Bailey J. McFarland, Cheng Chen, Asfand Yar Khan, Harley Cragun, Justin A. Jones and Yu Huang (Utah State University)
Faculty Advisor: Huang, Yu (College of Engineering, Biological Engineering Department); Jones, Justin (College of Science, Biology Department)
Neurological diseases are the largest cause of disability worldwide. Tissue engineering approaches are desirable as they can be used to treat these diseases by replacing damaged and non-repairable brain tissues with engineered materials. Electrospinning of bioactive molecules is a promising materials engineering method to culture neurons and support nervous tissue growth. This suitability for neural cell culture is due to the electrospun material's fibrous and porous structure that mimics the structure of the extracellular matrix. The electrospinning process also allows for the controllable development of complex 3D cell culture, which is key to the creation of viable neural connections. In addition, the formation of both aligned and unaligned layers of fibers allows for intricate guiding of cell morphology that improves outcomes in neural cultures. Finally, the choice of appropriate bioactive materials can improve neurological cell culture. Spider silk, a bioactive protein, contains sequences of amino acids that support nerve cell binding and scaffolding, in complement to which, chitosan fibers have been shown to promote the healthy growth of neural cells.
This project develops a novel method of electrospinning a fibrous scaffold for neural tissue engineering from solutions of recombinant spider silk protein and chitosan. Preliminary results in this study are promising and add to the body of research in neural tissue engineering. These bioactive materials paired with the morphological benefits of electrospinning allow an opportunity to create a substrate that can improve stem cell differentiation into healthy neurons.