Authors: Tate Thomas
Mentors: Alexander M Panin
Insitution: Utah Valley University
We wanted to see if accidentally creating mini black holes in high energy particle collisions posed a real threat to humanity. To do this, we calculated some properties of such a black hole, such as its life span, radius, density, and minimum energy required. We found that it is unlikely to exist, let alone destroy the planet. Furthermore, we calculated what would happen if it were to exist, finding that it would move through the Earth with little resistance and with a small amount of Earth matter absorbed. Depending on initial velocity, the black either quickly escapes Earth or would settle orbiting it with the orbit part of which passes via Earth. It is interesting that in a simplified model of Earth as of a sphere of uniform density, the inner part of the orbit of black hole is also elliptical (as the outer is) but not Keplerian - with Earth center not at the focus but at the center of another ellipse. In the case of small initial velocity when entire orbit is inside Earth, the period of such inner orbit is constant regardless of birth location and initial velocity of black hole. The goal of this presentation is to discuss the results of our calculations and to explore potential applications to our understanding of interaction of mini black holes with ordinary atomic matter.