing the biofilm mass and composition of the wild-type (wt) Je2 strain to strains containing mutated biofilm-associated genes, we hope to uncover the impact that each mutation has on the composition of the biofilm matrix. We will utilize crystal violet assays as well as extracellular DNA and protein quantifying procedures to determine biofilm composition, after which meaningful comparisons can be made between mutant biofilms and wt biofilms.