Authors: Emily Cherrington, Sam S Ingram, Chloe E Loveland, Ryanne Welch
Mentors: Olga Kopp
Insitution: Utah Valley University
Ocimum basilicum, commonly known as Genovese basil, is a frequently grown herb in the Lamiaceae family. It is used in food cuisines around the globe and is easily grown as a fresh-market herb for restaurants, farmer’s markets, and grocery stores. Basil has many antioxidants and anti-bacterial properties, but it is most commonly used as a culinary ingredient to add flavor to various dishes. Basil is very sensitive to cold, requiring well-draining soil with temperatures of 18°C to 27°C for germination. Consistent soil moisture is also necessary for optimum growth, and it prefers to stay moist to keep from drying out. In the face of global climate change, it becomes imperative to determine the adaptability of crucial agricultural crops -like basil- to varying nutrient levels in different substrate types across diverse environmental conditions. A plant's capacity to thrive in distinct substrates is intrinsically linked to the unique requirements of its seeds. The choice of substrate serves as the foundational element for cultivating healthy plants. This study centers on examining three pivotal aspects related to substrates: moisture retention, nutrient accessibility, and fungal growth. This led us to question whether the germination success of Ocimum basilicum differs depending on the substrate type. To test this question, we will plant Genovese basil seeds in four distinct substrate types: standard germination mix, 80/20 peat-perlite blend, compost-enriched soil, and an agar medium. Following their placement in the respective substrates, all seeds will be grown in a controlled growth chamber, subject to identical lighting conditions and a consistent temperature of 22°C to ensure uniformity across all treatments. At intervals of 1-2 days, diligent observations will be made to detect signs of germination. Once germination becomes apparent, we will meticulously document the results. Subsequently, this collected data will undergo analysis using the R Language. We anticipate that substrates rich in nutrients (specifically agar and standard germination mix) will exhibit heightened germination success. Investigating how substrate type affects the germination success of Genovese basil offers valuable insights with broad applications in horticulture and agriculture. It can enhance agricultural practices by pinpointing optimal soil choices for specific crops, increasing substrate efficiency to minimize resource wastage, and promoting sustainable and economical cultivation methods. Furthermore, this research contributes to a deeper comprehension of the environmental ramifications of crops and the diversity of crops in both controlled laboratory settings and natural environments.