Authors: Chris Paul, Alex Edwards
Mentors: Christopher Dillon
Insitution: Brigham Young University
Focused ultrasound thalamotomy is a novel treatment that uses sound waves to ablate problematic neurons in the thalamus, treating conditions such as essential tremor and tremor-dominant Parkinson’s disease. However, this treatment can result in high temperatures at the skull-brain interface which can inadvertently damage adjacent brain tissue. Currently, this risk is reduced by keeping stationary chilled water around the skull during treatments. However, many patients are still unable to receive treatment due to unfavorable subject-specific characteristics (i.e. large amounts of cancellous skull tissue). This study hypothesizes that convective water flow will remove heat from the skull more quickly than stationary chilled water, allowing more patients to receive treatment.
To quantify convection effects, we designed an experiment to imitate a patient undergoing focused ultrasound thalamotomy.
The experimental setup consists of a hemispherical 3D-printed mock skull containing a brain surrogate, placed into a mock ultrasound transducer. Heating is achieved by pumping hot water at a constant temperature across the inside of the brain surrogate. Temperature will be recorded throughout the setup as we run cold water around the skull in varying amounts. Temperature data from the convection setup will be compared to conduction data to determine which is more effective.
The apparatus has been constructed, and experimental data will be recorded shortly. Determining the extent to which convection heat transfer can be increased is an important step in developing more effective treatment plans and improving the lives of additional patients.