Counting Integer Points in Scaled Polytopes Skip to main content
Utah's Foremost Platform for Undergraduate Research Presentation
2015 Abstracts

Counting Integer Points in Scaled Polytopes

Christopher Vander Wilt and Daniel Gulbrandsen

Utah Valley University

Let nP denote the polytope obtained by expanding the convex integral polytope P⊂R^d by a factor of n in each dimension. Ehrhart [1] proved that the number of lattice (integer) points contained in nP is a rational polynomial of degree d in n. What happens if the polytope is expanded by not necessarily the same factor in each dimension? In this talk a partial answer to this question will be provided, using powers of n as different factors to expand the polytope. It will be shown that the number of lattice points contained in the polytope formed by expanding P by multiplying each vertex coordinate by such a factor is a quasi-polynomial in n. Quasi-polynomials are a generalization of polynomials, where the coefficients of the quasi-polynomials are periodic functions with integral period. Furthermore, particular cases where the number of such lattice points is a polynomial will be presented. In addition, the period of these quasi-polynomials as well as the Law of Reciprocity will be addressed. At the end, future work will be discussed. [1] E. Ehrhart, “Sur les Poly`edres Rationnels Homoth ´etiques `a n Dimensions,” C. R. Acad. Sci. Paris 254 (1962)