Skip to main content
Utah's Foremost Platform for Undergraduate Research Presentation
2020 Abstracts

Optimization Of Tuberculosis Biomarker Detection In Breath Condensate Via Engineered Electroactive Solution

Swomitra, Mohanty; Willis, Christina ; Larson, Shaylee (University of Utah)

Faculty Advisor: Mohanty, Swomitra (Engineering, Chemical Engineering)

The World Health Organization has cited tuberculosis (TB) as a global health emergency. As this is a disease that mainly affects those in developing countries, it is important to provide a rapid and affordable means of diagnosis. Emerging work has shown breath biopsy to be a promising resource for diagnosing a variety of diseases, but is particularly promising for TB, as it negates the need for sputum collection that can cause many problems in young or ill patients and can provide results at point of care.

The breath of a patient diagnosed with TB contain volatile organic biomarkers (VOBs) that are given off by the bacteria that cause the disease. Detection of VOBs with via metal-functionalized titanium dioxide sensors has been successful in very sick patients, however it is limited in its ability to detect low analyte levels and has unknown specificity in a complex human breath matrix. Preliminary results indicate that the use of an engineered electroactive solution (EAS), a liquid-phase complex which utilizes a functional metal in solution, can improve the current sensing platform by simplifying the electrode configuration and allowing the use of more complex electrochemical techniques (in this case square wave voltammetry (SWV)). Because the margins of detection can be quite small, successful optimization of SWV parameters is vital. The proposed project will explore a means of optimizing these parameters by collecting a variety of sample data in order to determine how the electrochemical activity of the EAS is altered when biomarkers are introduced.