Raman Imaging of Single Cellular Metabolism Skip to main content
Utah's Foremost Platform for Undergraduate Research Presentation
2020 Abstracts

Raman Imaging of Single Cellular Metabolism

Ballantyne, Eliza; Buck, Lance; Cox, Zach; Adams, Brittney; Trappett, Matthew; Shipp, Dustin (Utah Valley University)

Faculty Advisor: Shipp, Dustin (Utah Valley University, Physics)

Understanding how cells metabolize the chemicals around them on a single cellular level is paramount to analyzing the effectiveness of pharmaceutical drugs. Discrepancies between pharmaceutical drug results during lab testing versus in actual patients are an expensive and time consuming obstacle. These differences could be alleviated using Raman spectroscopy by testing based on an overall chemical map instead of individual factors. Raman spectroscopy has great potential to aid this process because of its ability to present a chemical fingerprint of an entire cell without interfering with the cell's natural responses to chemical changes.

Using Raman spectroscopy to develop an additional method for observing cell metabolism will enhance understanding of cell function and advance studies focused on the results of chemical effects on cells in vivo. As a step toward this goal, this project is currently focused on obtaining time-lapsed Raman images of glucose uptake. Using glucose metabolism, we are able to model a system for more complicated pharmaceuticals. This study has explored methods for collecting Raman spectra in vivo, balancing time-dependent data collection with the time-constraint of working with living and changing cells. Raman spectra describing the chemical makeup of glioblastoma cancer cells as they metabolize glucose were analyzed and used to create time-lapsed images during uptake.

Our process presents a new lens for understanding cell metabolism and a potential tool for analyzing an additive's effect on a single-cellular level. We developed a platform and method for measuring chemical changes in cells over time. Next stages for this research include observing how metabolism varies depending on what additives are used for uptake and quantifying metabolic differences between types of cells.