Escarate, Ashley; Brunetti, Bryce; Conway, Matthew (Utah Valley University)
Faculty Advisor: Kopp, Olga (Utah Valley University, Biology); Slezak, Cyrill (Utah Valley University, Physics)
Medical device-associated infections can lead to serious complications affecting the health of patients. Electrohydraulic shockwave treatments have shown bactericidal activity in some microorganisms. Biofilms are structures formed by microorganisms enclosed in an extracellular matrix. They form on a variety of surfaces protecting the microorganisms from antibiotics and facilitating their growth. This can result in a high rate of drug resistance and in many cases result in chronic bacterial infections.
Previously determined MIC50 concentrations of vancomycin had little effect on biofilms at twelve hours of treatment when not paired with shockwave therapy. This research evaluates the synergistic effect of different concentrations of vancomycin and shockwaves after twelve and twenty four hours of treatment given that vancomycin has shown time-dependent activity. Biofilms were grown in 96 well plates and the corresponding treatments were applied. XTT and Crystal Violet assays were used to quantify and qualify the presence of the biofilm and the antibiosis effect. The results of this experiment will be discussed in detail. A better understanding of the synergistic effects of antibiotics and shockwave therapy may lead to a more effective treatment of biofilm and device-associated infections.