Authors: Caleb Fears
Mentors: Troy Munro
Insitution: Brigham Young University
To further the development of medicine and understand the structural stability of both pathogenic and therapeutic proteins, knowledge of the thermodynamics of biomolecules is necessary. An example is amyloid fibrils seen in Alzheimer’s patients, where their unfolding and polymerization is dictated by a poorly understood interplay between enthalpy, entropy, and other thermodynamic properties. Devices such as isothermal titration calorimeters (ITC) and differential scanning calorimeters (DSC) are commonly used to measure these values, but the devices often are insufficiently sensitive to detect small heat changes or require large amounts of sample. Thus, the development of microfluidic thermodynamic measurement devices using small, highly sensitive Peltier elements for biosensing is needed. Through the use of a 3D printer, we are able to design and print chips that have the vacancies needed to miniaturize Peltier elements. This is possible because you can print and fill channels (thermoelectric legs) with dimensions as small as 70 microns by 70 microns, which will at least quadruple the number of thermoelectric legs compared to commercial PE devices with the same footprint. We have managed to insert and cure electrically conductive materials needed for Peltier Elements into channels of 100 microns by 100 microns. And through the use of micro-casting techniques, we have also produced chips that contain the electrical connections, with the same channel size (100 microns by 100 microns), needed to connect each thermoelectric leg. The further development of these PE devices will help us develop the calorimeters necessary to accurately and efficiently study protein thermodynamics.