Skip to main content
Utah's Foremost Platform for Undergraduate Research Presentation
2024 Abstracts

Investigation of the impact of heat treatment on Nitinol wires

Authors: Joseph Moore
Mentors: Jeff Hill
Insitution: Brigham Young University

Shape memory alloys are extensively utilized in many industries due to their ability to return to a predefined shape when heated. For medical applications, Nitinol, a nickel-titanium shape memory alloy, holds significant favor due to its biocompatibility and super elasticity. Since its discovery in the early 1960s, Nitinol has been the subject of ongoing research and fresh insights into how this alloy operates are of great importance to the industry.

Nitinol wires sourced from manufacturers exhibit substantial uncertainty in their actuation temperature, also known as the austenite finish temperature. This study aims to investigate a heat-treatment method that can reduce these uncertainties, ultimately narrowing down the precise and consistent austenite finish temperature for two types of Nitinol wire: a single wire and a coiled variant.

To achieve this, Nitinol samples were subjected to heat treatment in a furnace, with temperature and time parameters ranging from 500 to 650 °C and 5 minutes to 2 hours. Subsequently, the austenite finish temperature was triggered and recorded by immersing the heat-treated samples in degassed and deionized water at a controlled temperature.

This research defines a straightforward yet effective approach that produces dependable results under controlled conditions. This method has the potential to streamline the determination of austenite finish temperatures, making future research more efficient. It may also open doors for innovative and efficient methods investigating the impact of heat treatment on Nitinol wires.