Skip to main content
Utah's Foremost Platform for Undergraduate Research Presentation
2024 Abstracts

De novo genome assembly and annotation of Curculio sp. (Coleoptera: Curculionidae) provides insight into diapause evolution

Authors: Daniel Davis, Paul B Frandsen
Mentors: Paul B. Frandsen
Insitution: Brigham Young University

The nut and acorn weevils of the genus Curculio (Coleoptera: Curculionidae) are a diverse group of beetles with a unique life history. A female weevil uses her rostrum (snout) that is about the length of her body to dig into the flesh of a developing hard-shelled seed and lay her eggs inside where they can safely develop into larvae. After the grown larvae exit their seeds, they spend one or more years burrowed in the soil near host trees. During this time they enter diapause, a state of suspended development to minimize the energy that they expend. Studies indicate that a major purpose of this behavior is to align their adult emergence with masting events (large scale seed production every 2-5 years) of their host trees. Between, and even within, Curculio species, there is significant variation in diapause lengths and behaviors (Higaki, 2016). This wide array of adaptive behaviors is a result of the coevolution between these insects and their various hosts. Here, we present a high quality genome of a Curculio species. With this genome, we discuss the genetic and evolutionary factors that have given rise to this unique life history of Curculio and future plans to compare the genomes of multiple Curculio to further unravel this mystery.