Not yet published (Brigham Young University)
Faculty Advisor: Chaston, John (Brigham young University, Life Sciences)
Within an organism's gut are many strains of bacteria that are constantly interacting with their host. Microbiota composition has been shown to impact many aspects of host health such as metabolism, fat-storage, starvation resistance, and reproduction. Certain behaviors and outcomes have been correlated with certain microbial taxa present in the host gut.
D. melanogaster serves as a useful tool for studying this relationship because its microbiota contains relatively few bacterial strains and is both widely studied and largely understood. Previous research within our lab involving D. melanogaster has found trends in many life-history strategies (ie. reproduction, fecundity, lifespan) that correlate with the presence of certain gut bacteria. While there are many aspects of health that microbiota composition affects, there are also a variety of factors that impact microbiota composition thus leading to these end results.
This experiment seeks to further understand the role that environment has in determining microbiota composition. By rearing gnotobiotic flies in environments that differ in temperature, we can then analyze microbiota content to see if any fluctuations occur due to environmental temperature. If temperature is found to have an effect on the taxa present in fully developed D. melanogaster, we can then seek to determine whether or not there are evolutions taking place in host genotype that yield differing microbiota phenotypically.