The Effects Of Invasive Common Carp On Invertebrate Food Sources For Diving Ducks In Great Salt Lake Wetlands Skip to main content
Utah's Foremost Platform for Undergraduate Research Presentation
2020 Abstracts

The Effects Of Invasive Common Carp On Invertebrate Food Sources For Diving Ducks In Great Salt Lake Wetlands

Karin, Kettenring; Robison, Talin; Leonard, Emily (Utah State University)

Faculty Advisor: Kettering, Karin (S.J. & Jessie E. Quinney College of Natural Resource, Watershed Sciences Department)

The Great Salt Lake (GSL) and its wetlands are important habitat for migrating birds. The GSL wetlands provide crucial habitat for nesting, food, and areas to recover from migration. Common carp are a threat to GSL wetlands. Carp disturb sediments in the water, blocking some of the sunlight from entering the water, which is utilized by aquatic macrophytes and algae. Carp also may be affecting invertebrate populations, which are critical food resources for migrating birds, but these effects have not been well-documented. My research addressed the question: what are the effects of invasive common carp on invertebrate food sources for diving ducks in the Great Salt Lake wetlands? I answered my research question by addressing the following objectives: (1) to identify the benthic, epiphytic, and water-column dwelling invertebrates in Farmington Bay Waterfowl Management Area (WMA), and (2) to determine if common carp are having an impact on the overall density, diversity, and abundance of the invertebrate communities fed on by diving ducks. I compared invertebrate communities (diversity and abundance) between carp-excluded boxes and control boxes. I constructed my carp exclosures of wire mesh and t-posts to prohibit carp from entering while still allowing invertebrates and water to freely move in and out of the exclosure. The control boxes were constructed of t-posts and allowed carp to freely enter and exit the box. I used dipnet and substrate core samples to determine what invertebrates are living in the water column and substrates at Farmington Bay wetlands. Although sample processing is on-going, early results indicate that carp reduce water column invertebrate abundance while effects on invertebrate diversity are thus far inconclusive. Given the importance of GSL wetlands and their invertebrate food sources to migrating diving, my research findings underscore the importance of aggressive carp management.