Gray, Daniel; Durfee, Dallin (Utah Valley University)
Faculty Advisor: Durfee, Dallin (College of Science, Physics)
IPSII is a fully lensless single pixel imaging technique using mechanically scanned interference patterns. The method uses only simple, flat optics; no lenses, curved mirrors, or acousto-optics are used in pattern formation or detection. The resolution is limited by the numerical aperture of the angular access to the object, with a fundamental limit of a quarter wavelength, which is twice the Abbe limit. ISPII also has no fundamental limit on working distance as well as a depth of field and field of view independent of resolution. Normally, an interference pattern is projected across the target object to obtain information. Currently this uses interfering plane waves which produce sinusoidal interference patterns allowing us to measure in the Fourier basis. Mechanically scanning the laser angles to change the interference pattern is slow. Image times usually require hours or days as regular scan times produce approximately one pixel per second. We intend to improve the time to scan an object by utilizing a micromirror array to modify the interference patterns, such that multiple measurements can be made at one angle. Updating the micromirror array is much faster than changing the angles at which the target is scanned. This will greatly reduce the time required as we will not need to measure with as many angles to obtain an image. With the micromirror array we will be able to generate a wider range of basis functions. In addition to increasing the speed this may allow us to better utilize compressive sensing techniques where an n-pixel image may be obtained by scanning only a fraction of n-points on the object.