Skip to main content
Utah's Foremost Platform for Undergraduate Research Presentation
2024 Abstracts

Computational Modeling of Curcumin Production in E. coli with Metabolic Engineering

Authors: Lukas Keller, Jixun Zhan, Zhen Zhang
Mentors: Jixun Zhan
Insitution: Utah State University

Curcumin is a common dietary supplement found naturally in the plant turmeric (Curcuma longa). Native to South Asia, the turmeric plant has been an important component in Indian and Chinese folk medicine. Curcumin has long been known to be an effective antioxidant and possesses anti-inflammatory properties. In today’s world, curcumin is a common nutraceutical and plays a part in the billion-dollar supplement industry. However, production and extraction of this compound is difficult and uses vast amounts of resources to cultivate. One solution to produce natural products like curcumin is the use of metabolic engineering to synthesize the product in another organism. The USU Metabolic Engineering Lab has developed a synthetic metabolic pathway to produce curcumin from an amino acid inside genetically transformed E. coli. The use of metabolic engineering techniques can produce larger quantities of the desired compound in greater quantities and purities while using a fraction of the land, water, and energy. To inform the use of these techniques, a predictive computational pathway was developed and is being validated with experimental results. An effective model can help researchers and businesses by allowing them to accurately predict curcumin yield and concentration during production.