Skip to main content
Utah's Foremost Platform for Undergraduate Research Presentation
2024 Abstracts

Random-walk model of retina neovessel growth

Authors: Cassandra DuBose Corry
Mentors: Elizabeth Vargis
Insitution: Utah State University

Age-related Macular Degeneration (AMD) is characterized by a blurring of the central vision and is one of the leading causes of vision loss in the United States. As a branch of the disease, exudative AMD is distinguished by retinal angiogenesis, when new blood vessels grow into the retina. Understanding retinal conditions that promote or discourage angiogenesis by using mathematical models can lead to improved understanding of disease progression and treatments. This discrete mathematical model presented here uses the theory of reinforced random walks to simulate the biological behavior of endothelial cells (ECs) as they leave a parent blood vessel and travel through the choroid and Bruch’s membrane towards the retinal pigment epithelial (RPE) layer. Cell behavior such as number of divisions and blood vessel coverage are analyzed for comparison to experimental observations. Pigment epithelium-derived factor (PEDF) is included and examined for its effect on the behavior of the ECs and its ability to prevent angiogenesis. This computational model provides novel insights into exudative AMD with parameters that can be adjusted to meet different needs.